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Abstract 
Background: Contributing factors for improved survival of human 
adipocytes mesenchymal stem cells (h-AMSCs) cultured through 
hypoxia preconditioning, in example apoptosis inhibition involving 
BCL2 and HSP27 expression, trigger signal expression (VEGF), SCF 
expression, OCT-4 expression, and CD44+ expression. The objective if 
this study was to explain the mechanism and role of hypoxic 
preconditioning and the optimal duration of hypoxic preconditioning 
exposure to improve survival of h-AMSCs. 
Methods: An experimental laboratory explorative study (in vitro) with 
hypoxic preconditioning in h-AMSCs cultures. This research was 
conducted through four stages. First, isolation of h-AMSCs culture 
from adipose tissue of patients. Second, the characterization of h-
AMSCs from adipose tissue by phenotype (flowcytometry) through 
CD44+, CD90+ and CD45-expression before being pre-conditioned for 
hypoxic treatment. Third, the hypoxic preconditioning in h-AMSCs 
culture (in vitro) was performed with an oxygen concentration of 1% 
for 24, 48 and 72 hours. Fourth, observation of survival from h-AMSCs 
culture was tested on the role of CD44+, VEGF, SCF, OCT-4, BCL2, 
HSP27 with Flowcytometry and apoptotic inhibition by Tunnel Assay 
method. 
Results: The result of regression test showed that time difference had 
an effect on VEGF expression (p<0.001;β=-0.482) and hypoxia 
condition also influenced VEGF expression (p<0.001;β=0.774). The 
result of path analysis showed that SCF had effect on OCT-4 
expression (p<0.001; β=0.985). The regression test results showed that 
time effects on HSP27 expression (p<0.001; β=0.398) and hypoxia 
precondition also affects HSP27 expression (p<0.001; β=0.847). 
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Pathway analysis showed that BCL2 expression inhibited apoptosis (p
=0.030; β=-0.442) and HSP27 expression also inhibited apoptosis (p
<0,001;β=-0.487). 
Conclusion: Hypoxic preconditioning of h-AMSC culture has proven to 
increase the expression of VEGF, SCF, OCT-4, and BCL2 and HSP27. 
This study demonstrated and explained the existence of a new 
mechanism of increased h-AMSC survival in cultures with hypoxic 
preconditioning (O2 1%) via VEGF, SCF, OCT-4, BCL2, and HSP 27.

Keywords 
apoptosis, h-AMSCs, BCL-2, HSP27, SCF, VEGF expression
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Abbreviation
AMSC: Adipose Mesenchymal Stem Cells
ATP: Adenosine Triphosphate
BAX: BCL-2-associated X protein
BCL2: B-Cell Lymphoma 2
CD44: Cluster of Differentiation 44
h-AMSC: human Adipose Mesenchymal Stem Cells
HSF1: Heat Shock Factor 1
HSP27: Heat Shock Protein 27
ITD: Institute of Tropical Diseases (Universitas Airlangga)
MANOVA: Multivariate Analysis of Variance
OCT4: Octamer-binding transcription factor 4
PK2: Protein k-2
PKC: Protein kinase C
ROS: Reactive oxygen species
SCF: Stem Cell Factor
SLF: Steel Factor
SPSS: Statistical Package for Social Sciences
VEGF: Vascular Endothelial Growth Factor

Introduction
Several literatures provide abundant information that human adipocytes mesenchymal stem cells (h-AMSCs) is an
attractive resource for therapeutics and have beneficial effects in regenerating injured cardiomyocytes due to their self-
renewal ability and broad differentiation potential under physiological and pathological conditions.1–3

Despite the impressive potential of the h-AMSC-based therapy, several obstacles (e.g., the difficulty of maintaining self-
renewal and poor survival due to apoptosis and/or necrosis at the administration site) have been encountered.4 Some
studies suggest that more than 90% of transplanted stem cells, either intravenously, intramyocardially, and intracoronary
delivery, have necrosis and apoptosis and only about 5% transplanted stem cells can survive up to 14 days in infarcted
myocardium.5 The survival of stem cells transplantation is so poor because high percentage of dead cells due to factors
such as limited availability of blood, hypoxia, oxidative stress, inflammatory processes, loss of extracellular cell buffer
matrix (anoic), non-conducivemicroenvironment tomyocardial infarction, structural damage to blood vessels and lack of
nutritional support.6

Therefore a particular strategy is needed to improve survival, increase proliferation, migration, maintain the potential
for differentiation and viability of stem cells in environments with low oxygen levels. One of those strategies is to pre-
condition hypoxic precursors in vitro on oxygen concentrations mimicking the stem cells’ niche.7,8 Contributing factors
for improved survival of h-AMSCs cultured through hypoxia preconditioning, i.e., apoptosis inhibition involving BCL2
and HSP27 expression, trigger signal expression (VEGF), SCF expression, OCT-4 expression, and CD44 + expression.9

In detail, it has never been explained how far the role of hypoxic preconditions in inhibiting apoptosis of h-AMSCs
culture in vitro, in order to enhance survival and increase proliferation, maintain multi-potency, stemness and inhibition
of apoptosis. Based on the description above, we consider it is necessary to conduct a research to explain the increased
survival of h-AMSCs through the treatment of sub-lethal hypoxia precondition (oxygen concentration of 1%) for 24, 48,
and 72 hours by looking at the expression of inhibition on apoptosis and HSP27 expression, and BCL2. In addition, it is
necessary to observe the role of hypoxic preconditions in the proliferation process through the expression of SCF,OCT-4,
and BCL2.

Objective
A study was conducted to explain and confirm the mechanism and role of hypoxic preconditioning and the optimal
duration of hypoxic preconditioning exposure to improve survival of h-AMSCs so that it could be used as a benchmark
for h-AMSCs culture strategy before transplantation. This study was an experimental laboratory explorative study
(in vitro study) with hypoxic preconditioning in human-adipose mesenchymal stem cells (h-AMSCs) cultures.

Methods
Ethical approval
The use of human subjects in this study had been obtaining an ethical approval from research ethics committee
of Dr. Soetomo Academic General Hospital - Faculty of Medicine, Airlangga University (Number: 264/Panke.KKE/
IV/2017) issued on April 6th, 2017 under the name of I Gde Rurus Suryawan as principal investigator.
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Study design
This study is an exploratory laboratory experimental study (in-vitro study) with hypoxic preconditions in the culture
of human-adipose mesenchymal stem cells (h-AMSCs) derived from human adipose tissue. The aim of this study was
to obtain stem cells that have high survival so that they are not only viable but also have high adaptability to the environment
when the stem cells are transplanted. This type of experiment is a true experimental post-test only control group design
accompanied by phenotypic h-AMSCs characterization against CD44+, CD90 + and CD45- before being given treatment.

Study setting
This research was conducted at the Center for Research and Development of Stem Cell - Institute Tropical Disease (ITD)
Universitas Airlangga, Dr. Soetomo Academic General Hospital and the Faculty of Medicine, Airlangga University,
Surabaya. The implementation of this study lasted for 2-3 months.

Sample size
The sample size in this studywas obtained using the Federer’s formula for sample size.10 This formula is used as a control
for the degree of freedom in MANOVA. The formula description is as follows:

Sample size: (r-1) (K-1) ≥ 15

r = replication (experimental unit sample size per group)

K = number of subject group observations

K = 6

(r-1) (K-1) ≥ 15

(r-1) (6-1) ≥ 15

(r-1) 5 ≥ 15

r-1 ≥ 3

r = 4

Then the number of replications for each group is 4, so that the total sample is 24 plate culture.

Materials
Experimental Unit:

1. h-AMSCs, namely human-adipose mesenchymal stem cells from adipose tissue obtained from minimally invasive
surgery with small incisions (3-5 cm) under local anaesthesia in the lower abdominal area by a surgeon (Figure 1).
Thesematerialscamefrompatientswhowerepreparedforclinicalapplicationofstemcell therapyat theNetworkBank
Dr.SoetomoGeneralHospital,Surabaya.Allprocedureswereapprovedbytherelevantethicscommittees,andwritten
informed consent was obtained from all study participants. The h-AMSCs experimental unit was taken from adult
patientswhowereinastablestatewhowerenot takinganti-plateletsoranti-coagulantsandthenmultipliedinvitroat the
5th passage to 24 units. A total of 24 units were divided into two groups, namely control and treatment. The control
group (P0)had12cultureunits innormoxicconditions (21%O2concentration).The treatmentgroup (P1)was12units
pre-conditioned tohypoxia (1%O2concentration).Both treatmentgroupswereobservedforsurvival (CD44+,VEGF,
SCF,OCT-4,BCL2,HSP27, and apoptotic inhibition at 24, 48 and 72 hours of cell culture).Observation of apoptotic
inhibition based on the expression of BCL2 and HSP27 along with the percentage of apoptosis that occurred.

2. Washing buffer (phosphate-buffered saline, PBS, Sigma-Aldrich, Milan, Italy, 0.1% sodium azide, and
0.5% bovine serum albumin (BSA), Radnor, USA) was used for all washing steps (3 ml of washing buffer
and centrifugation, 400g for eight minutes at 4°C). Briefly, 5� 105 cells/sample were incubated with 100 ml of
20 mM ethylene-diaminetetraacetic acid (EDTA, Sigma-Aldrich) at 37°C for 10 minutes and washed.

Experimental procedures
This research was conducted in four stages as follows:

1. Isolation and culture of h-AMSCs from the patient's adipose tissue (human) (Figure 1).
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2. Characterization of h-AMSCs from adipose tissue phenotypically (Flowcytometry) through identification of
CD44+, CD90+ and CD45- before being treated with hypoxic preconditions.

3. Hypoxic precondition in in vitro h-AMSCs culture was carried out with an oxygen concentration of 1% for
24, 48 and 72 hours.

4. Observation of survival of h-AMSCs in the form of CD44 +, VEGF, SCF, OCT-4, BCL2, HSP27 expression,
and apoptotic inhibition:

(A) (B)

(C) (D)

(E)  (F) 

Figure 1. Isolation and culture of h-AMSCs from the patient's adipose tissue (human).
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a. Phenotype expression of CD44 + was carried out by the flowcytometric method.

b. Immuno-cytochemical expression of VEGF

c. Immunocytochemical expression of SCF from h-AMSCs culture

d. Phenotype of OCT-4 expression (Immunocytochemistry and Immunofluorescence)

e. Apoptotic inhibition, based on the expression of BCL2 and HSP27 by immunocytochemistry accompanied
by a low percentage of apoptosis through the Tunnel Assay method (Figure 2).

(A) (B)

(C)    (D)

Figure 2. Observation of survival of h-AMSCs in the form of CD44 +, VEGF, SCF, OCT-4, BCL2, HSP27 expression,
and apoptotic inhibition:

A. Phenotype expression of CD44 + was carried out by the flowcytometric method.
B. Immuno-cytochemical expression of VEGF.
C. Immunocytochemical expression of SCF from h-AMSCs culture.
D. Phenotype of OCT-4 expression (Immunocytochemistry and Immunofluorescence).
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Table 1. Results on CD44+ expression.

Time (hour) Experimental group Mean � SD p

24 Normoxia 72.07 � 2.985 0.149

Hypoxia 82.42 � 12.14

48 Normoxia 67.61 � 3.158 0.370

Hypoxia 69.48 � 2.203

72 Normoxia 65.85 � 1.321 0.446

Hypoxia 67.64 � 4.184

Figure 3. Flowcytometry results from human AMSCs based on cell culture for CD44+ CD90+ CD45- expression.
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Data analysis
Data collected, processed and statistically tested with several stages. The first stage is an Assumption Test in the form
of a normality test to ensure that the data is normally distributed. Furthermore, a comparison test was carried out between
the treatment group and the control group using Multivariate Analysis of Variance (MANOVA). Furthermore, path
analysis is carried out to determine the pathwaymechanism of the influence of the independent variables on the dependent
variable by using multiple linear regression statistical tests. The statistical analysis was used to explain the effect of time
(24, 48 and 72 hours) and hypoxic conditions on the expression of VEGF, SCF, OCT-4, CD44 +, BCL2, HSP27 and the
number of cells undergoing apoptosis. The data scale of each variable under study is a ratio, so it is appropriate to use the
Multiple Linear Regression statistical test. Statistical tests were performed using SPSS version 24.0 software.

Results
The results showed that the time difference test on CD44+ expression was 24 hours with 48 hours (p = 0.017), 24 hours
with 72 hours (p= 0.004), and 48 hours with 72 hours (p= 0.801). The result of regression test showed that time difference
had an effect on expression of CD44 + (p = 0.002, β =�0.582) and hypoxia condition had no effect to CD44 + expression
(p = 0.066, β = 0,317) (Table 1) (Figure 3).

The result of time difference test on VEGF expression is between 24 hours with 48 hours (p < 0.001), 24 hours
with 72 hours (p < 0.001), and 48 hours with 72 hours (p=0.047). The result of regression test showed that time difference
had an effect on VEGF expression (p < 0.001; β =�0,482) and hypoxia condition also influenced VEGF expression
(p < 0.001; β = 0,774) (Table 2) (Figure 4).

Figure 4. Immunohistochemical Characteristic of h-AMSCs based on VEGF expression at: A) normoxic condi-
tion for 24 hours; B) normoxic condition for 48 hours; C) normoxic condition for 72 hours; D) hypoxic condition
for 24 hours; E) hypoxic condition for 48 hours; F) hypoxic condition for 72 hours.

Table 2. Results on VEGF expression.

Time (hour) Experimental group Mean � SD p

24 Normoxia 0.175 � 0.074 0.000

Hypoxia 0.766 � 0.123

48 Normoxia 0.103 � 0.018 0.000

Hypoxia 0.425 � 0.036

72 Normoxia 0.075 � 0.014 0.000

Hypoxia 0.291 � 0.033
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The result of time difference test on SCF expression is between 24 hours with 48 hours (p= 0.283), 24 hourswith 72 hours
(p < 0.001), and 48 hours with 72 hours (p < 0.001). The result of path analysis showed that VEGF influenced the
expression of SCF (p < 0.001; β = 0.889) (Table 3) (Figure 5).

The result of time difference test on OCT-4 expression is between 24 hours with 48 hours (p < 0.001), 24 hours with
72 hours (p < 0.001), and 48 hours with 72 hours (p < 0.001). The result of path analysis showed that SCF had an effect on
OCT-4 expression (p < 0.001; β = 0.985) (Table 4) (Figure 6).

Table 3. Results on SCF expression.

Time (hour) Experimental group Mean � SD p

24 Normoxia 0.084 � 0.019 0.000

Hypoxia 0.990 � 0.013

48 Normoxia 0.093 � 0.014 0.000

Hypoxia 0.901 � 0.082

72 Normoxia 0.075 � 0.024 0.000

Hypoxia 0.596 � 0.087

Table 4. Results on OCT4 expression.

Time (hour) Experimental group Mean � SD p

24 Normoxia 0.148 � 0.018 0.000

Hypoxia 0.793 � 0.034

48 Normoxia 0.110 � 0.007 0.000

Hypoxia 0.673 � 0.047

72 Normoxia 0.099 � 0.025 0.000

Hypoxia 0.457 � 0.151

Figure 5. Immunohistochemical Characteristic of h-AMSCs based on SCF expression at: A) normoxic condition
for 24 hours; B) normoxic condition for 48 hours; C) normoxic condition for 72 hours; D) hypoxic condition for
24 hours; E) hypoxic condition for 48 hours; F) hypoxic condition for 72 hours.
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The results of time difference test on BCL2 expression between 24 hours with 48 hours (p = 0.223), 24 hours with
72 hours (p = 0.295), and 48 hours with 72 hours (p = 0.982). Path analysis results show that OCT-4 effect on BCL2
expression (p < 0.001; β = 0.878) (Table 5) (Figure 7).

Figure 6. Immunohistochemical Characteristic of h-AMSCs based on OCT-4 expression at: A) normoxic condi-
tion for 24 hours; B) normoxic condition for 48 hours; C) normoxic condition for 72 hours; D) hypoxic condition
for 24 hours; E) hypoxic condition for 48 hours; F) hypoxic condition for 72 hours. Immunofluorescence assay
of h-AMSCs based on OCT-4 expression at: G) normoxic condition for 24 hours; H) normoxic condition for
48 hours; I) normoxic condition for 72 hours; J) hypoxic condition for 24 hours; K) hypoxic condition for
48 hours; L) hypoxic condition for 72 hours.

Table 5. Results on BCL2 expression.

Time (hour) Experimental group Mean � SD p

24 Normoxia 0.100 � 0.010 0.000

Hypoxia 0.714 � 0.073

48 Normoxia 0.093 � 0.025 0.020

Hypoxia 0.505 � 0.185

72 Normoxia 0.141 � 0.012 0.026

Hypoxia 0.479 � 0.229
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The results of the time difference test on HSP27 expression between 24 hours with 48 hours (p = 0.040), 24 hours
with 72 hours (p < 0.001), and 48 hours with 72 hours (p < 0.001). The regression test results showed that time effects
on HSP27 expression (p < 0.001; β = �0.398) and hypoxia precondition also affects HSP27 expression (p < 0.001;
β = 0.847) (Table 6) (Figure 8).

Table 6. Results on HSP27 expression.

Time (hour) Experimental group Mean � SD p

24 Normoxia 0.156 � 0.024 0.000

Hypoxia 0.967 � 0.018

48 Normoxia 0.157 � 0.106 0.000

Hypoxia 0.773 � 0.132

72 Normoxia 0.055 � 0.036 0.000

Hypoxia 0.389 � 0.037

Figure 7. Immunohistochemical Characteristic of h-AMSCs based on BCL2 expression at: A) normoxic condi-
tion for 24 hours; B) normoxic condition for 48 hours; C) normoxic condition for 72 hours; D) hypoxic condition
for 24 hours; E) hypoxic condition for 48 hours; F) hypoxic condition for 72 hours.

Figure 8. Immunohistochemical Characteristic of h-AMSCs based on HSP27 expression at: A) normoxic condi-
tion for 24 hours; B) normoxic condition for 48 hours; C) normoxic condition for 72 hours; D) hypoxic condition
for 24 hours; E) hypoxic condition for 48 hours; F) hypoxic condition for 72 hours.
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The results of time difference test on number of apoptotic cell amount between 24 hours with 48 hours (p = 0.004),
24 hours with 72 hours (p = 0.562), and 48 hours with 72 hours (p < 0.001). Pathway analysis showed that BCL2
expression inhibited apoptosis (p = 0.030; β =�0.442) and HSP27 expression also inhibited apoptosis (p < 0.001;
β =�0.487) (Table 7) (Figure 9).

Discussion
Over the last few years, with the gradual increase in awareness of the critical role that hypoxia-induced signalling could
play as a tool for generating angiogenesis on demand, two distinct approaches have emerged, as promising strategies to
achieve this goal.5 On one hand, researchers have explored the possibility of pre-conditioning cells or grafts to hypoxia
in vitro, in order to upregulate the required signalling that can then initiate angiogenesis in vivo upon transplantation.11

The second approach relies on direct induction of hypoxia-mediated signalling in vivo, by pharmacologicalmeans or gene
therapy.12 A further distinction can be made on whether the therapy involves transplantation of hypoxia pre-conditioned
or genetically modified cells, or if the effect is mediated directly through gene transfer or cell-free delivery of hypoxia-
induced protein factors.13

The low survival of h-AMSCs after transplanting the heart muscle with myocardial infarction has limited the effective-
ness of stem cell therapy.8 This is presumably because the transplanted stem cells are difficult to adapt to a new
environment that is different from the environment during the in vitro culture process if it is carried out under normoxic

Table 7. Results on number of apoptotic cell amount.

Time (hour) Experimental group Mean � SD p

24 Normoxia 0.945 � 0.034 0.000

Hypoxia 0.088 � 0.026

48 Normoxia 0.777 � 0.043 0.000

Hypoxia 0.148 � 0.027

72 Normoxia 0.881 � 0.096 0.000

Hypoxia 0.183 � 0.021

Figure 9. Immunohistochemical Characteristic of h-AMSCs based on number of apoptotic cell amount at:
A) normoxic condition for 24 hours; B) normoxic condition for 48 hours; C) normoxic condition for 72 hours;
D) hypoxic condition for 24 hours; E) hypoxic condition for 48 hours; F) hypoxic condition for 72 hours.
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conditions (21% oxygen concentration), while the niche of h-AMSCs in adipose tissue is actually under hypoxic
conditions (oxygen concentration between 2-8%).14 Themechanism underlying the decreased effectiveness of stem cells
when transplanted is thought to be because many transplanted stem cells undergo apoptosis.15 Therefore, a strategy is
needed to increase the resistance of transplanted stem cells, one of which is the hypoxic adaptation process during in vitro
culture.16

The role of sub lethal hypoxia during the in vitro culture process is to provide hypoxic preconditions so that the support
niche is compatible with the hypoxic environment in vivo in myocardial infarction.17 Hypoxic precondition will trigger
Vascular Endothelial Growth Factor (VEGF) which then binds to VEGF Receptor-1 (VEGFR-1) in the cytosol.18 The
presence of VEGF - VEGFR-1 bonds is thought to occur in a series of signalling which activates Stem Cell Factor (SCF)
or Steel Factor (SLF) in the interstitial.19 Interstitial SCF expression will be recognized by the SCF receptor so that an
SCF-receptor complex is formed in the cell nucleus and nuclear β1-integrine expression will activate Octamer-4 (OCT-4)
so that stem cells experience proliferation, self-renewal but still have the potential for differentiation.20,21 OCT-4 also
plays a role in the activation of the PI3/Akt pathway which affects survival cells by increasing BCL2 in the cytosol,
resulting in inhibition of BAX, which causes mitochondrial PT-Pore to remain closed.22 The closure of the PT-Pore from
the mitochondria will inhibit the release of Cytochrome-C and Apoptotic protease activating factor-1 (APAF-1) so that
the apoptotic cascade does not occur.23

Furthermore, the hypoxic precondition will lead to the expression of Cluster of Differentiation 44+ (CD44+).24 This
CD44+ expression occurs due to stimulation of the nuclear β1 integrin from the cell nucleus which is expressed due to the
presence of the SCF-receptor complex bond.25 CD44+ is a hyaluronan receptor which is part of the adhesion molecule,
causing interactions between cells and between cells and the matrix, as well as lymphocyte activation, also plays a role in
the homing process, and increases cell migration.26 CD44+ is a polymorphic family that is immunologically related to
proteoglycans and cell surface glycoproteins as markers of h-AMSCs. Apart from being a marker for h-AMSCs, CD44 +
has a signalling function that plays a role in cell survival and motility.26

On the other hand, hypoxic conditions are thought to have an effect on mitochondria in increasing the expression of
Reactive Oxygen Species (ROS).27 The increased ROS due to hypoxic conditions is thought to be the cause of the
increase in free radicals formed through mitochondrial-mediated pathways.28 This triggers protein kinase-C (PKC) and
protein K-2 (PK2) which then triggers the p53 gene so that there is an increase in p53 protein expression which will
activate proapoptotic members such as BAX.29 Increased expression of p53 causes mitochondrial damage which
causes pores to open in the membrane, so that Cytochrome-C and other molecules that act as APAF-1 will exit the
mitochondria.30 This condition will activate procaspase 9 to become caspase-9 and followed by activation of procaspase
3 to become active caspase-3 which affects DNase so that DNA fragmentation occurs, and ends with cell death through
the apoptosis process.29

However, the low sublethal oxygen concentration is thought to activate cells for protection in the form of repair.31

The repair process can be done through the activation of heat shock factor-1 (HSF-1) so that the formation of several
Heat Shock Proteins (HSPs) occurs.32 HSPs are the product of several gene families contained in the cell nucleus which
act as chaperonemolecules that play a role in cell survival during the stress process.33 Some of theHSPs that were thought
to be involved were HSP70, HSP90α and HSP27.32 However, in hypoxic conditions that cause the glycolysis process.
This glycolysis process will further affect Krebs’s cycles so that ATP synthesis decreases.34 This decrease in ATP
concentration is thought to cause a decrease in the function of HSP70 and HSP90α. This is because HSP70 and HSP90α
are ATP-dependent chaperone molecules, thus the two HSPs (HSP70 and HSP90α) do not have the ability to act as
chaperones in protecting, protecting and repairing cells under stress.35 The role of chaperone molecules in hypoxic
conditions is carried out by HSP27, because HSP27 is ATP-independent chaperone. In addition, hypoxic precondition
can maintain multipotential properties through OCT-4 expression compared to normoxic conditions.36

Conclusion
From this study, it can be concluded that the hypoxic preconditioning affect the survival of h-AMSC with different
apoptotic presentations due to the increased expression of BCL2 (anti apoptotic protein) and HSP 27 as chaperone
proteins that play a role in inhibiting apoptosis. In this study, the hypoxic preconditioning may elevate the expression of
studied variables, such as the number of apoptosis through BCL2 and HSP27 expression, trigger signal through VEGF
expression, proliferation through SCF expression, and multipotency through OCT-4 expression. Hypoxic precondition-
ing significantly affects VEGF, VEGF affects SCF expression, SCF affects OCT-4 expression, OCT-4 affects BCL2
expression, but hypoxia also affects HSP27 expression. BCL2 and HSP27 have proven inhibiting apoptosis thus
enhancing h-AMSCs survival (Figure 10). In conclusion, hypoxic preconditioning of h-AMSC culture has proven to
increase the expression of VEGF, SCF, OCT-4, and BCL2 and HSP27. This study demonstrated and explained the
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existence of a new mechanism of increased h-AMSC survival in cultures with hypoxic preconditioning (O2 1%) via
VEGF, SCF, OCT-4, BCL2, and HSP 27. But CD 44+ did not play a role in the mechanism of survival improvement of
human AMSC survival.

Data availability
Underlying data
Figshare: Raw Data - Hypoxic Preconditioning Promotes Survivals of Human Adipocyte Mesenchymal Stem Cell via
Expression of Prosurvival and Proangiogenic Biomarkers. https://doi.org/10.6084/m9.figshare.15029016.v1.37
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