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Abstract
Arctic plays as a key climatic region, it is highly affected by climate change. Climate change has long been considered as an 
effect of global warming, it is derived from complex linkages and changes in climate variables. Land surface temperature 
(LST) is known as one of the essential climate variables (ECVs). Recent study founds that LST has risen in the Arctic. Due 
to the rising temperatures, there has been a massive decrease in basic Arctic features, which elevated the percentage of heat 
trapped in the surface. LST is an ECV which needs to be further investigated in key regions. This study aims to investigate 
LST changes over February 2000 to November 2019 in Spitsbergen. We used autoregression and multivariate regression 
with cubic spline used to investigate LST changes over this period in Spitsbergen. Four knots and seven knots cubic spline 
were applied, respectively, to detect acceleration and 7-year cycle. Research founds that LST in Spitsbergen rise by 1.039 °C 
per decade (CI 0.576–1.501; z: 4.403). Gustav Adolf Land, Nordaustlandet has the highest temperature rise, location of the 
well-known Vegafonna ice-caps. A notable increase has shown during winter days.
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Introduction

Since the first World Climate Conference (in Geneva 1979) 
scientists have recognized the urgency of the climate change 
problem. It was leading to the establishment of the World 
Climate Program, as an effort to develop technology and col-
lect information related to climate change and variation. In 
the meantime, the global climate observing system (GCOS) 
has determined essential climate variables (ECVs) which 
used to describe climate change. It is necessary to evaluate 
these variables to give us a better understanding of climate 
change and how severe it has affected our World.

To date, there have been numerous tools to facilitate the 
need of evaluating ECVs. For instance, the National Aero-
nautics and Space Administration (NASA) has launched 
hundred satellite remote sensors and most of them are 
used to observed ECVs. One of the known ECVs is the 

land surface temperature (LST). LST is a basic climate 
change parameter and a manifestation of energy exchanges 
between the atmosphere and biosphere (Malamiri et al. 
2018; Mutiibwa et al. 2015; Williamson et al. 2014). LST 
in the Arctic region has risen twice as rapidly as global 
temperature (Muster et al. 2015). Warming LST causing 
land surface properties to disturbed, especially in areas 
underlain by permafrost (Muster et al. 2015). This region 
is vulnerable to climate change, so Arctic designated as a 
key region in the global climate system (Zhou et al. 2014). 
In a permafrost environment, LST plays a vital role to 
provide information in understanding glacier components 
(Shukla and Dar 2015) and becomes an important param-
eter for the energy budget (Li et al. 2019). However, there 
are large discrepancies in climate models in the Arctic, 
which leads to an even larger uncertainty than at lower 
latitudes area (Adakudlu et al. 2019). Then, analyze LST 
in Spitsbergen would be needed to achieve a useful knowl-
edge base for understanding climate change in this area 
(Adakudlu et al. 2019). Several studies have also carried 
out various statistical modeling to analyze LST. They esti-
mate LST trends using weighted least squares (Wongsai 
et al. 2017), ordinary least square regression (Muro et al. 
2018), linear regression (Firoozi et al. 2020; Me-Ead and 
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McNeil 2019), Mann–Kendall (Zhao et al. 2019), multi-
variate adaptive regression splines (Mustafa et al. 2020), 
and cubic spline regression and generalized estimated 
equation (Suwanwong and Kongchouy 2016).

LST is remotely-sensed data. The remote sensor covers 
a large area and accounts for multi-source, multi-variable, 
and multi-scale data with different spatial and temporal 
attributes (Guo et al. 2015). This has become a challenge 
due to missing data or errors because of the high uncer-
tainty involved in data acquisition. Missing data in analysis 
can interfere with the result, makes the prediction of the 
observed value becomes inaccurate. Therefore, there must 
be an appropriate selection due to the statistical analysis 
model. It is required to impute all missing values before 
further analyses conducted. Cubic spline function are sim-
ple and well-known which are often fitted for regression 
analysis (Perperoglou et al. 2019) and modeled to handle 
missing data (Me-Ead and McNeil 2019). The use of cubic 
spline is considered as giving a high accuracy to estimate 
missing value. Restricted cubic spline to knots number and 
placement is subject to the user, which are useful to make 
a continuous and smooth prediction (Gauthier et al. 2020). 
In this work, we would like to present seasonal patterns of 
LST in Spitsbergen by plotting the LST average value, also 
present LST changes in Spitsbergen using the autoregres-
sion and multivariate regression with cubic spline. The 
results are useful to provide evidence of warming LST 
trends in Spitsbergen as an effect of climate change, also 
provide statistical methods that can be used to model LST.

Methods

Study area

The study area is Spitsbergen of the Svalbard Archipelago 
(see Fig. 1). It is at 74°–81° north and 10°–35° east. Sval-
bard’s climate is mild as a result of its location between 
two oceanic currents. Both west and east oceanic currents 
affect sea surface temperature and sea ice distribution. Along 
the west coast, climate in Svalbard is subpolar while the 
east coast has freezing temperatures even during summer. 
Winter is longer and occurs from August to May while sum-
mer occurs from June to August. Svalbard has unique fea-
tures because it is located in the Arctic region. Svalbard is 
a glaciated area (60%). Glaciation increases generally with 
altitude and to the west. Edgeøya, Barentsøya, and Nordaust-
landet are the most extensive glaciated area. The northern 
area brings a lot of snow marked by wide ice caps. Among 
the Arctic region, Spitsbergen has the warmest permafrost 
with mean air temperatures ranging from about − 2.5 °C at 
coastal western sites to − 5 °C in central parts (Adakudlu 
et al. 2019).

Data source

This study used moderate resolution imaging spectroradi-
ometer (MODIS) Terra NASA Satellite product. Terra sat-
ellite orbits from north to south of the Earth and observes 
LST in the morning. The MODIS Terra Satellite product 
used in this study is the MOD11A2 8-day LST, an LST 
data per 8-day period. The recorded data will be processed 

Fig. 1  Location of study area 
(Source: Google Earth, 2020)



563Modeling Earth Systems and Environment (2021) 7:561–569 

1 3

by Land Active Distributed Archive Center (LP DAAC) 
which responsible as a data processor, storage, and distrib-
utor to users. Users were expected to register an account 
to be able to use the data. Accounts that had been regis-
tered with NASA’s Earth data had access to download the 
data set. Data was then sent via email. In this article, we 
analyzed LST changes using data from February 2000 to 
November 2019. LST is in kelvin, we convert it to celcius.

Sample selection

Considering the concept of sampling in a statistical 
method, for this study nine sub-regions were designed to 
represent the entire Spitsbergen. Nine sub-regions were 
used on consideration of one region representative and 
measure to avoid spatial correlation. The determination of 
the sample point started from the uppermost of the region 
based on its longitude and latitude. The next point was 
determined by converting coordinate in vertical tiles, hori-
zontal tiles, lines, and samples with the help of the Mod-
land tile calculator tool. The sample point determination 
must be precise and are not in water territorial. Figure 2 
shows each sample point, hereby the sub-regions, to inves-
tigate LST changes in Spitsbergen. Terra Satellite uses a 
spatial resolution of 1 × 1 km2. For each sub-regions, we 
use the smallest area of 7 × 7 km2 to get detailed informa-
tion about daytime LST.

Data analysis

Seasonal pattern

A seasonal pattern is used to determine temperature varia-
tions. With seasonal patterns, we know when the tempera-
ture will rise or fall affected by the time of the year, simply 
because the value is influenced by the value at the same time 
of the previous year. An autoregression model implies that 
a value is influenced by value in the past time. Observation 
of the value that is at a lag order shows the extent to which 
the dependency level of the observed value is influenced by 
a value at a past time which are useful to make predictions 
(Brockwell and Davis 2002).

Seasonal patterns for each sub-region are shown in Fig. 3 
by plotting daytime LST average values per day each year. 
We assumed a constant seasonal pattern for each sub-region 
because data derived from a satellite is a highly temporal, 
which causes the data to vary greatly and fluctuate dur-
ing the observation time. A natural cubic spline is used to 
ensure a smooth and continuous seasonal pattern between 
years. The use of natural cubic spline is inseparable from its 
parameter known as knots, where the number of knots and 
their placement determine a smooth and continuous seasonal 
pattern (Gauthier et al. 2020). In this article, we use eight 
knots. The location of the knots used is considered a “best 
practice” for analyzing LST data located on Julian Days 10, 
35, 60, 90, 115, 310, 335, and 355 (Wongsai et al. 2017).

Time series correlation models

After the autoregression model identified a seasonal pat-
tern, the spline-smoothed seasonal pattern as a seasonal 
component is substracted to make a seasonal adjustment 
(Brockwell and Davis 2002). Constant added to preserve 
overall means to provide a stationary time series. To remove 
the autocorrelation effect, the data were filtered using the 
second-order autoregressive [AR(2)] model (equivalent to 
8-day LST data). Then we fitted the temperature data using 
multivariate regression with cubic spline.

Adjusting for spatial correlation

To adjust spatial correlation, we used multivariate regres-
sion because this model is commonly used to analyzed any 
number of response variables that have the same predictor 
variables with mutually correlated errors. This model also 
uses a matrix response to create a confidence interval (Mar-
dia et al. 1979).

LST retrieval is dealt with the occurrence of missing data. 
Missing data resulted from Terra Satellite limitations to 
observes on cloudy days (Mutiibwa et al. 2015) and/or water 
vapor (Me-Ead and McNeil 2019). Cloudiness influenced the 

Fig. 2  Spitsbergen sub-regions. Each bullet represents sub-region as 
sample point
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quality of LST products (Kenawy and Hereher 2019) result-
ing in sensor errors in data retrieval (Malamiri et al. 2018). 
In the Arctic, missing data are likely to occur and somehow 
unavoidable. Arctic is an area with a high annual cloud cover 
(He et al. 2019; Shupe 2011). Missing data is estimated with 
spline models.

We fitted straight line models to estimate linear trends, 
whereas cubic splines fitted to detect acceleration and cycle 
that might be present. Four knots used to estimate acceleration 
(knots located on the year 2000, 2006, 2012, and 2018). Seven 
knots used to detect whether a 7-year cyclic pattern is likely to 
appear (knots located in the year of 2000, 2003, 2006, 2009, 
2012, 2015, dan 2018).

Results and discussion

Snow and ice are sensitive indicators of climate change. It 
is sensitive with a slight change in temperature and causes 
the heating and thawing of freezing ground (permafrost) 
and glaciers in the Arctic (Song et al. 2018). Although 
Antarctic also covered with ice and has the same natural 
properties as the Arctic, as opposed to the Arctic, Antarc-
tic experienced a cooling trend. Ice in the Arctic behaves 
differently than Antarctic’s. Ice loss in the Arctic releases 
more heat to space (Rudels 2016). Thus, scientists took 
Arctic as concerned to studied climate change variables. 

Fig. 3  Spitsbergen seasonal pattern. Horizontal axis is day of year 
(1–365) while vertical axis is daytime LST in °C. The “Lat and Lon” 
label displays sub-region ordinate. The “Avg” label indicates mean 
annual LST in each sub-region. The “n” label indicates observation 

number. Eight blue plus indicates “best practice” knots located on 
Julian days 10, 35, 60, 90, 115, 310, 335 and 355. The black dots is 
LST per day each year. Red curve is smooth-seasonal pattern from 
LST average per day each year
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Greater ice loss will affect the extent of the dark open 
water area which will absorb heat from the sun. These 
will further results to even more ice loss and affects other 
climate variables. The more heat absorbed, the more per-
mafrost begins to thaw, microorganisms start to break 
down organic matter in the soil and released carbon diox-
ide  (CO2), methane  (CH4) and nitrous oxide  (N2O) into 
the air and accelerate global warming (Turetsky et al. 
2019). When an object has no balance in the mechanism 
of receiving and releasing energy, it responds with an 
increase or decrease in temperature. For example, if 71% 
of the energy is absorbed by the Earth’s surface, so the 
same amount is needed to keep the temperature stable. In 
terms of land surface energy budget, LST is the appropri-
ate measurement used to describe this condition (Crago 
and Qualls 2014).

In Fig. 3, we display a seasonal pattern by plotting the 
average LST each day of the observation period (Febru-
ary 2000–November 2019) in nine sub-regions. Our study 
founds that based on the seasonal pattern, in winter days, 
LST in Spitsbergen experienced a warming trend. This can 
be seen from a scattered value in the plot compared to sum-
mer days (June–August). Started from early March (day 60), 
LST rises gradually until it reaches maximum temperature 
in July. July is the warmest month of the year. Førland, et.al. 
(2011) who studied the temperature changes, founds that 
the warming trend occurs mainly during winter and spring 
in Svalbard. Isaksen et al. (2016) also found that warming 
in Spitsbergen mainly occurs in winter. During winter, tem-
perature increased by 2–3 °C per decade. Although winter 
is the longest season, there has been shortening in the winter 
period, a response to the rising temperature. Rising winter 
temperature is an important aspect of climate change. It is 
associated with atmospheric circulation, air mass character-
istics, and sea ice concentration. According to Cohen et al. 
(2018), warm Arctic can lead to more frequent severe winter 
weather in other regions in the world.

There are 46 observations in a year for 8-day LST. During 
February 2000–November 2019 there are 875 observations. 
In this study, there is an indication of missing data during 
the observation period (“n” indicates number of observa-
tion below the maximum observation in a year). Remotely 
sensed data suffer from cloud contamination (Metz et al. 
2017) and likely leads to the occurrence of missing data. 
Cloud-cover inhibits LST retrieval. Cloud cover is a com-
ponent in the climate system and its frequency is related to 
the radiation budget, especially in the key climate region. 
Areas that are highly affected by climate change, like the 
Arctic, have a higher cloud-cover than other regions. Briefly, 
this happens because of the energy exchange between sur-
face and atmosphere, sea-ice retreats which further doubled 
evaporation over the melted area. Evaporation in an area will 
increase cloud-cover. Higher evaporation makes cloud-cover 

to extend. In Spitsbergen, cloud-cover is more frequent in 
summer than in winter days (Cisek et al. 2017; Maturilli and 
Ebell 2018). Serreze and Barry (2014) mentioned that the 
cloud-cover in Spitsbergen is ranging from 60% in winter 
and 80% in August and September. Consequently, miss-
ing data is unavoidable in this region. It is seen that there 
are more missing data found in sub-region 8, Longyear-
byen. There are only 866 observations available during the 
period being observed. Further study should be conducted 
to improve the cloud detection algorithm (Li et al. 2019), 
especially in the Arctic.

Missing data are handled with a natural cubic spline func-
tion. A cubic spline is a function that connects two points. 
A smooth curve can be generated if fitted at points with a 
certain number and interval, known as “knots”. Cubis spline 
is flexible and there is no limitation in knots determination. 
According to Perperoglou et al. (2019), knots number and 
placement are determined by the user where the number 
and locations are unique for one data set to another. Daily or 
monthly LST data might not follow the same knot number 
and placement, it is suggested for users to determine the 
“best practice” knots number which ensures smooth perio-
dicity. Make sure the chosen knots number and locations are 
not “overfitting”, i.e. the spline function is too close to the 
observation value and fails to estimate missing data. Overfit-
ted commonly occurs when users considered using too large 
knots. Figure 3 demonstrates how cubic spline function can 
be used to ensure a continuous and smooth seasonal pattern 
using eight knots at the “best practice” location (Julian days 
10, 35, 60, 90, 115, 310, 335 and 355) and perform a good 
estimation for missing values, with high r-squared.

Figure 4 displays a seasonal adjustment time series. 
According to Brockwell and Davis (2002), season-adjusted 
time series is a procedure to subtract seasonal components in 
time series. In this work, a smooth-seasonal pattern is sub-
tracted to remove the seasonal components and obtain a sta-
tionary model. We added constant to preserve overall mean, 
so the model has a constant mean at every time points. Box 
et al. (2016) have mentioned that a stationary time series is 
one with constant mean, variance, and autocorrelation over 
time, it doesn’t change over time. A stationary time series 
is a data series without a trend component or seasonal com-
ponents. Most of the time series models are needed to satis-
fied a stationary assumption and useful for forecasting. An 
autoregressive model implies that a data (yt) is influenced by 
data in previous time (yt-1, yt-2, yt-3, …), called autocorrela-
tion. Then, it is required to found an autocorrelation effect 
for LST data. After founding the autocorrelation, one would 
be needed to remove the autocorrelation effect before fitted 
with a regression model. Then a completed and uncorre-
lated error can be used to investigate LST changes using 
multivariate regression. Multivariate regression analyses 
provide an LST increase per decade in each sub-region and 
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Fig. 4  Season-adjusted time series

Table 1  Mean increased LST 
for each sub-regions

a Mean increase in each sub-region/region per decade
b Acceleration in each sub-region per decade
c First-order autoregressive constant
d First-order autoregressive standard error
e Second-order autoregressive constant
f Second-order autoregressive standard error

Latitute Longitude Mean Inc/
deca (°C)

Acc/dec2b (°C) AR (1)c SE  1d AR (2)e SE  2f

Sub-region
 1 80.004 25.181 1.114 − 0.368 0.364 0.034 0.025 0.034
 2 79.462 24.174 1.169 − 0.085 0.309 0.034 0.075 0.034
 3 79.462 20.756 1.264 0.627 0.364 0.034 0.086 0.034
 4 79.462 16.746 1.191 0.806 0.340 0.034 − 0.001 0.034
 5 79.462 12.189 0.982 0.614 0.365 0.034 0.015 0.034
 6 78.846 16.477 0.866 0.006 0.359 0.034 0.087 0.034
 7 77.596 21.977 1.204 0.626 0.338 0.034 0.043 0.034
 8 78.229 16.238 0.846 − 0.062 0.312 0.034 0.034 0.034
 9 77.438 15.996 0.712 − 0.203 0.330 0.034 0.012 0.034

Region
Spitsbergen Mean Inc/dec: 1.039 °C; CI (0.576–1.501); z: 4.403
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Spitsbergen. Outliers (the pink dots in Fig. 4) remove in this 
study to provide a normally distributed data.

LST is risen in each sub-region (see Table 1). The highest 
temperature rise occurred in sub-region 3 for Gustav Adolf 
Land, the location of Vegafonna ice-cap on Nordaustlandet 
Island (1.264 °C per decade). Besides, temperature in sub-
region 1 and 2 (located on Nordaustlandet Island) increased 
1.114 °C dan 1.169 °C per decade. Nordaustlandet Island 
is mostly covered with ice-cap; Austfonna, Vestfonna, and 
Vegafonna. Austfonna covers most of Nordaustlandet areas. 
Ice-cap is one form of glaciers, which is highly sensitive to 
climate change (Qin and Ding 2010). Glacier forms from a 
long-term snow deposition on the land. Glaciers’ changes 
affect land temperature. The warmth land temperature can be 
explained by the interaction between changes cryosphere and 
biosphere components (Qin et al. 2018), also other Earth’s 
spheres. Each component will respond differently to climate 
change and lead to temperature increased.

To investigate LST in Spitsbergen, we used multivari-
ate regression with cubic spline. Unlike the use of natural 
cubic spline for seasonal pattern, cubic spline fitted in mul-
tivariate regression places knots in certain years for different 
purposes. We used four-knots cubic spline (located in the 
year of 2000, 2006, 2012, dan 2018) to estimate tempera-
ture acceleration and seven-knots (located on the year of 
2000, 2003, 2006, 2009, 2012, 2015, dan 2018) to detect 
a 7-year cycle. Table 1 displays whether LST in each sub-
region has a negative or positive acceleration. Acceleration 
is used to describe whether temperature rapidly or slowly 
increase. Sub-region 3, 4, 5, 6, and 9 have positive accelera-
tion, the rest have negative accelaration. Sub-region with 
positive acceleration experienced rapid increase per decade. 
LST increased in Spitsbergen is cyclical as illustrated by 
the cubic spline curve. We can infer that the temperature at 
Spitsbergen has been decreased at certain times.

To our knowledge, there is no research studied LST in 
Spitsbergen or Svalbard archipelago. But we found some 
research which analyzed LST in the Arctic and sub-Arctic 
(Li and Shiklomanov 2015; Pepin et al. 2019; Sobrino 
et al. 2020; Westergaard-Nielsen et al. 2018). They have 
mentioned that the Arctic region is warming. Most stud-
ies analyzed air temperature than LST such as (Førland 
et al. 2011; Nordli et al. 2014; Piskozub 2017). They have 
agreed that there has been air temperature increased in 
the Arctic three times higher than the estimated increase 
in global warming. However, Førland et al. (2011) found 
that there has been a cooling trend in Svalbard during 
1943–1965, then starts to increase again from the mid-
1960s (Nordli et  al. 2014). Both air temperature and 
LST can be used as a measurement to explain surface-
atmosphere interactions and energy fluxes between the 
atmosphere and the ground (Zhang et al. 2015) and desig-
nated as key variables to climate change. Compared to air 

temperature, LST has a warmer value during summer days 
and colder during winter days because air temperature and 
LST are based on different physical meanings and differ-
ent responses to atmospheric conditions (Mutiibwa et al. 
2015). If we associate LST with several key climatic and 
environmental variables, it could have a high correlation 
with air temperature (Kenawy and Hereher 2019). Hooker 
et al. (2018) have developed a dataset, where air tempera-
ture can be predicted from monthly LST. However, LST is 
a better parameter than air temperature to explain energy 
budget in the Arctic, sub-Arctic and alpine environment 
(Williamson et al. 2014).

Spitsbergen temperature has risen 1.039 °C per dec-
ade (Table 1). In Fig. 5, we have presented a picture to 
describe our investigation in Spitsbergen. We set a bound-
aries with normal distribution (z) to determine whether 
LST in sub-region or region is increase (z > 1.96), likely 
increase (z > 1), stable (│z│ ≤ 1), likely decrease (z < − 1), 
or decrease (z < − 1.96). Figure 5 displays LST Spitsber-
gen has increased (z: 4.403).

Arctic acts as World’s refrigerator. A substantial change 
in the Arctic due to climate changes will result in a higher 
amount of heat stored by Earth’s surface and affecting 
other regions in the World. LST increased in the Arctic, 
but not necessarily increased in other regions. According 
to Song et al. 2018, LST has increased across 62.4% of 
the land area in the world, the rest has decreased. Cli-
mate change is a serious problem and might take as a deep 
concern. It is not only responsible for the emergence of 
extreme natural disasters, drought, or crop failures but also 
threatening human health.

Fig. 5  Day LST increase (2000–2019)
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Conclusion

In this paper, we apply simple and well-known analyses to 
investigate LST changes in Spitsbergen, using autoregres-
sion and multivariate regression with cubic spline. These 
two statistical models are used because remotely-sensed data 
is obtained continuously in a long period and covers a large 
area which makes LST is a spatial data. With the autore-
gression model, we found that the autocorrelation effect for 
8-day LST is at the second lag and then filtered to ensure 
the data can be used for multivariate regression. The natural 
cubic spline has long been considered as a very useful model 
to ensure a smooth and continuous periodicity. The use of 
eight-knots number and placement for 8-day LST has proven 
that smooth periodicity (high r-squared) is obtained, so that 
missing data can be resolved. Outliers removed from mul-
tivariate regression to ensure a good analysis. Our research 
found that LST in Spitsbergen is increased by 1.039 °C 
per decade (CI 0.576–1.501; z: 4.403). Although July has 
the maximum temperature, the most notable LST changes 
occurred in winter days. Gustav Adolf Land, Nordaustlandet, 
has the highest temperature increased per decade (1.264 °C).
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