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ABSTRACT Low back pain is a crucial public health problem that is commonly associated with intervertebral disc de‐
generation and has vast socio‐economic impact worldwide. Current treatments for disc degeneration are conservative,
non‐surgical, or surgical interventions, and there is no current clinical therapy aimed at directly reversing the degeneration.
Given the limited capacity of intervertebral disc (IVD) cells to self‐repair, treatment aiming to regenerate IVDs is a topic of
interest and mesenchymal stem cells (MSCs) have been identified as having potential in this regeneration. Recent studies
have revealed that the benefits of MSC therapy could result from the molecules the cells secrete and that play principal
roles in regulating essential biologic processes, rather than from the implanted cells themselves. Therefore, the objective
of this study is to review the potential use of the MSC secretome to regenerate IVDs. Current evidence shows that the
secretome may regenerate IVDs by modulating the gene expressions of nucleus pulposus cells (upregulation of keratin 19
and downregulation of matrix metalloproteinase 12 and matrix Gla protein) and stimulating IVD progenitor cells to repair
the degenerated disc.

KEYWORDS Intervertebral disc degeneration; low back pain; mesenchymal stem cells; regenerative properties; secretome

Indonesian Journal of Biotechnology
VOLUME 26(2), 2021, 61‐75 | RESEARCH ARTICLE

1. Introduction

Low back pain (LBP) is a crucial public health problem
(Driscoll et al. 2014). It has an enormous socioeconomic
impact worldwide and reduces the patient’s quality of life
remarkably (Katz 2006; Husky et al. 2018). About 577
million people are affected by LBP, and its cost exceeds
100 billion dollars per year in theUnited States alone (Katz
2006; Wu et al. 2020). Globally, LBP is the leading cause
of disability (Wu et al. 2020).

Low back pain is commonly associated with interver
tebral disc degeneration (IDD) (Clouet et al. 2019). Inter
vertebral disc degeneration may be present in more than
90% of people, but many of them have no signs of the dis
ease (Cheung et al. 2009). Degeneration of the disc often

begins in the second decade of life, earlier than other con
nective tissues in the human body, and is viewed as one
of the inevitable consequences of aging (Siemionow et al.
2011; Kepler et al. 2013). As degeneration occurs, this
disturbed the disc’s ability to perform its mechanical func
tions (Roberts et al. 2006). At the cellular level, degen
eration of the disc is characterized by increased degrada
tive enzyme production, increased apoptosis, increased in
flammatory cytokines expression, decreased extracellular
matrix production, and neurovascular ingrowth (Kepler
et al. 2013).

Intervertebral disc (IVD) has a limited ability to re
pair itself following injury and degeneration (Vadalà et al.
2016). Current treatments for disc degeneration are con

Indones J Biotechnol 26(2), 2021, 61‐75 | DOI 10.22146/ijbiotech.63318
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servative treatments, nonsurgical, or surgical interven
tions aimed formuscular stabilization and symptomatic re
lief with no clinical therapy targeting to reverse the degen
erated disc itself (Wei et al. 2014). However, the clinical
results of surgical interventions such as spinal fusion and
total disc replacement remain suboptimal (Van Den Eeren
beemt et al. 2010).

Considering the limited capability of the IVD to re
pair itself, clinical therapy aimed at the regeneration of in
tervertebral disc has become an appealing research topic.
Disc degeneration results in changes in the biochemical
microenvironment in IVD that challenge the successful ap
plication of some potential biological therapies, such as
decreased nutrient and oxygen supplies, declined pH, and
increased cellular apoptosis (Kepler et al. 2013; Loibl et al.
2019). One of those potential treatments is using mes
enchymal stem cells (MSCs) for IVD regeneration. Some
studies conducted in animal models have shown its poten
tial regenerative effect in IVD degeneration (Bach et al.
2014; Freeman et al. 2016; Vadalà et al. 2016). How
ever, recent studies have revealed that MSCs therapy ben
efit could be due to their vast secreted molecules, which
play a principal role in regulating many essential biologic
processes, rather than from the implanted cells themselves
(Vizoso et al. 2017). Therefore, this study aims to review
the potential use of MSCs secretome to regenerate the in
tervertebral disc.

2. Pathophysiology of IDD

The intervertebral disc is a cartilaginous structure located
between the vertebral body of the spinal column (Urban
and Roberts 2003). They provide flexibility for motion
and act as a shock absorber. The IVD is composed of
three parts; the nucleus pulposus (NP) located centrally,
the annulus fibrosus (AF) that surrounded the NP, and the
cartilaginous end plates (EP) that separates IVD from the
adjacent vertebral bodies (Kepler et al. 2013).

The NP is an avascular and immuneprivileged struc
ture that consisted of three different cell types: NP
stem/progenitor cells (NPPCs), notochordal cells (NCs),
and chondrocytelike cells (NP) (Hunter et al. 2003; Erwin
2010; Erwin and Hood 2014). The NP’s extracellular ma
trix (ECM) is mainly composed of type II collagen and has
a considerably higher proteoglycan concentration than AF
(Kepler et al. 2013). Matrix component of the NP consists
of proteoglycan aggrecan and type II collagen in a ratio of
approximately 27:1 (Mwale et al. 2004). Nucleus pulpo
sus contains a large amount of proteoglycan, up to its 50%
dry weight (Walker and Anderson 2004). Since proteogly
cans are negatively charged and highly polar, they attract
water into the ECM, thus maintain the highwater content
in the IVD (Kepler et al. 2013).

The AF consists of concentrically arranged type I col
lagen fibers that serve as a border containing the inner NP
(Kepler et al. 2013). The AF can be divided into the outer
annulus and inner annulus (Walker and Anderson 2004).
The collagen fibers in the outer annulus are not oriented

uniformly instead, they are aligned at approximately 30° to
the longitudinal axis of the spine and alternate their direc
tion with each lamella (Walker and Anderson 2004). This
characteristic gives optimal tensile strength tomaintain the
NP in place during spine movement (Freemont 2009). Ini
tially, there is a transition zone between the NP and the
inner annulus, but this distinction disappears as the disc
degeneration begins (Roberts et al. 2006).

The cartilaginous end plate separates NP from the ver
tebral bone and gives resilience to prevent the load trans
mitted through the IVD from fracturing the vertebral bone
(Freemont 2009). The EP is an avascular organ, but there
are capillary networks near the central portion of the EP
that are directly connected with the vertebral body vascu
lature (Erwin and Hood 2014).

The IVD is an avascular organ because they lose their
blood supply in the first decade of life (Rodriguez et al.
2011). The IVD cells have adapted to function in this con
dition by relying on diffusion and convection for nutrient
and metabolite exchange (Mokhbi Soukane et al. 2007).
Nutrients and metabolites are transported to and from the
IVD by diffusion from the blood vessels at the outer NP
peripherally and the cartilaginous EP centrally (Holm et al.
1981). Hence, NP cells congregate near the cartilaginous
EP where specialized capillary layers between the bony
and cartilaginous EP provide nutritional supply (Urban
et al. 1978).

In the second decade of life, the blood supply to the
cartilaginous EP is diminished, consequently, their dif
fusional capacity is decreased (Boos et al. 2002). This
condition leads to a change in the microenvironment of
the IVD which becomes acidic because of lactic acid’s
buildup (Kepler et al. 2013). Exposure to this acidic condi
tion has a profound effect on the cellmatrix turnover be
cause it decreases the IVD cells ability to produce ECM
(i.e., sulfated glycosaminoglycan and tissue inhibitors
of metalloproteinases1). However, it does not inhibit
degradative enzyme production, such as matrix metallo
proteinases (MMPs) (Razaq et al. 2003). These microen
vironment changeswill lead to ECMbreakdown and there
fore the IVD degeneration. Other conditions that could
compromise the cartilaginous EP’s vascular supply are
vasoconstriction (e.g., from nicotine or vibration expo
sure) (Deyo and Bass 1989; Wilder and Pope 1996), vaso
occlusive process (e.g., atherosclerosis and arterial steno
sis) (Kauppila 2009), and end plate sclerosis (Roberts et al.
1996).

Usually, innervation of the IVD is limited to the outer
AF, but during the degeneration process, the nociceptive
nerve endings grow deeper into the disc and play a role
in pain transmission from the IVD (Bogduk et al. 1988;
Freemont et al. 2002). This neuronal ingrowth is induced
by nerve growth factor (NGF) secreted by vascular tissue
accompanying them (Freemont et al. 2002). Some studies
also found that brainderived neurotrophic factor (BDNF),
a substance secreted by the IVD cells, especially during the
degenerative process also appears to encourage neuronal
ingrowth (Gruber et al. 2008; Kepler et al. 2013). An
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other possible source of pain in patients with IVD degen
eration is the upregulation of proinflammatory cytokines,
especially tumor necrosis factor alpha (TNFα) (Takahashi
et al. 1996; Bachmeier et al. 2007).

Another molecular basis of IVD degeneration is cel
lular senescence (Kepler et al. 2013). Cellular senescence
is an irreversible and progressive loss of replicative capa
bility of the cells (Hayflick and Moorhead 1961). Based
on the underlying cause, cell senescence is divided into
two groups, stressinduced premature senescence (SIPS)
and replicative senescence (Kepler et al. 2013). Replica
tive senescence is caused by the loss of telomeres, the tip
of the chromosome which serves as protection from ge
nomic instability (Victorelli and Passos 2017). The telom
eres shorten in each replication, when they run out, it will
lead to permanent cell cycle arrest (Victorelli and Passos
2017). The cellular mechanism underlying the pathophys
iology of SIPS is the accumulation of unrepairable DNA
damage caused by reactive oxygen species (ROS) from
mechanical injury or inflammatory cytokines release (Tou
ssaint et al. 2000). Although senescence is a physiological
process, studies found that this process is accelerated dur
ing disc degeneration (Le Maitre et al. 2007; Kim et al.
2009).

3. Mesenchymal Stem Cells (MSCs)

Stem cells are cells with the ability to renew themselves
and differentiate into various specialized cell types (Wei
et al. 2013). Stem cells can be categorized into embryonic
stem cells (ESCs), adult stem cells, and induced pluripo
tent stem cells (iPSCs) (Ullah et al. 2015). ESCs are
pluripotent stem cells that have distinctive selfrenewal
ability, genomic stability, can differentiate to most lin
eages, and hold promise for regenerative medicine (Ullah
et al. 2015). However, their use is restricted for ethical
reasons and tissue rejection problems following transplan
tation in patients (Takahashi and Yamanaka 2006). iPSCs
are made from adult cells by introducing four transcrip
tion factors, cMyc (avian myelocytomatosis virus onco
gene cellular homologue), Oct3/4 (octamerbinding tran
scription factor 3/4), Klf4 (kruppellike factor 4), and Sox2
(sexdetermining region Y) (Takahashi and Yamanaka
2006; Ullah et al. 2015). iPSCs sharemany properties with
ESCs, but their genomic stability is still questionable (Ul
lah et al. 2015). Due to the limitation of ESCs and iPSCs,
great attention has come to MSCs, which are free from
both ethical reasons and genomic stability problems (Wei
et al. 2013).

MSCs are adult stem cell which possesses the ability
to differentiate into connective tissue cells’ lineages in
cluding bone, IVD, ligament, muscle, and fat (Richard
son et al. 2010). In accordance with the International So
ciety for Cellular Therapy, MSCs can be identified us
ing three criteria: they must adhere to the plastic sur
face; express CD73, CD 90, and CD105 and does not ex
press CD14, CD34, CD45, or CD11b, CD79α or CD19
and HLA Class II; and finally, they must be able to dif

ferentiate into osteoblasts, chondroblasts, and adipocytes
(Dominici et al. 2006). However, these criteria still pro
duce a relatively heterogeneous progenitor cell population
(Loibl et al. 2019). Therefore, many researchers are try
ing to solve this problem by preselecting particular MSCs
populations; for example, CD271–MSCs have a higher
potential to differentiate into nucleus pulposus than their
CD271+ counterparts (JezierskaWozniak et al. 2017).
Furthermore, another study found that MSCs subpopula
tions expressing CD146 or CD271markers performed bet
ter in repairing cartilage (PérezSilos et al. 2016).

Mesenchymal stem cells exist in almost all tissues,
but the most common source tissues for human MSCs are
bone marrow and the adipose tissue because these tissues
are considered renewable (bone marrow) or undesirable
(adipose tissue) (Pittenger et al. 2019). MSCs also have
been harvested from other sources, such as synovial fluid
(Morito et al. 2008), articular cartilage (Alsalameh et al.
2004), brain (Appaix 2014), dental tissue (Huang et al.
2009), peripheral blood (Ab Kadir et al. 2012), skin and
foreskin (Riekstina et al. 2008), menstrual blood (Allick
son 2011), endometrium (Schüring et al. 2011), placenta
and fetal membrane (Raynaud et al. 2012), amniotic fluid
(In ’t Anker et al. 2003), amniotic membrane (Cai et al.
2010), Wharton’s jelly (Hou et al. 2009), and umbilical
cord tissue (Wagner et al. 2005).

Mesenchymal stem cells therapy for tissue repair de
pends not only on the ability of MSCs to differentiate into
specific cell types but also on their immunomodulatory
and trophic effects (Wei et al. 2014). MSCs’ therapeu
tic effect in IVD degeneration can occur in various ways.
First, interactions between nucleus pulposus cells (NPCs)
and implanted MSCs induce differentiation of MSCs to
wards a more chondrogenic change (Vadalà et al. 2008).
Second, MSCs pose a trophic effect by secreting vari
ous growth factors and cytokines that promote angiogen
esis, stimulate differentiation and proliferation of progen
itor host cells, and inhibit fibrosis formation (Caplan and
Dennis 2006). This trophic effect also has been reported
by another study showing direct celltocell contact be
tween MSCs and NPCs increases NPCs viability in a co
culture system (Yamamoto et al. 2004). Third, MSCs
have immunomodulatory effects, they can exhibit pro
inflammatory or antiinflammatory phenotype depending
on the balance between the cytokines released into the sur
rounding microenvironment (Keating 2012). MSCs have
been shown to be indirectly having stimulatory and in
hibitory effects on Bcell differentiation, proliferation, and
antibody production (Fierabracci et al. 2015). These ef
fects seem to be mediated by other cell types and depend
on the inflammatory environment (Comoli et al. 2008).

MSCs based therapy is generally safe (Comella et al.
2017) and also appears to be able to avoid allogeneic rejec
tion due to their lack of MHCII, CD 40, CD86, and CD80
expression on their cell surface, thus they can escape from
Tcell recognition (Ryan et al. 2005). However, the com
plication arising from the implantation procedure may also
occur such as osteophyte formation due to MSCs migra
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tion (Vadalà et al. 2012). Another challenge is determin
ing which patients will benefit from the disc regeneration,
as patients seek medical help for pain, not for degeneration
(Bendtsen et al. 2016).

For MSCs to effectively exert their proposed regener
ation effect, they must withstand the IVD microenviron
ment. MSCs depend on glycolysis for their energy source,
and if glucose is removed, they will die rapidly (Moya
et al. 2017). Furthermore, an acidic condition also has a
detrimental effect on cellular activity and viability of the
disc cells and MSCs (Wuertz et al. 2009). The IVD has
a harsh microenvironment even in its healthy state due to
low oxygen and nutritional supply, hyperosmolarity, and
highmechanical loading which pose a challenge in clinical
trials (Wuertz et al. 2009; Loibl et al. 2019). These condi
tions become heavier in the degeneration process because
of inflammation and increased acidity (Kepler et al. 2013).

Due to the poor nutrient supply within the IVD, ECM
proteins production by MSCs or the stimulation of ECM
synthesis by the host cells is likely restricted and may not
be sufficient to promote full IVD regeneration (Loibl et al.
2019). It has been reported that MSCs could survive and
able to differentiate after administration to the IVD (Sakai
et al. 2005; Henriksson et al. 2009), but the problem lies
in the nutrient supply (Loibl et al. 2019). Because of the
IVD’s avascular nature, they can only support limited cell
numbers (Smith et al. 2011). An additional number of cells
from the MSCs will interfere with the nutritional balance
in the IVD because increased cell number results in in
creased nutrient demand (Loibl et al. 2019). Furthermore,
because of the diminished nutrient supply, the implanted
MSCs will eventually die (Loibl et al. 2019). Another
problem arises from the slow capacity of the MSCs to pro
duce ECM. A study found that MSCs’ ability to produce
glycosaminoglycans (GAG), a component responsible for
maintaining disc hydration and height, ranges from 0.017
to 0.086 mg GAG/million cells/month (Allon et al. 2010;
McCorry et al. 2016). As GAG’s concentration in the nor
mal disc nucleus is about 70 mg/mL, it would take decades
to restore 25% of disc tissues through implanting stimu
lated MSCs (Bendtsen et al. 2016; Loibl et al. 2019).

The problem with nutritional supply that resulted in
cell death suggests that the principal effects of MSCs may
be mediated by paracrine mechanisms (Maguire 2013). In
contrast to the original paradigm that the MSCs’ mech
anism of action was based on their capability to replace
cells, recent studies have shown that MSCs’ secreted
molecules are responsible for their therapeutic effects
(Madrigal et al. 2014). Therefore, MSCs secretome has
gained much interest for its potential use in regeneration
and tissue repair (Baglio et al. 2012; Maguire 2013).

4. The Secretome of MSCs

The secretome is a set of molecules released by the stem
cells, including cytokines, chemokines, antiinflammatory
factors, growth factors, and even proteins delivered by
extracellular vesicles (EVs) (Maguire 2013; Eleuteri and

Fierabracci 2019). The latter can be classified according
to their origin, size, density, and surface marker into exo
somes, microparticles, and apoptotic bodies (Beer et al.
2017). The composition of the secretome can vary de
pending on the change in its microenvironment (Vizoso
et al. 2017). MSCs secretome has multiple mechanisms of
action such as immunomodulation and antiinflammatory
activity (Kyurkchiev 2014), neurotrophic and neuropro
tective effects (Caseiro et al. 2016), antiapoptotic activ
ity (Li et al. 2015a) , angiogenesis regulation (Kagiwada
et al. 2008), and regenerative capacity (Osugi et al. 2012;
Di et al. 2017). Table 1 lists some of the molecules se
creted by the MSCs and their functions.

MSCs secretome provides some advantages over cell
based therapy in the regenerative medicine field: (1) se
cretome resolves safety and risk problem related to MSCs
implantation such as immune compatibility (Herberts et
al. 2011), migration of the cells outside the implantation
site which can result in osteophyte (Vadalà et al. 2012)
or emboli formation (Tatsumi et al. 2013), and tumori
genicity (Herberts et al. 2011); (2) secretome can be eval
uated for dosage, safety and potency like other conven
tional pharmaceutical agents (Vizoso et al. 2017); (3) The
use ofMSCscultured conditioned media (CM) can reduce
several problems that are encountered in clinical applica
tions of stem cells, such as safety, time, and expense (Os
ugi et al. 2012), therefore increase the possibility of mass
production; (4) and lastly, the biologic products in the se
cretome can bemodified to desired specific effects (Vizoso
et al. 2017).

5. MSCs SecretomeMechanisms ofActions

5.1. Immunomodulation and anti‐inflammatory activ‐
ity

MSCs have been reported to have an immunomodulatory
property and antiinflammatory effect on both innate and
adaptive immune systems through various mechanisms,
notably via cytokine and chemokine secretions (Abuma
ree et al. 2012). Transforming growth factor beta (TGFβ)
is a cytokine produced and constitutively secreted by the
MSCs (Kyurkchiev 2014). TGFβ has an essential role
for the immunomodulatory property of the MSCs, includ
ing inhibition of effector Tcell function and proliferation;
attenuation cytokine production and cytolytic activity of
natural killer (NK) cells; conversion of naive T cells into T
reg; and suppression of dendritic cells (DCs), B cells, and
macrophages (Yoshimura and Muto 2011). Besides TGF
β, MSCs also secrete Galectin1 (Gal1) constitutively
andGalectin9 (Gal9) when induced by proinflammatory
stimuli (e.g. IL1β and IFNγ) (Gieseke et al. 2013). Both
Gal1 and Gal9 share immunomodulatory property via
inhibition of Th1 and Th17 cells proliferation, but Gal
9 is more potent to induce T cells death (Gieseke et al.
2010, 2013). Prostaglandin E2 (PGE2) is another main
effector for the antiinflammatory effect of MSCs, with
its cellular target mainly are monocytes, macrophages, pe
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ripheral blood mononuclear cells (PBMCs), NK cells, and
transitional processes of monocyte differentiation into ma
ture DCs (Van Elssen et al. 2011). PGE2 exerts its anti
inflammatory effect by reducing IL6, TNFα, and vascu
lar permeability in mice models of sepsis (Németh et al.
2009).

5.2. Neuroprotective and neurotrophic effects
Numerous studies have reported neuroprotective and
neurotrophic effects of MSCs secretome (Eleuteri and
Fierabracci 2019). A group of growth factors such as
brainderived neurotrophic factor (BDNF), nerve growth

TABLE 1 The molecules secreted by the MSCs and their functions.

Molecules Function
TGF‐β T‐reg activation, therefore promote systemic im‐

mune tolerance
Inhibition effector T‐cell proliferation and function
Reduction of cytolytic activity and cytokine pro‐
duction of NK cells
Suppression of DCs, B cells, and macrophages

PGE2 Immunosuppressive factor, its cellular target
particularly are NK cells, PBMCs, monocytes,
macrophages and transitional processes of
monocyte differentiation into mature DCs

VEGF Stimulates angiogenesis
Pro‐inflammatory function by recruiting mononu‐
clear cells, upregulate Th1 and Th17
Immunosuppressive function by down‐regulate
the transcription factor NF‐κB, resulting in an in‐
hibition of DCs maturation

IDO Immunosuppressive and anti‐microbial effects
CCL2/MCP‐1 Regulating recruitment andmigration ofmonocyte

Inhibition of Th17
Pro‐apoptotic or anti‐apoptotic activity depends
on the microenvironment and cytokine profile

IL‐6 Neutrophil apoptosis suppression and induce
CD8+FoxP3+ cells’ formation

TSG6 Inhibit disease progression and induce corneal re‐
generation

HGF‐1 Angiogenesis, immunomodulation, and anti‐
apoptotic activity

NGF Neuroprotective effect
GDNF Neurotrophic effect
Gal‐1 Inhibits proliferation of CD4+ and CD8+ T cells
Gal‐9 Induces T cells death

Abbreviations: Transforming growth factor beta (TGF‐β), nat‐
ural killer cells (NK), dendritic cells (DCs), prostaglandin E2
(PGE2), peripheral blood mononuclear cells (PBMCs), vascular en‐
dothelial growth factor (VEGF), T helper 1 cells (Th1), T helper
17 cells (Th17), Indoleamine‐2,3‐dioxygenase (IDO), monocyte
chemoattractant protein‐1 (CCL2/MCP‐1), interleukin‐6 (IL‐6), tu‐
mor necrosis factor‐inducible gene 6 protein (TSG6), hepatocyte
growth factor‐1 (HGF‐1), nerve growth factor (NGF), glial cell‐
derived neurotrophic factor (GDNF), galectin‐1 (Gal‐1), galectin‐9
(Gal‐9) (Kim et al. 2009; Rafei et al. 2009; Gieseke et al. 2010; Ben‐
Ami et al. 2011; Van Elssen et al. 2011; Yoshimura and Muto 2011;
Fisher‐Shoval et al. 2012; Gieseke et al. 2013; Kyurkchiev 2014;
Madrigal et al. 2014; Marti et al. 2014; Di et al. 2017; Fornaro et al.
2020).

factor (NGF), basic fibroblast growth factor (bFGF), cil
iary neurotrophic factor (CNTF), erythropoietin (EPO),
neurotrophin (NT) 3, and NT4/5 have been shown to
have neuroprotection and neuroregeneration effects on
the central nervous system (CNS) (Salgado et al. 2010).
Whereas neurotrophic factors can be classified accord
ing to their receptors into three groups: neurotrophins
(BDNF, NGF, NT3, and NT4/5), neurokines (CNTF and
leukemia inhibitory factor (LIF)); and the transforming
growth factor β family (TGFβ1, TGFβ2, TGFβ3; and
glial cellderived neurotrophic factor (GDNF)) (Fornaro
et al. 2020). Studies found that some of these growth fac
tors are also secreted by MSCs (e.g., NGF, bFGF, GDNF,
NT3, and NT4), hence MSCs secretome also possesses
neurotrophic and neuroprotective effects (Balasubrama
nian et al. 2013; Caseiro et al. 2016). Moreover, these
growth factors are not only secreted in their soluble forms
but also carried by the EVs (Caseiro et al. 2016).

5.3. Anti‐apoptotic activity
MSCs prevent cell death by secreting molecules such
as monocyte chemoattractant protein1 (CCL2/MCP1)
and hepatocyte growth factor1 (HGF1) which have
antiapoptotic activity (Kyurkchiev 2014; Madrigal et al.
2014). However, CCL2/MCP1 is also reported to have
proapoptotic activity, and the balance between these two
effects depends on the microenvironment and cytokine
profile (Rafei et al. 2009). A study also reported that
MSCs increase the antiapoptotic Bcl2 levels and de
crease the proapoptotic Bax levels in rat models of my
ocardial infarction treated with MSCs (Yao et al. 2005).
Furthermore, another study found that MSCs secretome
from the normal human uterine cervix (hUCESCs) pro
moted apoptosis in cancer cells both in vitro and in vivo
(Eiró et al. 2014).

5.4. Angiogenesis regulation
Angiogenesis is the formation of new blood vessels from
the existing ones, which is necessary for the wound heal
ing process (Vizoso et al. 2017). Recent studies reported
that the beneficial angiogenic effects of MSCs are me
diated by their secretome (Maacha et al. 2020). This
angiogenic property is attributable to the secretion of
growth factors such as vascular endothelial growth fac
tor (VEGF) and HGF1 (Madrigal et al. 2014). However,
a study reported that MSCs also secrete tissue inhibitor
of metalloproteinase1 (TIMP1) that carries an anti
angiogenic effect (Zanotti et al. 2016). The data indicate
that the balance of these pro and antiangiogenic factors
may be modified by hypoxic conditions and chemokine
(Vizoso et al. 2017). Moreover, a study indicated that
these bioactive molecules are carried by the EVs to per
form their angiogenic modulation (Maacha et al. 2020).

5.5. Regenerative capacity
Previously, the regenerative properties of MSCs are at
tributed to their ability to differentiate into specialized cell
types, but recent evidence showed that it is due to their

65



Romaniyanto et al. Indonesian Journal of Biotechnology 26(2), 2021, 61‐75

secreted byproducts acting at a distance that mediates re
generative outcomes (Basu and Ludlow 2016). A study re
ported that MSCs secrete tumor necrosis factorinducible
gene 6 protein (TSG6) that promotes corneal epithelial
wound healing in diabetic mice models by stimulating mi
togenic activity of endogenous corneal progenitor cells
and enhancing the colonyforming efficiency (Di et al.
2017). This regenerative property was also demonstrated
in a study conducted by Osugi et al. that used conditioned
media to accumulate paracrine factors of the MSCs to re
generate bone defect in rat models (Osugi et al. 2012).
They showed that MSCsconditioned media (MSCsCM)
could stimulate the migration of endogenous MSCs and
accelerate new bone formation (Osugi et al. 2012). This is
caused by a cooperative effect between VEGF and insulin
like growth factor1 (IGF1) that promotes angiogenesis
and osteogenesis (Osugi et al. 2012). Hingert et al. (2020)
have reported that conditioned media from human MSCs
(hMSCs) has the potential to regenerate the IVD by in
creasing disc cell viability and ECM production. These
effects are probably caused by the presence of growth fac
tors in the CM (Hingert et al. 2020). Apart from being
an immunomodulator, TGFβ may also have a role in the
regenerative capacity of MSCs. In a study conducted by
Matta et al. (2017), they reported that TGFβ1 was able to
promote cell proliferation, increase healthy ECM protein
synthesis, and decrease cell apoptosis in NP cells from de
generated human disc, therefore promote its regeneration.

6. Extracellular Vesicles (EVs) of MSCs

Besides growth factors and cytokines, most of the MSCs
also secrete a large amount of micro and nanovesicles
as components of their secretome, either constitutively or
upon activation signals (Baglio et al. 2012). The biological
properties of these vesicles have not been understood com
pletely, but their potential as mediators for cell communi
cation has gained much attention, especially for exosomes
(Vizoso et al. 2017). The exosomes are a subclass of ex
tracellular nanovesicles with a diameter of 40150 nm and
a density of 1.09–1.18 g/mL that are derived from special
ized intracellular compartments known as multivesicular
bodies (MVBs) or late endosomes (Baglio et al. 2012; Vi
zoso et al. 2017) (Figure 1).

They are able to transfer proteins, lipid molecules, and
functional genetic material such as microRNAs (miRNAs)
and messenger RNA (mRNAs) to the other cells (Valadi
et al. 2007). The presence of RNA in the exosomes opens
up its potential use as drug and gene carrier in the field
of regenerative medicine and tissue engineering (Lamich
hane et al. 2015). A study showed that there is a control
mechanism for the sorting of miRNAs into the vesicles
(Collino et al. 2010). However, this loading mechanism
of miRNAs into exosomes may be modified selectively by
engineering an extraseed sequence (hEXO motif) (San
tangelo et al. 2016). Therefore, by selectively modifying
exosomes cargo, miRNAs may be specifically transported
into the target cells which lack these miRNAs for special

FIGURE 1 Schematic view of exosomes formation. The exosome
formation begins with inward budding of the MVBs’ membrane to
create intraluminal vesicles (ILVs). The ILVs can contain molecules
such as proteins, lipids, and RNA. It is then released from the cells
and then taken up by cell targets to perform their action (adapted
from (Baglio et al. 2012).

ized function (Rader and Parmacek 2012).
Recent evidence found that regenerative properties

previously credited for stem cells are actually mediated by
their secreted exosomes (Basu and Ludlow 2016). Some
preclinical studies have been done to demonstrate these
effects, such as a study conducted by Nakamura et al.,
which demonstrated that MSCsderived exosomes, pri
marily due to their miRNA content promote muscle regen
eration by enhancing angiogenesis and myogenesis pro
cess in a cardiotoxin muscle injury model (Nakamura et al.
2015). Another study conducted by Zhang et al. also
demonstrates that MSCs exosomes improve functional re
covery of rats with traumatic brain injury (TBI) model by
promoting neurogenesis, angiogenesis, and reducing neu
roinflammation (Zhang et al. 2015). MSCsderived EVs
administration showed similar effects asMSCs in the treat
ment of focal brain ischemia in C57BL6 mice, improving
neurological impairment, neuroregeneration, and inducing
longterm neuroprotection (Doeppner et al. 2015).

Even with all these beneficial and protective effects
of MSCsEVs, it is mandatory to be cautious when using
engineered MSCsEVs in clinical therapy. A study con
ducted by Zhu et al. showed that exosome from bone mar
row MSCs promoted angiogenesis and tumor growth in a
mouse xenograft model of gastric carcinoma, this effect
may be mediated by increasing tumor cells VEGF expres
sion through activation of extracellular signalregulated
kinase1/2 (ERK1/2) pathway (Zhu et al. 2012). This find
ing is not entirely unexpected becauseMSCs have been re
ported to contribute to tumor growth (Roorda et al. 2009).

Other challenges that emerge are how to avoid artifacts
and ensure the reproducibility of studies since there are no
availablemethods to ensure absolute purification and char
acterization of the EVs (Eleuteri and Fierabracci 2019).
Minimal Information for Studies of Extracellular Vesicles

66



Romaniyanto et al. Indonesian Journal of Biotechnology 26(2), 2021, 61‐75

(MISEV) guidelines has summarized recommendation of
how to characterize the EVs properly that depends on the
presence of at least one protein of these three categories
(Théry et al. 2018): (1) GPIanchored or transmembrane
proteins associated with the endosome and/or plasma
membrane, e.g., MHC class I, tetraspanins, or integrins;
(2) cytosolic proteins, e.g., caveolins (CAV*), flotillins1
and 2 (FLOT1/2), or heat shock proteins HSC70 (HSPA8);
and (3) nonEVs coisolated proteins, e.g., lipoprotein, al
bumin (ALB), or TammHorsfall protein.

Furthermore, other two categories recommended to be
analyzed for studies that focused on one or more EVs sub
type: (1) proteins associated with intracellular compart
ments other than endosomes and plasma membrane, e.g.,
histones (HIST1H**), or cytochrome C (CYC1); and (2)
proteins that can bind to specific EVs surface receptors,
e.g., collagen (COL**), or fibronectin (FN1).

7. Modification of MSCs secretome

The MSCs’ secretome contents appear to match the IVD
tissue requirements (Wangler et al. 2021). Wangler et al.
(2021) have demonstrated that by exposing MSCs with
healthy IVD, MSCs respond with releasing secretome that
induces immunomodulation; and when exposed to trau
matic and degenerative IVD,MSCs respondwith releasing
secretome that stabilizes ECM turnover. Recent evidence
suggests that preconditioning MSCs could affect their se
cretory profile, hence improve the therapeutic effects of
their secretome (Vizoso et al. 2017). These in vitro pre
conditioning included hypoxia (Ejtehadifar et al. 2015),
proinflammatory stimuli (CroitoruLamoury et al. 2011),
tridimensional culture (Bartosh et al. 2010), and pharma
cological compounds (Ferreira et al. 2018).

7.1. Hypoxia
In the context of cell culture, hypoxia refers to oxygen ten
sion of less than 10% (Das et al. 2010). Generally, hypoxic
preconditioning ofMSCs increases the cytoprotective and
regenerative effects of MSCs (Ferreira et al. 2018). Ef
fects of hypoxia are mediated by hypoxiainducible fac
tors (HIF1α), which induce the expression of angiogenic
factors such as VEGF and interleukin6 (IL6) (Ejtehadi
far et al. 2015). Since neovascularization is the first step in
the regenerative process of damaged tissues, this may re
sult in a better therapeutic effect of preconditionedMSCs
with hypoxia (Ferreira et al. 2018). Furthermore, MSCs’
proliferation rate and viability are increased under hypoxic
conditions (Ejtehadifar et al. 2015).

7.2. Pro‐inflammatory stimuli
Exposure to the proinflammatory stimuli, particularly
IFNγ induces MSCs to release indoleamine 2,3 dioxy
genase (IDO) enzyme, which has an immunosuppressive
effect (CroitoruLamoury et al. 2011; Kyurkchiev 2014).
IDO exerts this effect by decreasing tryptophan and/or
the accumulation of kynurenine, which then decreases
cytotoxic T cells activity (Soliman et al. 2010). Other

cytokines (e.g. IL1, TNFα, IFNβ, and IFNγ), and
lipopolysaccharides are also able to induce production
of IDO enzyme, although to a lesser degree (Croitoru
Lamoury et al. 2011). Another study also reported that
preconditioning ofMSCswith TNFα enhances prolifera
tion, osteogenic differentiation, and mobilization of MSCs
through upregulation of bone morphogenetic protein2
(BMP2) (Lu et al. 2013). Moreover, tolllike receptors
(TLR) 2/6, receptors of the innate immune response, are
also reported to be able to stimulate MSCs’ angiogenic ac
tivity (Grote et al. 2013).

7.3. Tri‐dimensional (3D) culture configuration

Typically, MSCs are cultured in vitro in monolayered sys
tems however a new approach via tridimensional config
uration such as spheroid culture has been reported to stim
ulate a higher level of trophic factors secretion than with
monolayer culture (Madrigal et al. 2014). It is worth not
ing that cells located at the center of spheroid configuration
will be exposed to a hypoxic condition hence increasing
their viability and proliferation rate as mentioned above.
Conditioned media from MSCs spheroids inhibit the pro
duction of IL6, IL23, IL12p40, CXCL2, and TNFα from
LPSstimulated macrophages and encourage higher pro
duction of prostaglandin E2 (PGE2) (Vizoso et al. 2017).
A study conducted by Bartosh et al. showed that hM
SCs cultured in a spheroid culture expressed and secreted
higher levels of antiinflammatory molecule TSG6 com
pared with hMSCs cultured in a monolayered structure
(Bartosh et al. 2010). Moreover, when they administered
hMSCs to the zymosaninduced peritonitis mouse model,
they showed that spheroid hMSCs culture have more ef
fective antiinflammatory effects than monolayered hM
SCs culture (Bartosh et al. 2010).

7.4. Pharmacological compounds

In some specific cases, preconditioning MSCs with phar
macological compounds may be considered as an alter
native approach (Ferreira et al. 2018). A study reported
that MSCs preconditioned with atorvastatin seemed to in
crease migration of MSCs and improves cardiac perfor
mance due to upregulation of CXCR4 expression in rats
with acute myocardial infarction models (Li et al. 2015b)
. In concordance with this finding, another study found
that preconditionedMSCs with oxytocin improved car
diac function in ischemia/reperfusion injury rat models
(Kim et al. 2012). Moreover, Liu et al. demonstrated
that preconditioningMSCs with curcumin resulted in bet
ter heart function, smaller infarct size, higher cells reten
tion, decreased myocardial apoptosis, promoted neovas
cularization, and enhanced VEGF secretion in myocardial
ischemiareperfusion injury (IRI) rat models (Liu et al.
2015).
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FIGURE 2 Possible mechanisms ofMSCs secretome to tackle the IVD degeneration. The degenerated disc is characterized by increased ECM
breakdown, neurovascular ingrowth, cellular senescence, and upregulation of proinflammatory cytokines (Freemont et al. 2002; Kepler et al.
2013). The MSCs could tackle these changes via enhancing disc cell viability, decrease disc cell apoptosis, modulate NPCs gene expression,
stimulate the IVD progenitor cells differentiation, and give an anti‐inflammatory effect (Brisby et al. 2013; Kyurkchiev 2014; Lv et al. 2014;
Matta et al. 2017).

8. MSCs Secretome: Pre‐clinical Evidence
of Potential Use in the IVD Regeneration

In the animal models, MSCs have been demonstrated to
be able to regenerate the disc (Bach et al. 2014; Free
man et al. 2016; Vadalà et al. 2016). MSCs and degener
ated NP cells mainly communicate through extensive bidi
rectional membrane components exchange and microvesi
cles (Strassburg et al. 2012). An experimental study con
ducted in the bovine proinflammatory/degenerative disc
models showed that MSCs have an immunomodulatory
paracrine effect via their secretome products (Teixeira
et al. 2018). Another study conducted by Lv et al. showed
that NPlike cells that were treated with MSCs condi
tioned media (MSCsCM) showed upregulation of ker
atine 19 (KRT19) and downregulation of matrix metal
loproteinase 12 (MMP12) and matrix gla protein (MGP)
(Lv et al. 2014). Since KRT19, MMP12, and MGP have
been associated with IVD degeneration, it is suggested that
MSCsCM could regenerate healthy NP cells (Ferreira et
al. 2018). It was further proposed that the IVD progen
itor cell populations present in the degenerated IVD may
be stimulated by MSCs secretome and take part in repair
attempts (Brisby et al. 2013) (Figure 2).

9. Conclusions

The MSCs secretome is better than MSCs in some aspects
such as safety, production, storage, product shelf life, and
their potential as a readily available biological therapeu
tic agent. The potential use of MSCs secretome for IVD
regeneration is mediated by their ability to modulate NP
cells’ gene expressions (upregulation ofKRT19 and down
regulation of MMP12 and MGP) and stimulate the IVD
progenitor cells to repair the degenerated disc. This re
view still lacks evidence from clinical trials regarding the
use ofMSCs secretome to regenerate the degenerated disc.
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