# Total factor productivity convergence of Indonesia's provincial economies, 2011–2017 by Rudi Purwono **Submission date:** 14-Sep-2021 05:53PM (UTC+0800) **Submission ID:** 1648168210 **File name:** regional statistics.pdf (1.77M) Word count: 10859 Character count: 56461 ### Total factor productivity convergence of Indonesia's provincial economies, 2011-2017 (corresponding author) Universitas Airlangga, Surabaya, Indonesia E-mail: rudipurwono@feb.unair.ac.id ### Mohammad Zeqi Yasin Research Institute of Socio-Economic Development, Surabaya, Indonesia E-mail: mohammad.zeqi-13@feb.unair.ac.id ### Ibnu Nur Hamzah Swedish University of Agricultural Science, Sweden E-mail: nurhamzah.ibnu@gmail.com ### **Nur Arifin** BPS-Statistics Indonesia E-mail: nurarifin@bps.go.id ### Keywords: intra-provincial trade, international trade, convergence, Rudi Purwono This study aims to investigate the potential convergence process of total productivity (TFP) among 33 provinces in Indonesia in a period between 2011 and 2017. It is the first study that captures the effect of intra-provincial trade and international trade on the TFP convergence. The authors employ stochastic frontier analysis to identify the TFP and generalized methods of moment (GMM) to examine the convergence process. The result of this study confirms that the TFP convergence process in Indonesia occurred in 2011-2017. Concerning intra-provincial and international trades, the study discovered that neither of them promotes TFP growth. Rather, except for the international import, they reduce the gap of TFP growth amongst provinces. The result demonstrates that intraprovincial exports reduce the TFP growth gap by 19.7% more than international exports. This finding indicates that intra-provincial exports are more efficacious in reducing regional inequality. The same is true for the intra-provincial import. This finding delivers essential policy implications such as streamlining the development policies across provinces, albeit the prevailing decentralization program. This should inform the formulation of regional regulations so these will not hinder TFP growth the provincial growth convergence. ### Introduction The issue of regional disparity became a central point of attention in Indonesia's development master plan, specifically in relation to inequality, resource endowment and population distribution. Attention to this issue has significantly grown after decentralisation was formalised by Indonesian Laws 22/1999 and 25/1999 and was then implemented in 2001 (Vidyattama 2013). Ever since, the central government has been delegating responsibilities in the areas of education, agriculture, industry, investment, infrastructure and trade to regional authorities at province or district levels. As such, there is a possibility of convergence among regions and it is essential to seek the momentum (Rodríguez-Pose–Ezcurra 2010). Since trade is part of the decentralisation agenda, there is a pressing need for regional authorities to foster economic growth through international and intraprovincial trade activities. Trade activities are pivotal drivers of economic growth as regions can engage and maintain relationships with advanced markets, which can offer sophisticated technology (Blalock–Veloso 2007). Export activities, for instance, are associated with the ability to produce and develop high-standard products to satisfy the demanding advanced markets. Consequently, a region will allocate more budget for human capital improvement, such as training or capacity building, or for the provision of advanced technologies to generate qualified outputs. With this, technology diffusion amongst regions as well as countries is likely to occur. Analysing economic growth requires an identification of its drivers. Regional factors of production, such as capital and labour, contribute significantly to economic growth, so it is essential to identify the extent to which these factors affect productivity. Total factor productivity (TFP) satisfies this query by providing methods, such as growth accounting and frontier approaches. Growth accounting approach merely acknowledges technological progress or technical change as a unique contributor of TFP. Meanwhile, frontier approach captures more variation of TFP amongst regions because each region has their specific level relative to the optimal level (Farrell 1957). Moreover, measuring TFP with the frontier approach can decompose other elements i.e., economic efficiency change (the change of the distance relatively to the frontier) and the technical change (the shifting frontier condition) (Margonoet al. 2011). Therefore, frontier approach can provide a more holistic perspective. Studies have examined the significant impact of trade on TFP (e.g., Damijan et al. 2009, Keller 2010, Kotrajaras et al. 2011, Saha 2012) and attempted to identify the possible convergence moments in a decentralised governance (Rodríguez-Pose–Ezcurra 2010). However, to the best of the authors' knowledge, there are no robust studies that have investigated how trade between provinces (intra-provincial trade), and trade with foreign countries (international trade), contribute to promoting TFP inequality reduction and regional catching-up moment in Indonesia. This study contributes to the literature by identifying, firstly, the TFP growth convergence of 33 provinces in Indonesia in order to capture the contribution of inputs, i.e. gross fixed capital formation and labour force, to the output generation. Secondly, the case of Indonesia is unique as it is an archipelagic country with more than 17,500 islands and 300 ethnic groups (OECD 2018). Hence, the finding can capture the heterogeneity and become a reference for future studies. Thirdly, examining the impact of intra-provincial and international trade on convergence is novel and this will extend the body of knowledge about economic development. The study of the impact of trade activities on productivity convergence is essential in order to find out what channels in trade activities contribute to reduce disparity and accelerate the catch-up among regions. Fourthly, potential technology diffusion across provinces in Indonesia, as well as between Indonesia and other countries, can be captured since trade activities involve the use of technology (Fu et al. 2011). Ultimately this study can be considered as a policy examination intended to evaluate whether the current trade activities at the intra-provincial and international level have promoted equality. The rest of the paper is organised as follows: discusses the theoretical framework, explains the study's data and methodology, presents the main result. Finally, the conclusion and proposed policy are presented. ### Literature review ### The impact of trade activities on the economy A great deal of the literature on convergence issues often refers to the work of Barro–Sala-i-Martin (1992). However, only few studies discuss the impact of trade on the convergence of TFP, apart from Rassekh–Ranjbar (2011). Accordingly, the current study only consults the studies that specifically address the impact of trade activities on economic convergence. Previous studies provide a point of reference to help identify the impact of trade activities on economic convergence on the intraregional scale within a country (Aritenang, 2016, Jiang 2011, Zhang–Zhang 2003); intra-regional scale of cross-border country (e.g. Velde 2011, Libman–Vinokurov 2012), and the international scale (Berry et al. 2014; Rassekh–Ranjbar 2011). Jiang (2011) studied the effect of openness on the productivity growth and conditional convergence in Chinese provinces. The study presents historical evidence that China was a closed country until 1978, but then it started its transformation into an open country with a rapid economic growth (over 9%) in 1978–2005. Jiang (2011) highlighted two possible channels through which openness significantly fosters regional economic growth. First, openness may directly affect China's regional productivity, but this seems to have no bearing towards the gap between a Chinese region and the world technology frontier. In this condition, openness would generally impact the regional productivity without driving the underdeveloped regions to catch up. Second, openness may benefit regional performance as there is technology convergence involved. In contrast, Guo (2017) emphasised that as the open economy started, asymmetric trade across regions emerged due to pre-existing income inequality between rural and urban areas. Policy makers seek to reduce the gaps by optimising e.g., factor mobility, the flow of capital, labour, as well as technology. Another study of intra-regional issue within a country is by Aritenang (2016), which investigated the impact of the devolution and trade liberalisation of Association of Southeast Asian Nations (ASEAN) Free Trade Area (AFTA) on the potential convergence among districts in Indonesia from 1993 to 2005. By examining the unconditional Beta convergence, this study concluded that districts in Indonesia experienced income convergence that boosted poorer districts' growth faster than advanced districts'. The catching-up movement has become more apparent since the government adopted a decentralised system. This result was supported by Aritenang (2016), stating that devolution negatively correlated with economic growth, indicating that the decentralisation reduced the growth gap among districts. In addition to this, the tarrif elimination agreement reflected in AFTA had a positive impact on economic growth, although the effect was statistically insignificant. This confirms the study results by Rodríguez-Pose-Gill (2006) stating that there is a weak influence of trade on disparity and the low intra-trade performance in the AFTA implementation. Velde (2011) investigated the effect of regional integration on growth convergence amongst 100 developing countries, which were grouped into certain regional integration agreements, such as ASEAN, Economic and Monetary Community of Central Africa (CEMAC), Common Market of Eastern and Southern Africa (COMESA) and East African Community (EAC). This research found that regional integration is a pivotal solution to foster connections amongst countries, but did not find a considerable effect of intra-regional trade on income disparity reduction. Meanwhile, the role of development financing institution as captured by loan exposure over regional gross domestic product (GDP) has a positive relation with income disparities reduction. As Velde's results (2011) were debatable, subsequent study by Bong–Premaratne (2018) demonstrated the effect of regional integration on economic growth, specifically in Southeast Asian countries. They discovered that the effect of international trade among Southeast Asian countries would be significant if public institutions got involved by reducing the political and macroeconomic instability. In terms of the effect of trade on regional economic convergence, a study by Rassekh–Ranjbar (2011) covered 77 countries representing various income categories for the period 1960–2003. They found that the effect of trade on the convergence of GDP and TFP only happened during the period of 1960–1979. The following years, 1983–2003, and the whole 1960–2003, were divergent. Regarding this result, Dowrick–Golley (2004) and Cebrián–López (2004) argued that technology transfer, as an impact of trade activities, was indeed transferred from developed countries to developing countries in 1980, which, in turn, narrowed the gap between them. However, since 1980, the presence of information technology (IT), which benefitted developed countries more than developing countries, widened the gap once again. Therefore, it can be argued that the transfer of knowledge, as a spill-over from trade activities, reduces regional disparities only if developing countries can optimise advanced technology they receive from the more developed countries. ### Efficiency and productivity Efficiency is achieved when an additional output leads to decreasing the least number of other outputs and increasing at least one input. Specifically, technical efficiency is a condition when a producer creates different outputs using minimal input; or optimises input to produce more outputs (Coelli 1996). Technical efficiency measurement was proposed by Debreu (1951) and Farrell (1957) to differentiate between terminology of technical efficiency and economic efficiency. Banker et al. (1984) broke down technical efficiency into two parts: pure technical efficiency and scale efficiency, which measures how close production is to the most efficient scale size. Technical efficiency is associated in some studies with TFP. For instance, TFP displays the best definition of the productivity notion as it describes how each country transforms physical capital and labour into output. Solow (1956) measured TFP by using the residual approach referred to as the Solow Residual. However, this approach only acknowledges technological progress as a unique contributor to TFP. Farrell (1957) suggested the notion of frontier production function as the best practice, which leads to the variation of the TFP score of observations. Orea (2002) maintains that TFP comprises technical efficiency and scale efficiency, as well as technical change. Technical efficiency contributes to TFP by measuring its growth between periods. Likewise, technical change or technological progress, that is defined as a shifting towards the frontier, contributes to TFP by differentiating the output over time. Another component of TFP is scale efficiency that is calculated from the elasticity of each input to produce outputs. ### Data and methodology ### Data and variables This study employs panel data of 33 provinces in Indonesia from 2011 to 2017. The data was collected from the annual reports from the Central Bureau of Statistics (BPS) of Indonesia. Two reasons led to choosing the period of 2011–2017 – because it was the decentralisation period (post 2001) and because of the data availability of both intra-provincial and international export and import. Other periods were not considered in this study because BPS' reports did not separate intra-provincial and international trades. This study uses three groups of variables: production frontier, inefficiency effect and the determinants of convergence. Variables in the production frontier are: output proxied by nominal gross domestic regional product (GDRP) in Rupiah, inputs that consist of capital proxied by nominal gross fixed capital formation (GFCF) in Rupiah and labour proxied by the number of labour force. Variables in the inefficiency effect only contain the time trend. Meanwhile, variables in the determinants of convergence encompass: intra-provincial export, international export, intra-provincial import, and international import. The determinants of convergence are measured through their ratio to the GDRP (Mitsis 2021). There might be a biased analysis if the monetary-value variables such as output, capital, intra-provincial export, international export, intra-provincial import, and international import are directly employed. Therefore, this study adjusts monetary variables in accordance with the price index in order to make the data constant. An aggregate price deflator may not be adequate for regional variables, e.g. GDRP and GFCF. Hence, this study uses the deflating methodology and provinces' price indices with 2010 as the base year. ### Model for stochastic production frontier This study is based on the production function defined as a mathematical representation of the technology that converts input into output(s) (Kumbhakar et al. 2015). If inputs and outputs are acknowledged as two categories, the relationship between inputs and outputs can be denoted as f(x, y)=0, where x stands for J dimensional non-negative input vector while y is an M dimensional non-negative output vector. Therefore, the general formulation of the production function can be expressed as follows: $$y = f(x_1, x_2, x_3, ... x_j) \equiv f(x)$$ (1a) where the function f(.) expresses the technology controlling the input-output relationship and is single valued. This study employs stochastic production frontier approach that was initially proposed by Aigner et al. (1977). The approach deploys the time varying model of Battese–Coelli (1995) that is estimated with maximum likelihood. The time varying model was selected because this study acknowledges the change of provinces' efficiency over time – be it efficiency improvement or deterioration (Kumbhakar et al. 2015). The model of Battese–Coelli (1995) includes a time variable in the inefficiency effect to capture the dynamic of efficiency scores, whether they converge or diverge towards the frontier. This study hypothesises transcendental logarithmic (Translog) as the most suitable production function to be employed. To test the hypothesis, generalised log-likelihood ratio (LLR) is used by comparing alternative production functions e.g., Hicks-neutral (HN), no technological progress (NTP) and Cobb-Douglas (CD). The production function using Translog specification, which considers a number of N inputs (production factors), can be $$y_{it} = \beta_0 + \sum_{n=1}^{N} \beta_n x n_{it} + \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \beta_{nm} x n_{it} x m_{it} + \beta_t t + \frac{1}{2} \beta_{tt} t^2 + \sum_{m=1}^{N} \beta_{nt} x n_{it} t_{it} + \sum_{d=2}^{D} \beta_d D d_i + v_{it} - u_{it}$$ (1b) where y is the natural logarithm ln of total output and xn represents inputs consisting of capital (k) and labour (l). Subscripts i and t denote the i-th province and t-th year. Ddi is the province specific dummy. vit is the stochastic production frontier model's random variable assumed as $iid.N(0,\sigma_v^2)$ , and $u_{it}$ is a non-negative random variable assumed as the half-truncated normal ( $N^+(u_i, \sigma_u^2)$ ) in distribution and is the inefficiency parameter that captures the inefficiency effects, specified as follows: $$u_{it} = \delta_0 + \delta_1 time + \omega_{it} \tag{2}$$ where unit is the inefficiency effect needed to calculate technical efficiency (TE) that is explained in (2a)–(2d). $\delta_1$ is the coefficient of time trend that is negative if there is efficiency improvement over time, and vice versa. $\omega_{it}$ is error. $$TE_{it} = \frac{y_{it}}{\hat{y}_{it}} =$$ (2a) $$TE_{it} = \frac{y_{it}}{\hat{y}_{it}} =$$ $$= \frac{f(x_{it}, z_{it}; \beta) \cdot \exp(v_{it} - u_{it})}{f(x_{it}, z_{it}; \beta) \cdot \exp(v_{it})} =$$ $$= \exp(-u_{it}) =$$ (2a) (2b) $$= \exp(-u_{it}) = \tag{2c}$$ $$= \exp(-\delta_0 - \delta_1 time_{it} - \omega_{it}) \tag{2d}$$ where $y_{it}$ is the realised output and $\hat{y}_{it}$ is the potential maximum output. (2d) Meanwhile, TE is the ratio of $y_{it}$ and $\hat{y}_{it}$ , it ranges between 0 and 1. When TEs are closer to 1, the realised outputs are closer to their optimal output value. Under acceptable distributional assumptions for both error components, the parameters of the output frontier and the inefficiency effect are calculated simultaneously using a maximum-likelihood process (Sari et al. 2016). The likelihood function is described by variance $\sigma^2 \equiv \sigma_v^2 + \sigma_u^2$ and $\gamma \equiv \sigma_u^2/\sigma^2$ parameters ranging from 0 to 1. If $\gamma$ equals or converges to zero or $\sigma_v^2 > \sigma_u^2$ , the model is devoted to a traditional production function with the absent of inefficiency function. This means that the ordinary least square (OLS) suits the data better. The frontier model, on the other hand, is appropriate if $\gamma$ is closer to unity, which means $\sigma_v^2 > \sigma_u^2$ or the presence of inefficiency is essential. The Translog's coefficients obtained from the estimation of production function cannot be directly interpreted (Sari et al. 2016). Hence, in order to make it interpretable, the elasticities of labour and capital can be observed. Referring to (1b), since the marginal product of input j is $MP_x = \frac{\partial y}{\partial x_j} = (\frac{\partial (\ln y)}{\partial (\ln x_j)})(\frac{y}{x_j})$ , and the ratio of marginal product of capital, as well as marginal product of labour reflect the marginal rate of substitution (Morrison-Paul et al. 2000), the ratio of labour's and capital's elasticities can be interpreted as a normalised indicator of substitutability that is specified as follows: $$sub_{KL} = \frac{MP_K}{MP_L} \times \frac{K}{L} = \frac{\epsilon_{yK}}{\epsilon_{vL}}$$ (3) where $MP_K$ is the marginal productivity of capital, $MP_L$ is the marginal productivity of labour, K is capital, L is labour, $\epsilon_{yK}$ is the elasticity of capital, $\epsilon_{yL}$ is the elasticity of labour and sub<sub>KL</sub> is the substitutability between capital and labour. The negative sub<sub>KL</sub> indicates that capital and labour have a complementary relation by which an increase of one unit of labour is associated, on average, to an increase of capital at a magnitude of sub<sub>KL</sub>; otherwise, the relation of capital and labour is substitutive (Arazmuradov et al. 2014). The generalised LLR test is used to select the most suitable production function. There are three alternatives of production functions in this study: CD, NTP, and HN. Referring to (1b), a null hypothesis (H0) that is $\beta_{nn} = \beta_{nl} = \beta_{nl} = 0$ or the coefficients of time-squared and interacting input with time is equal to zero, is the hypothesis for CD. A null hypothesis (H0) that is $(\beta_t = \beta_{tt} = \beta_{nt} = 0)$ or the coefficients of time, interacting input with time, and time-squared are equal to zero, is the hypothesis for NTP. A null hypothesis (H0) that is $(\beta_{n\ell}=0)$ or the coefficients of interacting input with time is equal to zero, is the hypothesis for HN. Test of OLS is also considered to ensure that the utilization of SFA is valid. The log-likelihood ratio test is conducted by comparing the likelihood ratio statistic obtained from each model. The log-likelihood statistic is obtained from $\lambda = -2[I(H_0)-I(H_1)]$ where $I(H_0)$ is the log-likelihood statistic of CD, NTP, HN, and OLS, while $I(H_1)$ is the log-likelihood value of Translog. The null hypothesis is rejected if the $\lambda$ statistic is less than the $x^2$ table with degrees of freedom equal to the number of parameters involved in the restrictions. ### Total factor productivity This study adopts the method of Arazmuradov et al. (2014) to estimate TFP which is a geometric approach that decomposes TFP into two components: technical efficiency change (TEC) and technical change (TC). The formulas to attain those components are shown below: $$TFP_{it} = TEC_{it} \times TC_{it}$$ $$TEC_{it} = \frac{TE_{it}}{TE_{it-1}}$$ (5) $$TEC_{it} = \frac{TE_{it}}{TE_{it}} \tag{5}$$ $$TE_{it} = \exp(-u_{it}) \tag{6}$$ $$TC_{it} = \sqrt{\left[\left(1 + f_t(Y_{it}, L_{it}, K_{it}, t, \beta_0, \beta) \times \left(1 + f_{t-1}(Y_{i,t-1}, L_{i,t-1}, K_{i,t-1}, t, \beta_0, \beta)\right)\right)\right]}$$ (7) where $TFP_{it}$ is total factor productivity, $TEC_{it}$ is technical efficiency change, $TE_{it}$ is technical efficiency obtained from (2) and (2a)-(2d). TCit is technical change. As this approach is a geometric mean, TFP>1, TEC>1, TC>1 imply positive magnitudes. ### Model of convergence yields: Convergence theory was proposed by Barro–Sala-i-Martin (1992) who employed the case of growth rate of capital. They postulated that massive developments, e.g., in infrastructures and public facilities, in poor countries lead to the rise of capital allocation growth. Therefore, the capital growth of poor countries is relatively higher than that of the rich countries that have accomplished their infrastructure development some years before poor countries did (Purwono et al., 2020). Convergence theory is divided into two concepts: Beta convergence and Sigma convergence. The aim of the Beta convergence tests is to regress mean country TFP levels on the initial level; if the TFP is negatively associated with the initial level, the test result is positive, implying that countries with lower initial levels have faster TFP improvements than countries with higher initial levels, which eventually leads to convergence (Wild 2016). Therefore, there is a catching-up moment between countries. Meanwhile, Sigma convergence aims to identify the dispersion or variation evolution between countries (Egri–Tánczos 2018, Weill 2009). Sigma convergence occurs if the dispersion decreases over time, which means that a country converges to the average level of the group of countries. To capture TFP convergence amongst provinces, this study employs a dynamic generalised method of moment (GMM) approach by Arellano–Bond (1991) with standard model as follows: $$y_{it} = \alpha_0 y_{it-1} + X'_{it} \alpha_j + \mu_i + \varepsilon_{it}$$ (8) where $y_{it}$ represents the dependent variable of individual $i$ at period $t$ ; $X'_{it}$ is vector of other regressors; $\mu_i$ and $\varepsilon_{it}$ indicate individual-specific effects and idiosyncratic error. It requires difference transformation to purge individual-specific effects so that it $$\Delta y_{it} = \alpha_0 \Delta y_{it-1} + \Delta X_{it}' \alpha_j + \Delta \varepsilon_{it}$$ (9) The existence of the dynamic component $(y_{it-1})$ makes OLS estimation to produce inconsistent parameter estimates due to its correlation with the error $\Delta \varepsilon_{it}$ , which is known as Nickell bias (Nickell 1981). To produce consistent estimators, Anderson–Hsiao (1982) and Holtz-Eakin et al. (1988) proposed instrumental variable (IV) estimation of the parameters in the first-difference model using lags of the dependent variable as an instrument. The estimator is called the Arellano–Bond estimator or a difference-GMM (diff-GMM) after the work of Arellano–Bond (1991), which suggested tests of crucial assumption that the idiosyncratic errors are serially uncorrelated. The estimator is based on the following moment condition: $$E(y_{is}\Delta\varepsilon_{it}) = 0 \text{ for } s \le t - 2$$ (10) The estimation technique has crucial assumptions, which are testable (Gnangnon 2019). First, the error must be serially uncorrelated. If errors are serially uncorrelated, there will be a correlation in the first-order differentiated error (AR(1)) but not in the second-order autocorrelation (AR(2)). In other words, the tests have to reject the null hypothesis stating no autocorrelation in the error term in AR(1), and have to not reject it in AR(2). Second, a test of overidentifying restrictions (OIR test) that decides the validity of the population moment conditions. The Sargan test is employed to test the null hypothesis that population moment conditions are valid. The Sargan test considers the Chi-Square. If Chi-Square value's probability is less than its significance rate at 10%, then the model is not valid (Purwono–Yasin 2020). This study implements one-step difference-GMM (diff-GMM) and uses two-step estimation procedure for checking the robustness of the model. All explanatory variables are treated as exogenous, while the treatment of predetermined and endogenous are considered for robustness tests. To avoid the instrument proliferation as in (10), the study follows Roodman (2009) to collapse the instrument sets. This study employs two concepts of convergence: Beta convergence and Sigma convergence. We set four different models to robustly capture intra-provincial trade and international trade impact on convergence of TFP growth and TFP growth dispersion. Beta convergence is specified in Model 1 and Model 2, which refer to 11a–11b respectively to capture the impact of intra-provincial export and international export (11a) and intra-provincial import and international import (11b), on the TFP growth. Sigma convergence is specified in Model 3 and Model 4, which refer to 12a–12b respectively to capture the impact of intra-provincial export and international export (12a) and intra-provincial import and international import (12b), on the dispersion of TFP growth. These equations are specified as follows: $$ln\ TFP_{it} - ln\ TFP_{it-1} = \tau_0 + \tau_1\ ln\ TFP_{it-1} + \tau_2 lntra\ Export_{it} + \tau_3 lnter\ Export_{it} + \epsilon_{it}$$ (11a) $$ln TFP_{it} - ln TFP_{it-1} = \alpha_0 + \alpha_1 ln TFP_{it-1} + \alpha_2 ln tra \ lmport_{it} + \alpha_3 ln ter \ lmport_{it} + \phi_{it}$$ (11b) $$\Delta W_{it} = \zeta_0 + \zeta_1 W_{it-1} + \zeta_2 Intra \ Export_{it} + \zeta_3 Inter \ Export_{it} + e_{it}$$ (12a) $$\Delta W_{it} = \xi_0 + \xi_1 W_{it-1} + \xi_2 Intra \ Import_{it} + \xi_3 Inter \ Import_{it} + \varepsilon_{it} \tag{12b}$$ where $TFP_{it}$ is the total factor productivity in ratio. $mTFP_{it} - mTFP_{it-1}$ is total factor productivity growth. $\tau_1, \alpha_1$ are scalars that are negative if Beta convergence occurs. $W_{it}$ is the natural logarithmic of TFP of province i in year t ( $mTFP_{it}$ ) abultracted from the average natural logarithmic TFP in year t ( $mTFP_{it}$ ). $\Delta W_{it}$ is the $W_{it}$ subtracted from $W_{it-1}$ . $\zeta_1, \xi_1$ are scalars that are negative if Sigma convergence exists. $\epsilon_{it}, \phi_{it}, \epsilon_{it}$ are the error terms. $\tau_2$ and $\tau_3$ are the coefficients of intra-provincial export and international export respectively, which are expected to be positive for Beta convergence (Model 1). $\zeta_2$ and $\zeta_3$ are the coefficients of intra-provincial export and international export, which are expected to be negative for Sigma convergence (Model 3). $\alpha_2$ and $\alpha_3$ are the coefficients of intra-provincial import and international import, which are expected to be positive for Beta convergence (Model 2). $\xi_2$ and $\xi_3$ are the coefficients of intra-provincial import and international import that are expected to be negative for Sigma convergence (Model 4). The positive signs of $\tau_2, \tau_3, \alpha_2, \alpha_3$ of Beta convergence mean that trades promote the catching up moment of TFP growth's provinces. Meanwhile, the negative signs of $\zeta_2, \zeta_3, \xi_2, \xi_3$ of Sigma convergence mean that trades encourage the TFP inequality reduction among provinces. ### **Result and discussion** The analysis starts with looking at the result of the generalised log-likelihood ratio test. This test can reveal which production functions are suitable for our observation. The result of the test is reported in the Table 1. Test of log-likelihood ratio (LLR) Table 1 | Model | Cobb Douglas (df=7)<br>$H0: \beta_{tt} = \beta_{nm} = \beta_{nt} = 0$ | No Technological<br>Progress (df=4)<br>$H0: \beta_{tt} = \beta_{nt} = 0$ | Hick-Neutral (df=2)<br>$H0: \beta_{nt} = 0$ | No<br>Inefficiency<br>(OLS)<br>(df=11)<br>H0: $\gamma = 0$ | Decision | |-------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|----------| | Translog<br>(H1) | 62.1 | 42.5 | 23.0 | 488.1 | Translog | | Critical<br>value of<br>x <sup>2</sup> at | | | | | | | a=1% | 18.5 | 13.3 | 9.2 | 24.7 | | By referring to $\alpha=1\%$ in $x^2$ table (see Sari 2019, Sari et al. 2016), the result shows that $\lambda > x^2$ table decides the Translog specification as a proper model to measure the impact of determinants on efficiency. Table 2 reports the estimation of the stochastic production frontier. The first parameter that needs to be considered is $\gamma$ that shows 0.999. Margono et al. (2011) concluded that this magnitude indicates a majority of error's variations $\sigma^2$ , which consists of $\sigma_v^2$ and $\sigma_u^2$ in (1b). They stem from inefficiency component ( $u_{ii}$ ) and is not obtained from the measurement error $v_{it}$ . Therefore, the utilisation of the stochastic production frontier model in this study is appropriate and robust. According to Table 2, it is observed that five variables in the production frontier are significant at alpha 10%. The coefficient of the Translog function cannot be directly interpreted (Sari et al. 2016). To make the coefficients interpretable, we estimate output elasticity between capital and labour based on (3). This study estimates that the value of substitutability=3.67, which means that one more unit of labour is averagely related to a decrease of a 3.67 unit of capital. This magnitude indicates that there is a substitutive relation between capital and labour in the Indonesian provinces. Stochastic production frontier estimation Table 2 | Variable | Parameter | Coefficient | |-------------------|------------------------|-------------| | | Production frontier | | | 1.17 | | 0.894*** | | lnK | $\beta_{k}$ | (0.02) | | lnL | 9 | 0.263** | | mL | $\beta_I$ | (0.12) | | lnK x lnL | B | -0.080*** | | MK XIIIL | $\beta_{kl}$ | (0.03) | | lnK x lnK | Béé | 0.016 | | MK AMK | Pkk | (0.01) | | lnL x lnL | $\beta_{I\!I}$ | -0.026 | | ML X ML | P# | (0.06) | | rime | β, | -0.028*** | | | Pr | (0.006 | | time <sup>2</sup> | $\beta_{\prime\prime}$ | 0.004*** | | | P# | (0.00) | | rime x lnK | β <sub>kt</sub> | 0.005 | | | PAS | (0.00) | | time x lnL | $\beta_{ll}$ | 0.002 | | mic x mic | P# | (0.00) | | | Inefficiency effect | | | | | 0.239*** | | time | $\delta_1$ | (0.03) | | $\sigma^2$ | 0. | .087*** | | <i></i> | (0. | .00) | | , | 0. | 999*** | | У | (0. | .00) 52 | Note: \*\*\*, \*\*, \*= significance at alpha 1%, 5% and 10%. Dummy variables are not reported. Standard errors are in parentheses. According to Table 2, the coefficient of time trend variable in the inefficiency effect is found to be positively significant. This suggests that the technical efficiency of provinces in Indonesia worsens over time. This finding is validated in Figure 1, which illustrates the trend of efficiency score and deviation over time. Figure 1 illustrates that there is a downward trend of technical efficiency among provinces in Indonesia in 2011–2017. This condition is exacerbated by the deviation's upward trend since 2013. This suggests that inequalities of efficiency scores between provinces increase along with their worsened technical efficiency on average. The distribution of technical efficiency (TE) score, total factor productivity growth (TFP), technical change (TC), technical efficiency change (TEC) see Figures A1–A4 in the Appendix. Table 3 reports the estimation result of TFP and its decomposition that consists of technical efficiency change (TEC) and technical change (TC). According to Table 3, on average, Indonesian provinces experienced negative TFP growth (-0.1%) during the 2011–2017 period. Concerning sub-periods, 2011–2013 shows a positive TFP growth at 0.3%, in contrast with 2015–2017 that shows a negative TFP growth at -1.7%. The three largest TFP growths are those in North Sulawesi (3%), Bali (2.7%), and Jakarta (2.2%). Meanwhile, the three lowest negative TFP growths are found in East Nusa Tenggara (-4.4%), Riau (-4.8%), and Bengkulu (-15%). Meanwhile, TC averagely shows a positive magnitude at 0.3% in 2011–2017. This suggests that Indonesian provinces have demonstrated a technological progress in terms of the contribution of capital and labour towards obtaining GDRP. This study stresses that three regions which demonstrated the largest technological progress are all on Java Island i.e. Jakarta (1.2%), East Java (1.2%) and West Java (1.1%). This finding indicates that the shifting frontier of capital and labour generating output remains relatively centralised in the area of Java. With regards to technical efficiency change, the result demonstrates a negative growth of technical efficiency in 2011-2017, by -1.3%. This result confirms the previous conclusion that, on average, efficiency scores relatively worsened. Table 3 Total factor productivity (TFP), technical change (TC), and technical efficiency change (TEC) of 33 provinces in Indonesia | technica | cificie | ncy cha | inge (1 | EC) 01 | 33 pro | vilices | iii iiido | ilesia | | |--------------------|---------|---------|---------|--------|--------|---------|-----------|--------|-------| | | | TFP | | | TC | | | TEC | | | Province | 2012- | 2015- | 2011- | 2012- | 2015- | 2011- | 2012- | 2015- | 2011- | | 6 | 2013 | 2017 | 2017 | 2013 | 2017 | 2017 | 2013 | 2017 | 2017 | | Aceh | 1.002 | 0.984 | 0.984 | 0.995 | 1.009 | 1.003 | 1.007 | 0.975 | 0.981 | | North Sumatera | 0.986 | 1.005 | 1.003 | 1.000 | 1.014 | 1.008 | 0.987 | 0.991 | 0.996 | | West Sumatera | 1.029 | 1.002 | 1.008 | 0.996 | 1.010 | 1.004 | 1.034 | 0.993 | 1.005 | | Riau | 1.008 | 0.906 | 0.952 | 0.999 | 1.013 | 1.007 | 1.009 | 0.894 | 0.945 | | Jambi | 0.955 | 1.031 | 1.005 | 0.994 | 1.008 | 1.002 | 0.960 | 1.023 | 1.003 | | South Sumatera | 1.005 | 1.023 | 1.012 | 0.999 | 1.012 | 1.006 | 1.006 | 1.010 | 1.006 | | Bengkulu | 1.006 | 0.701 | 0.850 | 0.992 | 1.006 | 1.000 | 1.014 | 0.698 | 0.852 | | Lampung | 1.003 | 0.996 | 1.005 | 0.997 | 1.011 | 1.005 | 1.006 | 0.985 | 1.000 | | Bangka Belitung | 0.990 | 0.943 | 0.965 | 0.991 | 1.005 | 0.999 | 0.999 | 0.939 | 0.966 | | Riau Islands | 1.004 | 0.979 | 0.986 | 0.996 | 1.010 | 1.004 | 1.008 | 0.969 | 0.982 | | Jakarta | 1.013 | 1.018 | 1.022 | 1.004 | 1.018 | 1.012 | 1.009 | 1.000 | 1.011 | | West Java | 1.033 | 1.014 | 1.011 | 1.003 | 1.017 | 1.011 | 1.030 | 0.997 | 1.000 | | Central Java | 1.011 | 0.991 | 1.000 | 1.002 | 1.016 | 1.010 | 1.009 | 0.975 | 0.990 | | Yogyakarta | 0.995 | 0.988 | 0.986 | 0.994 | 1.008 | 1.002 | 1.001 | 0.980 | 0.984 | | East Java | 1.023 | 0.997 | 1.010 | 1.003 | 1.018 | 1.012 | 1.020 | 0.980 | 0.999 | | Banten | 1.045 | 0.986 | 1.008 | 0.999 | 1.013 | 1.007 | 1.047 | 0.973 | 1.001 | | Bali | 1.017 | 1.015 | 1.027 | 0.996 | 1.010 | 1.004 | 1.022 | 1.005 | 1.023 | | West Nusa Tenggara | 0.925 | 1.036 | 0.994 | 0.994 | 1.008 | 1.002 | 0.930 | 1.028 | 0.992 | | East Nusa Tenggara | 1.013 | 0.941 | 0.956 | 0.993 | 1.008 | 1.002 | 1.020 | 0.933 | 0.955 | | West Kalimantan | 0.997 | 1.005 | 1.003 | 0.995 | 1.009 | 1.003 | 1.001 | 0.995 | 1.000 | | Central Kalimantan | 0.995 | 1.012 | 1.001 | 0.994 | 1.009 | 1.002 | 1.000 | 1.003 | 0.999 | | South Kalimantan | 0.994 | 0.995 | 0.996 | 0.994 | 1.008 | 1.002 | 1.000 | 0.988 | 0.994 | | East Kalimantan | 0.981 | 1.008 | 0.988 | 0.998 | 1.012 | 1.006 | 0.983 | 0.997 | 0.982 | | North Sulawesi | 1.099 | 0.973 | 1.030 | 0.993 | 1.008 | 1.001 | 1.107 | 0.965 | 1.029 | | Central Sulawesi | 0.997 | 1.022 | 0.993 | 0.994 | 1.009 | 1.002 | 1.003 | 1.013 | 0.990 | | South Sulawesi | 0.986 | 1.002 | 0.993 | 0.998 | 1.012 | 1.006 | 0.988 | 0.990 | 0.987 | | Southeast Sulawesi | 1.071 | 0.991 | 1.003 | 0.993 | 1.008 | 1.002 | 1.079 | 0.984 | 1.002 | | Gorontalo | 1.022 | 1.006 | 1.008 | 0.989 | 1.003 | 0.997 | 1.033 | 1.003 | 1.011 | | West Sulawesi | 0.993 | 0.988 | 0.985 | 0.990 | 1.004 | 0.998 | 1.003 | 0.984 | 0.987 | | Maluku | 0.975 | 0.970 | 0.981 | 0.990 | 1.004 | 0.998 | 0.985 | 0.966 | 0.984 | | North Maluku | 1.003 | 0.937 | 0.972 | 0.989 | 1.003 | 0.997 | 1.015 | 0.934 | 0.975 | | West Papua | 0.953 | 0.960 | 0.962 | 0.990 | 1.004 | 0.998 | 0.963 | 0.957 | 0.964 | | Papua | 0.955 | 1.012 | 0.983 | 0.995 | 1.009 | 1.003 | 0.961 | 1.003 | 0.980 | | Average | 1.003 | 0.983 | 0.990 | 0.995 | 1.010 | 1.003 | 1.007 | 0.974 | 0.987 | Note: The magnitudes of which TFP, TC, and TEC are less then 1 show negative TFP. Regional Statistics, Vol. 11. No. 4. 2021 Online first: Purwono-Yasin-Hamzah-Arifin 1-27; DOI: 10.15196/RS110403 The following analysis is meant to investigate the potential convergence process that may occur across provinces. Table 4 reports this identification from the perspective of Beta convergence and Sigma convergence. ### Beta and Sigma convergence Table 4 | Variable | Beta cor | nvergence | Sigma coi | nvergence | |------------------------|-----------|-----------|-----------|-----------| | variable | Model 1 | Model 2 | Model 3 | Model 4 | | TED | -0.731*** | -0.836*** | | | | $TFP_{it-1}$ | (0.16) | (0.12) | | | | $W_{it-1}$ | | | -0.702*** | -0.810*** | | ₩ it-1 | | | (0.18) | (0.14) | | Intra – Export | -0.744*** | | -0.723*** | | | Intra – Export | (0.03) | | (0.03) | | | Total Control | -0.513*** | | -0.526*** | | | Inter – Export | (0.08) | | (0.08) | | | Total Total | | -0.409*** | | -0.399*** | | Intra – Import | | (0.01) | | (0.01) | | Total Total | | -0.006 | | -0.124 | | Inter – Import | | (0.12) | | (0.14) | | AR(1) – p value | 0.000 | 0.000 | 0.000 | 0.000 | | AR(2) – p value | 0.167 | 0.355 | 0.321 | 0.550 | | Sargan – p value | 0.247 | 0.604 | 0.550 | 0.895 | | Number of instruments | 6 | 6 | 6 | 6 | | Number of provinces | 33 | 33 | 33 | 33 | | Number of observations | 132 | 132 | 132 | 132 | Note: \*\*\*, \*\*, \* represent significance at alpha 1%, 5%, and 10%. Standard errors are in parentheses. AR(1) and AR(2) are Arellano–Bond (1991) tests for auto correlation in differences. Sargan is a test for over identification restrictions. According to Table 4, our model specifications for both Beta and Sigma convergences are valid since they satisfied the specification tests at a 10% significance level. According to the result, the serially uncorrelated error assumption is satisfied since the null hypothesis stating no autocorrelation is rejected at order 1 (AR (1)) but not at higher orders (AR (2)). Sargan overidentifying restriction test meant to justify the validity of the instrument sets provides no evidence to reject the null hypothesis that population moment conditions are correct. See Table A1 in the Appendix for a statistical description of the variables. Our model is also robust according to robustness checks, whose results are provided in the Table A2 and Table A3 of the Appendix. Even when the two-step estimation procedure is employed, the estimated coefficients do not differ significantly. Finally, our result also does not change dramatically after an attempt to treat all explanatory variables into a dynamic component as predetermined and endogenous variables. According to Table 4 for all employed models, the convergence process occurred amongst provinces in Indonesia in 2011–2017, both Beta and Sigma. This implies that in addition to the disparity reduction, provinces with lower TFP growth were catching up with the provinces with higher TFP growth. Additionally, the coefficient of Beta convergence that is lower than Sigma convergence implies that the process of TFP growth gap reduction is faster than the catching-up process. In spite of the different observation in the convergence test, this finding supports previous studies by Aritenang (2016), Purwono et al. (2018) and Ibrahim et al. (2019) that discovered the presence of Beta and Sigma convergence among 33 provinces in Indonesia. In contrast, a longitudinal observation by Kurniawan et al. (2019) that covered the period 1969–2012 found no convergence process for per capita gross regional product (GRP) among 33 provinces in Indonesia. A more intriguing analysis is related to the determinant of the convergence process. This study found that there are negative impacts of trade, both export and import, on TFP growth convergence. The impact of intra-provincial and international exports on the Beta convergence are observed as being significantly negative with the coefficient -0.744 and -0.513. Likewise, the impact of intraprovincial and international imports on the TFP growth is negative. However, the result shows that only intra-provincial import is significant. The negative coefficient in these findings implies that the trade activities do not contribute to the TFP growth of Indonesian provinces. Although theoretical studies, such as Amiti-Konings (2007), De Loecker (2013), Liu–Nishijima (2013), argue that export-import activities are likely to promote countries' productivity, in practice, export-import do not always contribute to TFP growth. Mok et al. (2010) suggested that exporters benefit from export activities if they export in large quantity, otherwise exporters should bear the high cost of transaction as well as the demanding technical barriers of the trade, which may reduce their profits, as well as their efficiency and TFP growth. Another finding in this study is the impact of trade activities on the gap reduction of TFP growth estimated by Sigma convergence. The results show that intra-provincial export and international export significantly reduce TFP gaps between provinces. Accordingly, the result identifies that intra-provincial exports reduce 19.7% more TFP growth gap than international exports. This finding indicates that intra-provincial exports are more efficient to reduce regional inequality. This is strengthened by the import side showing that intra-provincial imports significantly reduce TFP growth inequality, while international imports have no significant impact. This result is plausible as the international imports may subtract GDRP of a province. This effect may be different from the effect of intraprovincial imports where trade flows more easily from one province to another. In this case, ultimately, increasing intra provincial exports and imports will contribute positively to the GDRP, which may subsequently lead to the disparity reduction. The different impact of trade on the TFP growth and TFP disparity may also indicate the rising provincial autonomy. The decreasing TFP growth inequality might imply that transfer of knowledge occurs amongst provinces via trading, supporting the hypothesis of Fu et al. (2011). Nonetheless, the negative impact of trade on the TFP growth means that trade does not improve economic condition in general. This reason might stem from the inefficient operation on the trade activities amongst provinces. In a report about regional economic governance (TKED) by Murwito et al. (2013), the regional autonomy implementation monitoring committee (KPPOD) identified negative economic performance that could be attributed to regional regulations about commodity trading. Moreover, Murwito et al. (2013) argued that the fact that 48% of business operators have to pay official fees for the distribution of goods amongst regions is not beneficial for business performance. That is to say, technology transfer may indeed occur amongst provinces, but the large cost tips the balance and leads to inefficient operational trade that discourages TFP growth. This evidence indicates that collaboration to arrange policy programs across provinces is yet to be seen. ### Conclusion The aim of this study is to investigate the potential convergence process of total factor productivity (TFP) growth among provinces in Indonesia in 2011–2017. Trade activity, composed in this study from intra-provincial trades and international trades (i.e., export and import), may contribute to this convergence process. The result of this study confirms that the convergence process in Indonesia occurred in 2011–2017. Concerning intra-provincial and international trades, the study discovered that both of these do not promote TFP growth, but (except for international import) reduce TFP gaps amongst provinces. This finding may indicate the regional autonomy in each province. This study conveys essential messages for the Indonesian policymakers. First, as there is a contrast finding between promoting catching-up process and reducing inequality of trade-related TFP, it is vital to decide the development priority. It is worth noting that this study does not imply that international trade activities (export and import) should be reduced because it leads to technological transfer somehow, i.e., foreign countries-to-provinces, if consumer goods are involved e.g. machinery and equipment commodities. However, this study recommends establishing international trade priority policies that could be more effective in controlling non-productive international trade intensity in order to increase economic growth. Second, it is true that Indonesia has a policy known as *Tingkat Komponen Dalam Negeri* (TKDN) that obliges companies to keep the local components of goods and services at a certain level and limit import intensity. Yet, we have observed little commitment to this policy as some sectors largely depend on internationally imported material in their production process. To prevent this, again, the role of intra-provincial trade is vital in balancing out the import in some sectors. Third, the role of central government is essential in order to streamline the development policies in each province, albeit the currently practiced decentralised system. This is to ensure that regional regulations will not hinder the growth convergence across provinces. ### Appendix Table A1 Statistics descriptive | Variable Units Men 2011 2012 2013 2014 2015 2016 2017 ORD Thousand billion Stat Dec 224,3812 370,244,3 36,37714 370,186 201,1718 204,883 317,749 CFF Trousand billion Max 257,974 1,307,959 1,160,4460 134,448 1,560,260 4,911.1 CFF Trousand billion Max 25,536 1,288,82 1,160,446 1,314,448 1,560,20 1,15,868 1,855,284 4,911.1 CFF Tupish Min 3,314.6 3,202 1,160,446 1,314,448 1,560,51 1,12,888.0 1,774,49 1,760,40 1,115,684 1,115,888 1,115,88 1,115,88 1,115,88 1,115,88 1,115,88 1,115,88 1,115,88 1,115,88 1,115,88 1,115,88 1,115,89 1,115,88 1,115,89 1,115,140 1,115,89 1,115,140 1,115,89 1,115,140 1,115,89 1,115,140 1,115,89 1,115,140 1,115,140 1,115,140 <th></th> <th>Ę</th> | | | | | | | | | | | Ę | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|---------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|------| | Thousand billion Std Dev 24,381 2 370,244 3 30,2771 3379186 392,150.7 426,387.7 44 | /ariable | Units | | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | II X | | Thousand billion | | | Mean | 182,032.4 | 268,791.7 | 214,855.0 | 238,698.3 | 271,771.8 | 294,789.3 | 317,774.9 | | | rupiah Min 12,888.2 19,935.9 15,330.9 17,346.0 20,102.5 22,562.4 Thousand billion Max 957,917.4 1,377,990.0 1,169,446.0 1,314,480.0 1,715,665.00 1,715,665.00 1,715,665.00 1,715,665.00 1,715,665.00 1,715,665.00 1,715,665.00 1,715,665.00 1,715,665.00 1,715,665.00 1,715,665.00 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 1,715,645.0 <td< td=""><td>da</td><td>Thousand billion</td><td>Std Dev</td><td>254,381.2</td><td>370,244.3</td><td>303,277.1</td><td>337,918.6</td><td>392,150.7</td><td>426,387.7</td><td>458,983.6</td><td></td></td<> | da | Thousand billion | Std Dev | 254,381.2 | 370,244.3 | 303,277.1 | 337,918.6 | 392,150.7 | 426,387.7 | 458,983.6 | | | Thousand billion Max 957,917.4 1,997,959.0 1,169,446.0 1,314,348.0 1,566,510.0 1,715,868.0 1,187 trupiah Min 3,314.6 5,223. 3,085.4 4781.0 5,407.8 6,407.2 11,121.0 Min 3,514.6 6,537,23.9 516,874.5 550,811.9 6,40,241.5 6,407.2 11,121.0 Min 3,514.6 6,537,23.9 516,874.5 550,811.9 6,40,241.5 6,40,30.1 72 8,003.4 4,25,633.4 3,518.1 3,611.8 3,641.9 640,241.5 6,61,300.1 72 8,003.4 4,52,603.4 3,518.1 3,641.6 3,603.1 3,609.9 3,702.6 3,701.0 2,500.0 20,600.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 21,100.0 20,600.0 20,600.0 21,100.0 20,600.0 20,900.0 21,100.0 20,400.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 20,200.0 | J. L. | rupiah | Min | 12,888.2 | 19,935.9 | 15,330.9 | 17,346.0 | 20,102.5 | 22,562.4 | 4,911.1 | | | Mean 56,536.0 86,651.5 67,712.4 75,628.2 86,848.8 94,076.8 11 upjah Min 3,314.6 5,230.0 104,046.9 113,646.5 113,046.9 113,046.5 113,046.5 113,046.9 113,046.5 113,046.9 113,046.5 113,046.9 113,046.5 113,046.5 113,046.9 113,046.5 113,046.9 113,046.5 114,040.9 114,040.9 114,040.9 113,046.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 114,040.9 </td <td></td> <td>•</td> <td>Max</td> <td>957,917.4</td> <td>1,397,959.0</td> <td>1,169,446.0</td> <td>1,314,348.0</td> <td>1,566,510.0</td> <td>1,715,868.0</td> <td>1,855,248.0</td> <td></td> | | • | Max | 957,917.4 | 1,397,959.0 | 1,169,446.0 | 1,314,348.0 | 1,566,510.0 | 1,715,868.0 | 1,855,248.0 | | | Thousand billion Std Dev 86,826.7 131,919.6 104,046.9 113,264.5 131,046.9 113,264.5 131,046.9 113,264.5 131,046.9 113,264.5 113,046.9 113,264.5 113,046.9 113,264.5 113,046.9 113,264.5 113,046.9 113,264.5 113,046.9 113,264.1 113,046.9 113,264.1 112,046.9 112,046.9 112,046.9 112,046.9 120,241.5 112,046.9 112,046.9 112,046.9 112,040.9 120,244.9 120,246.5 120,244.8 120,246.9 120,241.9 120,246.9 120,240.9 120,246.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 120,240.9 | | | Mean | 56,536.0 | 86,651.5 | 67,712.4 | 75,628.2 | 86,848.8 | 94,076.8 | 102,051.9 | | | rupiah Min 3,314.6 5,292.3 3,985.4 4,480.0 5,467.8 6,467.2 Max 425,635.4 633,723.9 516,874.5 550,811.9 640,241.5 661,300.1 73 Mean 3,518.1 3,611.9 640,241.5 661,300.1 73 Thousand people Min 355.0 367.5 376.1 398.4 413.6 5,264.9 5,266.5 Max 19,500.0 20,500.0 21,000.0 20,600.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 21,100.0 | - | Thousand billion | Std Dev | 86,826.7 | 131,919.6 | 104,046.9 | 113,264.5 | 131,046.9 | 138,329.2 | 150,454.3 | | | Max 425,635.4 653,723.9 516,874.5 550,811.9 640,241.5 661,300.1 77 Thousand people Min Min 3518.1 3,611.8 3,641.6 3,693.1 3,699.9 3,792.6 3,792.6 Thousand billion Min 355.0 367.5 5,280.6 5,230.1 3,699.9 3,792.6 3,792.6 Thousand billion Mean 45,044.0 68,945.9 53,490.6 61,501.5 68,058.9 77,457.8 8 Thousand billion Srd Dev 66,231.4 92,988.7 73,029.6 84,597.5 10,562.2 11,846.9 Thousand billion Srd Dev 45,044.0 68,945.9 53,490.6 61,501.5 68,058.9 77,457.8 8 Thousand billion Srd Dev 43,040.2 72,542.2 49,476.7 57,530.6 4,622.30.6 4,622.30.6 4,622.30.6 4,622.30.6 4,622.30.6 4,622.30.6 4,622.30.6 4,622.30.6 4,622.30.6 4,622.30.6 4,622.30.6 4,622.20.9 8,642.2 1,846.9 1,846.9 | 5 | rupiah | Min | 3,314.6 | 5,292.3 | 3,985.4 | 4,480.0 | 5,467.8 | 6,467.2 | 7,704.0 | | | Thousand people Std Dev 5,063.4 5,280.6 5,322.7 5,320.1 5,294.0 5,266.5 5,792.6 5,703.4 5,280.6 5,322.7 5,320.1 5,294.0 5,266.5 5,703.8 5,702.0 20,600.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 21,000.0 20,600.0 21,000.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 21,000.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20,600.0 20, | | • | Max | 425,635.4 | 653,723.9 | 516,874.5 | 550,811.9 | 640,241.5 | 661,300.1 | 721,240.1 | | | Thousand people Std Dev 5,063.4 5,280.6 5,322.7 5,320.1 5,264.0 5,266.5 5,56 Min 355.0 367.5 376.1 398.4 413.6 434.8 43.6 Max 19,500.0 20,500.0 20,600.0 20,600.0 20,100.0 20,400.0 22,400 Thousand billion Mean 45,044.0 68,945.9 53,490.6 61,501.5 68,088.9 1,7457.8 87,64 Max 299,042 36,203.6 1,46.0 1,205.3 1,281.0 1,374.7 Rupiah Min 4,440.5 36,203.6 35,756.4 354,220.8 84,075.7 Rupiah Min 5,312.4 8,739.2 49,476.7 57,537.7 70,990.0 74,833.2 57,9 Thousand billion Min 5,312.4 8,739.2 202,241.8 236,522.3 295,065.3 347,525.6 42,66 Thousand billion Min 1,97.4 7,476.7 37,530.6 40,552.3 56,052.3 40,525.0 56,985.3 | | | Mean | 3,518.1 | 3,631.8 | 3,641.6 | 3,693.1 | 3,699.9 | 3,792.6 | 3,870.7 | | | Thousand billion Min 355.0 367.5 376.1 398.4 413.6 434.8 43 Thousand billion Max 19,500.0 20,600.0 20,600.0 20,600.0 21,100.0 22,40 Thousand billion Sid Dev 66,231.4 92,988.7 73,029.6 84,597.5 110,562.2 113,50 Tupish Min 1,121.3 1,596.2 1,146.0 1,205.3 1,281.0 1,846.9 1,37 Thousand billion Min 43,447.2 67,506.7 49,476.7 57,537.7 70,999.0 88,822.2 101,37 Rupiah Min 5,312.4 8,739.2 6,881.2 8,041.2 5,828.6 4,052.3 5,79 Thousand billion Min 48,753.5 322,667.3 202,241.8 236,552.3 295,005.3 347,525.6 42,06 Thousand billion Min 44,087.7 6,887.6 326,552.3 295,005.3 347,525.6 42,06 Max 282,466.8 393,158.8 262,933.3 254,048.7 | | Thomas Jesus la | Std Dev | 5,063.4 | 5,280.6 | 5,322.7 | 5,320.1 | 5,264.0 | 5,266.5 | 5,561.1 | | | Thousand billion Max 19,500.0 20,500.0 21,000.0 20,600.0 21,100.0 22,400 Thousand billion Std Dev 6,6231.4 68,945.9 53,490.6 61,501.5 68,088.9 77,457.8 87,64 Thousand billion Min 1,121.3 1,596.2 1,146.0 1,205.3 1,281.0 1,546.9 1,346.9 1,349.9 1,348.9 1,346.9 1,281.0 1,546.9 1,346.9 1,349.9 1,346.9 1,346.9 1,281.0 1,546.9 1,346.9 1,349.9 1,346.9 1,286.3 1,281.8 1,346.9 1,349.9 1,346.9 1,286.3 1,346.9 1,346.9 1,349.9 1,378.9 1,346.9 1,349.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,378.9 1,349.9 1,378.9 1,429.9 1,478.9 1,478.3 1,478.3 1,478.9 1,478.9 1,478.9 1,478.9 1,478.9 1,478.9 1,478.9< | oor | I nousand people | Min | 355.0 | 367.5 | 376.1 | 398.4 | 413.6 | 434.8 | 430.5 | | | Mean 45,044.0 68,945.9 53,490.6 61,501.5 68,058.9 77,457.8 87,64 rupiah Min 1,121.3 1,586.2 1,31,59 1,281.5 1,586.2 113,59 Rabiah Min 2,99,904.2 36,203.6 28,897.5 1,281.9 1,31,59 Thousand billion Mean 43,447.2 67,506.7 49,812.3 55,753.3 65,390.6 74,833.2 84,17 Rupiah Min 5,312.4 8,732.2 49,476.7 57,537.7 70,999.0 86,822.2 101,31 Rupiah Min 5,312.4 8,732.2 49,476.7 57,537.7 70,999.0 86,822.2 101,31 Thousand billion Max 184,735.5 32,267.3 205,655.3 205,005.3 34,525.6 42,566 Thousand billion Min 19.7 19.9 11,429.0 77,470.7 78,707.0 83,40 Thousand billion Min 282,466.8 393,158.8 262,953.3 254,048.2 56,213.8 56,213.8 | | | Max | 19,500.0 | 20,500.0 | 20,600.0 | 21,000.0 | 20,600.0 | 21,100.0 | 22,400.0 | | | Thousand billion Std Dev 66,231.4 92,988.7 73,029.6 84,597.5 95,977.5 110,562.2 131,59 ruplah Min 1,121.3 1,586.2 1,146.0 1,205.3 1,281.0 1,846.9 1,37 Mean 43,040.5 72,506.7 49,812.3 55,763.3 65,330.6 74,832.8 84,07 Rupiah Min 5,312.4 8,739.2 49,876.7 77,537.7 70,999.0 86,822.2 101,31 Rupiah Min 5,312.4 8,739.2 49,476.7 57,537.7 70,999.0 86,822.2 101,31 Rupiah Min 5,312.4 8,739.2 6,851.2 8,041.2 5,828.6 4,052.3 5,79 Thousand billion Sid Dev 67,368.4 31,089.1 210,2241.8 236,522.3 295,065.3 34,945.7 78,948.0 6,230.6 40,256.3 5,79 Thousand billion Sid Dev 67,358.4 98,086.0 1,54,880.1 1,74,74.8 30,494.7 78,070.1 1,74,70.1 78,498 | | | Mean | 45,044.0 | 68,945.9 | 53,490.6 | 61,501.5 | 68,058.9 | 77,457.8 | 87,647.9 | | | rupiah Min 1,121.3 1,596.2 1,146.0 1,205.3 1,281.0 1,846.9 1,37 Max 299,904.2 36,203.6 288,869.3 321,26.4 354,223.9 422,20.8 531,86 Thousand billion Std Dev 43,040.2 72,542.2 49,476.7 57,537.7 70,999.0 86,822.2 101,31 Rupiah Min 5,312.4 8,739.2 6,851.2 8,041.2 5,828.6 4,052.3 5,79 Thousand billion Mean 48,012.2 6,851.2 8,041.2 5,828.6 4,052.3 5,79 Thousand billion Std Dev 67,358.4 98,086.0 71,702.7 78,333.7 77,807.0 88,405.0 6,280 Thousand billion Min 19.7 19.9 15.4 166.1 15.34 89.5 5,213.8 56,945.7 6,296.7 Thousand billion Max 282,466.8 393,158.8 262,953.3 254,048.2 57,473.8 308,40 Thousand billion Std Dev 108,494.9 | | Thousand billion | Std Dev | 66,231.4 | 92,988.7 | 73,029.6 | 84,597.5 | 95,977.5 | 110,562.2 | 131,597.1 | | | Max 299,904.2 360,203.6 280,869.3 321,262.4 354,253.9 422,200.8 531,86 Thousand billion Mean 43,447.2 67,506.7 49,812.3 55,756.3 65,330.6 74,833.2 84,07 Rupiah Min 5,312.4 8,739.2 49,812.3 55,756.3 65,306.5 346,22.2 101,31 Thousand billion Max 184,753.5 322,667.3 202,241.8 236,552.3 295,005.3 347,525.6 422,66 Thousand billion Std Dev 6,826.1 51,089.1 54,888.0 56,213.8 54,945.7 62,89 Thousand billion Max 282,466.8 393,158.8 262,953.3 224,048.2 274,431.7 274,724.8 308,40 Thousand billion Std Dev 108,409.7 66,938.6 53,308.3 58,595.5 58,268.7 56,082.4 62,96 Min 584,935.8 887,633.7 709,311.9 784,420.2 787,102.7 100,14 Max 584,935.8 887,633.7 794,420.2 | ra Export | rupiah | Min | 1,121.3 | 1,596.2 | 1,146.0 | 1,205.3 | 1,281.0 | 1,846.9 | 1,376.0 | | | Mean 43,447.2 67,506.7 49,812.3 55,756.3 65,330.6 74,833.2 84,07 Rupiah Min 5,312.4 8,756.7 20,224.8 25,552.3 295,005.3 4,652.2 101,51 Rupiah Min 184,753.5 322,667.3 20,224.18 236,552.3 295,005.3 347,525.6 4,052.3 5,79 Thousand billion Std Dev 67,338.4 98,086.0 71,429.0 77,170.7 78,333.7 77,807.0 83,40 rupiah Min 19.7 19.9 15.4 166.1 153.4 89.5 5 5 Thousand billion Std Dev 66,238.6 393,158.8 26,295.3 254,048.2 77,470.7 78,333.7 77,807.0 83,40 Thousand billion Min 19.7 10.9 15.4 114,680.1 145,480.8 142,772.7 160,144 Implah Min 9.6 15.3 709,311.9 734,420.2 787,059.4 775,715.6 869,466 Assay Saya | | | Max | 299,904.2 | 360,203.6 | 280,869.3 | 321,262.4 | 354,253.9 | 422,260.8 | 531,865.9 | | | Thousand billion Std Dev 43,040.5 72,542.2 49,476.7 57,537.7 70,999.0 86,822.2 101,311 Rupiah Min 5,312.4 8,732.2 6,851.2 8,041.2 5,886.6 4,052.3 5,79 Mean 184,733.5 32,667.3 20,2241.8 5,6552.3 347,525.6 4,22,66 Thousand billion Std Dev 67,388.4 98,086.0 71,429.0 77,170.7 78,333.7 77,807.0 62,494.7 Tupiah Min 19.7 19.9 15.4 166.1 153.4 89.5 5,6213.8 5,494.7 6,20 Thousand billion Min 19.7 19.9 15.4 166.1 153.4 89.5 6,20 Thousand billion Std Dev 10.8 282,466.8 393,158.8 26,953.3 254,048.2 274,724.8 308,40 Thousand billion Std Dev 10.8 10.6 114,149.0 145,480.8 142,727.7 160,144 Max 284,995.8 887,633.7 774,724 | | | Mean | 43,447.2 | 67,506.7 | 49,812.3 | 55,756.3 | 65,330.6 | 74,833.2 | 84,072.3 | | | Rupiath Min 5,312.4 8,739.2 6,851.2 8,041.2 5,828.6 4,052.3 5,79 Rax 184,733.5 322,667.3 202,241.8 236,552.3 295,003.5 347,555.6 422,66 Thousand billion Sid Dev 67,358.4 9,0806.0 71,007 78,333.7 77,807.0 83,40 Tupiah Min 282,466.8 393,158.8 262,953.3 254,048.2 274,431.7 274,724.8 308,40 Thousand billion Sid Dev 108,70 66,298.6 53,308.3 58,555.5 58,268.7 56,082.4 62,09 Trougals Min 9,40 16,700.5 13,441.9 141,686.1 145,480.8 145,772.7 160,14 Max 584,935.8 887,633.7 709,311.9 754,420.2 787,039.4 775,715.6 Sid Dev 108,400.5 13,41.9 714,686.1 145,480.8 145,772.7 160,14 Max 584,935.8 887,633.7 709,311.9 754,420.2 787,099.4 775,715.6 | Toronto and | Thousand billion | Std Dev | 43,040.5 | 72,542.2 | 49,476.7 | 57,537.7 | 70,999.0 | 86,822.2 | 101,315.8 | | | Max 184,753.5 322,667.3 202,241.8 236,552.3 295,005.3 347,525.6 422,60 Thousand billion Std Dev 67,358.4 98,086.0 71,429.0 77,170.7 78,337.7 77,807.0 62,89 Thousand billion Min 19.7 19.9 15.4 166.1 153.4 89.5 58,408.7 77,807.0 83,40 Thousand billion Man 282,466.8 393,158.8 262,953.3 254,048.2 274,431.7 274,724.8 308,40 Thousand billion Std Dev 108,409.7 66,938.6 53,308.3 58,595.5 58,268.7 56,082.4 62,96 Implies Min 9.9 104,770.7 11,8 104,48 175,772.7 160,14 Max 584,935.8 887,633.7 709,311.9 754,420.2 787,015.6 80,46 Max 584,935.8 887,633.7 709,311.9 784,420.2 787,015.6 80,46 | ra import | Rupiah | Min | 5,312.4 | 8,739.2 | 6,851.2 | 8,041.2 | 5,828.6 | 4,052.3 | 5,791.0 | | | Mean 48,0012 66,826,1 51,089.1 54,888.0 56,213.8 54,945.7 62,89 Thousand billion Std Dev 67,358.4 98,086.0 71,429.0 77,170.7 78,333.7 77,807.0 83,40 rupiah Min 19.7 19.9 15.4 166.1 133.4 89.5 5 Mean 44,089.7 66,938.6 53,308.3 284,948.2 274,431.7 274,724.8 308,40 Thousand billion Std Dev 108,490.7 164,700.5 131,441.9 141,686.1 145,480.8 142,727.7 160,144 Max 584,935.8 887,633.7 709,311.9 754,420.2 787,059.4 775,715.6 869,46 | | • | Max | 184,753.5 | 322,667.3 | 202,241.8 | 236,552.3 | 295,005.3 | 347,525.6 | 422,660.9 | | | Thousand billion Std Dev 67,358.4 98,086.0 71,429.0 77,170.7 78,333.7 77,807.0 83,40 rupiah Min 19.7 19.9 15.4 166.1 153.4 89.5 5 Mean 282,466.8 39,318.8 20,295.3 254,048.2 274,431.7 274,724.8 308,40 Thousand billion Std Dev 108,499.7 166,703.5 131,441.9 141,686.1 145,480.8 142,727.7 160,14 Impiah Min 96 15.3 138 9.9 11.8 170.3 100,44 Max 584,935.8 887,633.7 709,311.9 754,420.2 787,059.4 775,715.6 869,46 | | | Mean | 48,001.2 | 66,826.1 | 51,089.1 | 54,888.0 | 56,213.8 | 54,945.7 | 62,893.9 | | | rupiah Min 19.7 19.9 15.4 166.1 153.4 89.5 5 Thousand billion Max 282,466.8 393,158.8 262,953.3 254,048.2 274,431.7 274,724.8 308,40 Thousand billion Std Dev 108,409.7 66,938.6 53,308.3 58,595.5 58,268.7 56,082.4 62,06 rupiah Min 96 15.3 13 79,311.9 734,420.2 787,059.4 170,311.9 100,14 Max 584,935.8 887,633.7 709,311.9 754,420.2 787,059.4 775,715.6 869,46 | Purpose | Thousand billion | Std Dev | 67,358.4 | 0.980,86 | 71,429.0 | 77,170.7 | 78,333.7 | 77,807.0 | 83,401.5 | | | Max 282,466.8 393,158.8 262,953.3 254,048.2 274,431.7 274,724.8 308,40 Thousand billion Std Dev 108,499.7 66,938.6 53,308.3 58,595.5 58,268.7 56,082.4 62,09 rupish Min 96 15.3 709,311.9 754,420.2 787,059.4 17,772.7 160,14 nax 584,935.8 887,633.7 709,311.9 754,420.2 787,059.4 775,715.6 869,46 | nodva n | rupiah | Min | 19.7 | 19.9 | 15.4 | 166.1 | 153.4 | 89.5 | 57.4 | | | Mean 44,089.7 66,938.6 53,308.3 58,595.5 58,268.7 56,082.4 62,96 rupiah Min 58,408.9 164,700.5 131,441.9 141,686.1 145,480.8 142,772.7 160,146.1 Max 584,935.8 887,633.7 709,311.9 754,420.2 787,099.4 775,715.6 869,466.2 | | | Max | 282,466.8 | 393,158.8 | 262,953.3 | 254,048.2 | 274,431.7 | 274,724.8 | 308,408.2 | | | Thousand billion Std Dev 108,494.9 164,700.5 131,441.9 141,686.1 145,480.8 142,772.7 160,14 rupiah Min 9.6 15.3 13.8 9.9 11.8 170.3 100,14 Max 584,935.8 887,633.7 709,311.9 754,420.2 787,059.4 775,715.6 869,46 33 33 33 33 33 33 33 | | | Mean | 44,089.7 | 66,938.6 | 53,308.3 | 58,595.5 | 58,268.7 | 56,082.4 | 62,961.8 | | | rupiah Mín 9.6 15.3 13.8 9.9 11.8 170.3 100.3 Max 584,935.8 887,633.7 709,311.9 754,420.2 787,059.4 775,715.6 869,46 33 33 33 33 33 33 33 | I Improprie | Thousand billion | Std Dev | 108,494.9 | 164,700.5 | 131,441.9 | 141,686.1 | 145,480.8 | 142,772.7 | 160,146.1 | | | 584,935.8 887,633.7 709,311.9 754,420.2 787,059.4 775,715.6 869,46 33 33 33 33 33 33 33 33 | nodim p | rupiah | Min | 9.6 | 15.3 | 13.8 | 6.6 | 11.8 | 170.3 | 102.0 | | | 33 33 33 33 33 33 | | | Max | 584,935.8 | 887,633.7 | 709,311.9 | 754,420.2 | 787,059.4 | 775,715.6 | 869,469.8 | | | | servation | | | 33 | 33 | 33 | 33 | 33 | 33 | 33 | | Robustness check for Model 1 and Model 2 Table A2 | | | Model | el 1 | | | Model 2 | el 2 | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------|---------------------|--------------------|--------------------|-----------------------|---------------------| | | Exogeneous | Exogeneous | Predetermined | Endogenous | Exogeneous | Exogeneous | Predetermined | Endogenous | | | (One-Step) | (Two-Step) | (One-Step) | (One-Step) | (One-Step) | (Two-Step) | (One-Step) | (One-Step) | | TED . | -0.731*** | -0.842*** | -0.776*** | -0.728*** | -0.836*** | -0.878*** | -0.793*** | 0.774*** © | | I FF#-1 | (0.16) | (0.13) | (0.19) | (0.19) | (0.12) | (80.0) | (0.16) | (0.17) | | 10.4 | -0.744*** | -0.753*** | -0.551*** | -0.554** | | | | | | mna – Export | (0.03) | (0.10) | (0.17) | (0.22) | | | | | | D. Armi | -0.513*** | -0.520** | -0.295** | -0.327** | | | | | | mer – Export | (0.08) | (0.22) | (0.14) | (0.14) | | | | | | Turkent. | | | | | -0.409*** | -0.410*** | -0.321*** | -0.311*** | | mira – import | | | | | (0.01) | (0.01) | (0.05) | (0.05) | | Transfer | | | | | -0.006 | 0.006 | -0.001 | 90000 | | inter – import | | | | | (0.12) | (0.11) | (0.19) | (0.20) | | AR(1) - p value | 0.000 | 0.010 | 0.001 | 0.000 | 0.000 | 0.003 | 0.000 | 0.000 | | AR(2) - p value | 0.167 | 0.291 | 0.476 | 0.427 | 0.355 | 0.498 | 0.607 | 0.622 | | Sargan - p value | 0.247 | 0.247 | 0.823 | 0.867 | 0.604 | 0.604 | 0.925 | 0.906 | | Hansen – p value | | 0.126 | | | | 0.780 | | | | Number of instruments | 9 | 9 | 16 | 14 | 9 | 9 | 16 | 14 | | Number of provinces | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | | Number of observations | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | | Note: ***, ** represent significance at alpha 1%, 5%, and 10%. Standard errors are in paratheses. AR(1) and AR(2) are Arellano–Bond (1991) tests for auto correlation in differences. Sargan and Hansen are tests for over identification restrictions. | t significance at al<br>sen are tests for o | pha 1%, 5%, and 1<br>ver identification r | 10%. Standard error | rs are in parathese | s. AR(1) and AR(2) | ) are Arellano–Boo | nd (1991) tests for a | auto correlation in | | ifferences. Sargan and Hans | sen are tests for o | ver identification r | estrictions. | J | | | | | Regional Statistics, Vol. 11. No. 4. 2021 Online first: Purwono-Yasin-Hamzah-Arifin 1-27; DOI: 10.15196/RS110403 | | | Model 3 | lel 3 | | | Model 4 | lel 4 | | |------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|--------------------------| | | Exogeneous<br>(One-Step) | Exogeneous<br>(Two-Step) | Predetermined<br>(One-Step) | Endogenous<br>(One-Step) | Exogeneous<br>(One-Step) | Exogeneous<br>(Two-Step) | Predetermined<br>(One-Step) | Endogenous<br>(Onc-Step) | | | -0.702*** | -0.825*** | -0.725** | -0.657* | -0.810*** | -0.875*** | -0.655** | -0.627** | | W <sub>H</sub> -1 | (0.18) | (0.13) | (0.31) | (0.39) | (0.14) | (0.11) | (0.27) | (0.30) | | 1 | -0.723*** | -0.728*** | -0.241 | -0.075 | | | | | | ınıra — Export | (0.03) | (0.08) | (0.27) | (0.42) | | | | | | | -0.526*** | -0.536*** | -0.261 | -0.281 | | | | | | Inter – Export | (0.08) | (0.18) | (0.22) | (0.27) | | | | | | Total Control | | | | | -0.399*** | -0.400*** | -0.195*** | -0.170** | | ı nıra — ımport | | | | | (0.01) | (0.01) | (0.07) | (0.08) | | Later | | | | | -0.124 | -0.110 | -0.187 | -0.141 | | тиет — ттроп | | | | | (0.14) | (0.13) | (0.33) | (0.36) | | $AR(1) - p \ value$ | 0.000 | 0.013 | 0.059 | 0.153 | 0.000 | 0.006 | 0.011 | 0.020 | | $AR(2) - p \ value$ | 0.321 | 0.552 | 0.950 | 0.987 | 0.550 | 0.723 | 0.756 | 0.768 | | Sargan – p value | 0.550 | 0.550 | 0.971 | 0.997 | 0.895 | 0.895 | 0.995 | 0.998 | | Hansen – p value | | 0.417 | | | | 0.871 | | | | Number of instruments | 9 | 9 | 16 | 14 | 9 | 9 | 16 | 14 | | Number of provinces | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | | Number of observations | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | Regional Statistics, Vol. 11. No. 4. 2021 Online first Purwono-Yasin-Hamzah-Arifin 1-27; DOI: 10.15196/RS110403 ${\it Figure~A1} \\ {\bf Distribution~of~technical~efficiency~(TE)~score~of~33~provinces~in~Indonesia}$ Source: Authors (created with www.mapchart.net). Figure A2 ### Distribution of total factor productivity growth (TFP) of 33 provinces in Indonesia Source: Authors (created with www.mapchart.net). Figure A3 Figure A4 ### Distribution of technical efficiency change (TEC) of 33 provinces in Indonesia Source: Authors (created with www.mapchart.net). ### REFERENCES - AIGNER, D.-LOVELL, C. A. K.-SCHMIDT, P. (1977): Formulation and estimation of stochastic frontier production function models *Journal of Econometrics* 6 (1): 21–37. https://doi.org/10.1016/0304-4076(77)90052-5 - AMITI, M.–KONINGS, J. (2007): Trade liberalization, intermediate inputs, and productivity: Evidence from Indonesia *American Economic Review* 97 (5): 1611–1638. https://doi.org/10.1257/aer.97.5.1611 - ANDERSON, T. W.-HSIAO, C. (1982): Formulation and estimation of dynamic models using panel data *Journal of Econometrics* 18: 47–82. - ARAZMURADOV, A.-MARTINI, G.-SCOTTI, D. (2014): Determinants of total factor productivity in former Soviet Union economies: A stochastic frontier approach *Economic Systems* 38 (1): 115–135. https://doi.org/10.1016/j.ecosys.2013.07.007 - ARELLANO, M.-BOND, S. (1991): Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations *The Review of Economic Studies* 58 (2): 277–297. https://doi.org/10.2307/2297968 - ARITENANG, A. F. (2016): Decentralisation and ASEAN FTA impact on regional economic performance. In: *The impact of state restructuring on Indonesia's regional economic convergence* Yusof Ishak Institute. - BANKER, R. D.-CHARNES, A.-COOPER, W. W. (1984): Some models for estimating technical and scale inefficiencies in data envelopment analysis *Management Science* 30 (9): 1078-1092 - BARRO, R. J.-SALA-I-MARTIN, X. (1992): Convergence The Journal of Political Economy 100 (2): 223–251. - BATTESE, G. E.—COELLI, T. J. (1995): A model for technical inefficiency effects in a stochastic frontier production function for panel data *Empirical Economics* 20: 325–332. - BERRY, H.-GUILLÉN, M. F.- HENDI, A. S. (2014): Is there convergence across countries? A spatial approach *Journal of International Business Studies* 45 (4): 387–404. https://doi.org/10.1057/jibs.2013.72 - BLALOCK, G.-VELOSO, F. M. (2007): Imports, productivity growth, and supply chain learning *World Development* 35 (7): 1134–1151. https://doi.org/10.1016/j.worlddev.2006.10.009 - BONG, A.—PREMARATNE, G. (2018): Regional integration and economic growth in Southeast Asia Global Business Review 19 (6): 1403–1415. https://doi.org/10.1177/0972150918794568 - CEBRIÁN VII.LAR, M.—LÓPEZ, S. (2004): Economic growth, technology transfer and convergence in Spain, 1960–1973. In: LJUNGBERG, J.—SMITH, J-P. (eds.): Technology and Human Capital in Historical Perspective pp. 120–144., Palgrave Macmillan, London. https://doi.org/10.1057/9780230523814 - COELLI, T. (1996): A guide to FRONTIER Version 4.1: A computer program for stochastic frontier production and cost function estimation CEPA Working Papers 7: 1–33. https://doi.org/10.1007/BF00158774 - DAMIJAN, J. P.-DE SOUSA, J.-LAMOTTE, O. (2009): Does international openness affect the productivity of local firms?: Evidence from south-eastern Europe *Economics of Transition* 17 (3): 559–586. https://doi.org/10.1111/j.1468-0351.2009.00361.x - DE LOECKER, J. (2013): Detecting learning by exporting *American Economic Journal:* Microeconomics 5 (3): 1–21. https://doi.org/10.1257/mic.5.3.1 - DEBREU, G. (1951): The coefficient of resource utilization. Econometrica 19 (3): 273-292. - DOWRICK, S.-GOLLEY, J. (2004): Trade openness and growth: Who benefits? Oxford Review of Economic Policy 20 (1): 38–56. https://doi.org/10.1093/oxrep/grh003 - EGRI, Z.-TÁNCZOS, T. (2018): The spatial peculiarities of economic and social convergence in Central and Eastern Europe Regional Statistics 8 (1): 49–77. https://doi.org/10.15196/RS080108 - FARRELL, M. J. (1957): The measurement of productive efficiency *Journal of the Royal Statistical Society* 120 (3): 253–290. - FU, X.–PIETROBELLI, C.–SOETE, L. (2011): The role of foreign technology and indigenous innovation in the emerging economies: Technological change and catching-up World Development 39 (7): 1204–1212. https://doi.org/10.1016/j.worlddev.2010.05.009 - GNANGNON, S. K. (2019): Trade policy space, economic growth, and transitional convergence in terms of economic development *Journal of Economic Integration* 34 (1): 1–37. - GUO, R. (2017): Multiregional economic comparison. In: How the Chinese economy works pp. 273–305., Palgrave Macmillan. - HOLTZ-EAKIN, D.-NEWEY, W.-ROSEN, H. S. (1988):. Estimating vector autoregressions with panel data *Econometrica* 56 (6): 1371–1395. - IBRAHIM, N.-MUHAMMAD, S.-HASYIM, S.-JAMAL, A. (2019): Does social capital affect the convergence of economic growth in Indoensia *Journal of International Business and Economics* 19 (1): 68–76. - JIANG, Y. (2011): Understanding openness and productivity growth in China: An empirical study of the Chinese provinces *China Economic Review* 22 (3): 290–298. https://doi.org/10.1016/j.chieco.2011.03.001 - KELLER, W. (2010): International trade, foreign direct investment, and technology spillovers. In: HALL, B. H.–ROSENBERG, N. (eds.): Handbook of the economics of innovation 2 pp. 793–829. https://doi.org/10.1016/S0169-7218(10)02003-4 - KOTRAJARAS, P.—TUBTIMTONG, B.—WIBOONCHUTIKULA, P. (2011): Does FDI enhance economic growth? New evidence from East Asia Asean Economic Bulletin 28 (2): 183–202. https://doi.org/10.1355/ae28-2e - KUMBHAKAR, S. C.-WANG, H. J.-HORNCASTLE, A. P. (2015): A practitioner's guide to stochastic frontier analysis using stata Cambridge University Press. - KURNIAWAN, H.-DE GROOT, H. L. F.-MULDER, P. (2019): Are poor provinces catching-up the rich provinces in Indonesia? Regional Science Policy and Practice 11: 89–108. https://doi.org/10.1111/rsp3.12160 - LIBMAN, A.–VINOKUROV, E. (2012:. Regional integration and economic convergence in the post-soviet space: Experience of the decade of growth *Journal of Common Market Studies* 50 (1): 112–128. https://doi.org/10.1111/j.1468-5965.2011.02209.x - LIU, W.-NISHIJIMA, S. (2013): Productivity and openness: Firm level evidence in Brazilian manufacturing industries *Economic Change and Restructuring* 46 (4): 363–384. https://doi.org/10.1007/s10644-012-9131-6 - MARGONO, H.-SHARMA, S. C.-SYLWESTER, K.-AL-QALAWI, U. (2011): Technical efficiency and productivity analysis in Indonesian provincial economies *Applied Economics* 43 (6): 663–672. https://doi.org/10.1080/00036840802599834 - MITSIS, P. (2021): Examining the environmental Kuznets curve hypothesis using Bayesian model averaging Regional Statistics 11 (1): 3–24. https://doi.org/10.15196/RS110102 - MOK, V.-YEUNG, G.-HAN, Z.-LI, Z. (2010): Competition between online and physical stores: The implications of providing product information by Pure-Play E-tailer Ryohei Managerial and Decision Economics 31: 453–463. https://doi.org/10.1002/mde - MORRISON-PAUL, C. J.—JOHNSTON, W. E.—FRENGLEY, G. A. G. (2000): Efficiency in New Zealand sheep and beef farming: The impacts of regulatory reform Review of Economics and Statistics 82 (2): 325–337. https://doi.org/10.1162/003465300558713 - MURWITO, I. S.—RHEZA, B.—MULYATI, S.—KARLINDA, E.—RIYADI, I. A.—DARMAWIASIH, R. (2013): Kerjasama Antar Daerah di Bidang Perdagangan sebagai Alternatif Kebijakan Peningkatan Perekonomian Daerah. Jakarta, Komite Pemantauan Pelaksanaan Otonomi Daerah (KPPOD). - NICKELL, S. (1981): Biases in dynamic models with fixed effects Econometrica 49 (6): 1417–1426. - OECD (2018): OECD Economic surveys: Indonesia. In: OECD publishing (Issue October). https://doi.org/10.1787/eco\_surveys-jpn-2009-en - OREA, L. (2002): Parametric decomposition of a generalized *Journal of Productivity Analysis* 18: 5–22. - PURWONO, R.-MUBIN, M. K.-YASIN, M. Z. (2018): Do infrastructures influence the efficiency convergence of the Indonesian economy? *Seoul Journal of Economics* 31 (3): 333–353. - PURWONO, R.-YASIN, M. Z.-MUBIN, M. K. (2020): Explaining regional inflation programmes in Indonesia: Does inflation rate converge? *Economic Change and Restructuring* 53: 571–590. https://doi.org/10.1007/s10644-020-09264-x - Purwono, Rudi-Yasin, M. Z. (2020): Does Efficiency convergence of economy promote total factor productivity? A case of Indonesia *Journal of Economic Development* 45 (4): 69–91. - RASSEKH, F.—RANJBAR, O. (2011): Trade and convergence: A new approach and new evidence *The IUP Journal of Applied Economics* 10 (1): https://doi.org/10.2139/ssrn.1776936 - RODRÍGUEZ-POSE, A.,—GILL, N. (2006): How does trade affect regional disparities? World Development 34 (7: 1201–1222. https://doi.org/10.1016/j.worlddev.2005.12.003 - RODRÍGUEZ-POSE, A.—EZCURRA, R. (2010). Does decentralization matter for regional disparities? A cross-country analysis *Journal of Economic Geography* 10 (5): 619–644. https://doi.org/10.1093/jeg/lbp049 - ROODMAN, D. (2009): How to Do xtabond2: An introduction to difference and system GMM in Stata The Stata Journal 1: 86–136. - SAHA, S. (2012): Productivity and openness in Indian economy Journal of Applied Economics and Business Research 2 (2): 91–102. - SARI, D. W. (2019): The potential horizontal and vertical spillovers from foreign direct investment on Indonesian manufacturing industries *Economic Papers* 38 (4): 299–310. https://doi.org/10.1111/1759-3441.12264 - SARI, D. W.-KHALIFAH, N. A.-SUYANTO, S. (2016): The spillover effects of foreign direct investment on the firms' productivity performances *Journal of Productivity Analysis* 46 (2–3): 199–233. https://doi.org/10.1007/s11123-016-0484-0 - SOLOW, R. M. (1956). A contribution to the theory of economic growth The Quarterly Journal of Economics 70 (1): 65–94. - VELDE, D. W. te. (2011): Regional integration, growth, and convergence Journal of Economic Integration 26 (1): 1–28. - VIDYATTAMA, Y. (2013): Regional convergence and the role of the neighbourhood effect in decentralised Indonesia Bulletin of Indonesian Economic Studies 49 (2): 193–211. https://doi.org/10.1080/00074918.2013.809841 - WEILL, L. (2009): Convergence in banking efficiency across European countries Journal of International Financial Markets, Institutions and Money 19 (5): 818–833. https://doi.org/10.1016/j.intfin.2009.05.002 - WILD, J. (2016): Efficiency and risk convergence of Eurozone financial markets Research in International Business and Finance 36: 196–211. https://doi.org/10.1016/j.ribaf.2015.09.015 - ZHANG, X.–ZHANG, K. H. (2003): How does globalisation affect regional inequality within a developing country? Evidence from China Journal of Development Studies 39 (4): 47–67. https://doi.org/10.1080/713869425 ## Total factor productivity convergence of Indonesia's provincial economies, 2011–2017 | 900 | nomies, 20 | J11-2017 | | | |-------------|----------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------| | ORIGINA | ALITY REPORT | | | | | 1<br>SIMILA | %<br>ARITY INDEX | 14% INTERNET SOURCES | 11% PUBLICATIONS | O% STUDENT PAPERS | | PRIMAR | RY SOURCES | | | | | 1 | www.ks<br>Internet Sour | | | 2% | | 2 | WWW.ac | cessecon.com | | 2% | | 3 | rsaiconr<br>Internet Sour | nect.onlinelibrar | y.wiley.com | 1 % | | 4 | link.spri | nger.com | | 1 % | | 5 | assets.c | ambridge.org | | 1 % | | 6 | housew<br>Internet Sour | ifeswhimsy.com | | 1 % | | 7 | forces of intensity Malmqu | Huang, Dan Du<br>f the change in<br>y: An empirical r<br>uist and spatial p<br>ic Modelling, 20 | China's energy<br>esearch using<br>panel estimation | y<br>; DEA- | | 8 | Wild, Joerg. "Efficiency and risk convergence of Eurozone financial markets", Research in International Business and Finance, 2016. Publication | <1% | |----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 9 | Rudi Purwono, Mohammad Zeqi Yasin, M.<br>Khoerul Mubin. "Explaining regional inflation<br>programmes in Indonesia: Does inflation rate<br>converge?", Economic Change and<br>Restructuring, 2020 | <1% | | 10 | www.tandfonline.com Internet Source | <1% | | 11 | collections.plymouth.ac.uk Internet Source | <1% | | 12 | Mohammad Zeqi Yasin. "Technical Efficiency<br>and Total Factor Productivity Growth of<br>Indonesian Manufacturing Industry: Does<br>Openness Matter?", Studies in<br>Microeconomics, 2021<br>Publication | <1% | | 13 | centaur.reading.ac.uk Internet Source | <1% | | 14 | discovery.ucl.ac.uk Internet Source | <1% | | 15 | hal-unilim.archives-ouvertes.fr Internet Source | <1% | | 16 | uir.unisa.ac.za Internet Source | <1% | |----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | 17 | www.researchsquare.com Internet Source | <1% | | 18 | Heru Margono, Subhash C. Sharma, Kevin<br>Sylwester, Usama Al-Qalawi. "Technical<br>efficiency and productivity analysis in<br>Indonesian provincial economies", Applied<br>Economics, 2011<br>Publication | <1% | | 19 | Muhammad Jameel Yusha'u, Jan Servaes. "Chapter 1 Communication for Sustainable Development in the Age of COVID-19", Springer Science and Business Media LLC, 2021 Publication | <1% | | 20 | Yanqing Jiang. "Understanding openness and productivity growth in China: An empirical study of the Chinese provinces", China Economic Review, 2011 Publication | <1 % | | 21 | docplayer.net Internet Source | <1% | | 22 | Annageldy Arazmuradov, Gianmaria Martini,<br>Davide Scotti. "Determinants of total factor<br>productivity in former Soviet Union | <1% | ## economies: A stochastic frontier approach", Economic Systems, 2014 | 23 | Hazwan Haini. "Examining the productivity of<br>the ASEAN economies in the presence of<br>transient and persistent efficiency", Cogent<br>Economics & Finance, 2020<br>Publication | <1% | |----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 24 | aisberg.unibg.it Internet Source | <1% | | 25 | www.hica.co.za Internet Source | <1% | | 26 | www.mla.vgtu.lt Internet Source | <1% | | 27 | K. Kim, A. Heshmati. "Chapter 16 Analysis on<br>the Technical Efficiency and Productivity<br>Growth of the Korean Cable SOs: A Stochastic<br>Frontier Approach", Springer Science and<br>Business Media LLC, 2009<br>Publication | <1% | | 28 | Wang, Changjian, and Fei Wang. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang", Sustainability, 2015. Publication | <1% | | 29 | Mikiyo Kii Niizeki. "Empirical tests of short-<br>term interest rate models: a nonparametric | <1% | ## approach", Applied Financial Economics, 8/1/1998 | 30 | www.emeraldinsight.com Internet Source | <1% | |----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 31 | Jeffrey Cohen. "From Antisemitism to<br>Philosemitism? Trends in American Attitudes<br>toward Jews from 1964 to 2016", Religions,<br>2018<br>Publication | <1% | | 32 | media.myhome.ie Internet Source | <1% | | 33 | Midori M. Clarke, Sarah H. Reichard, Clement W. Hamilton. "Prevalence of Different Horticultural Taxa of Ivy (Hederaspp., Araliaceae) in Invading Populations", Biological Invasions, 2006 Publication | <1% | | 34 | Sourafel Girma, Steve Thompson, Peter W. Wright. "International Acquisitions, Domestic Competition and Firm Performance", International Journal of the Economics of Business, 2006 Publication | <1% | | 35 | zombiedoc.com<br>Internet Source | <1% | | 36 | Internet Source | <1% | |----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 37 | pureportal.coventry.ac.uk Internet Source | <1% | | 38 | dokumen.pub<br>Internet Source | <1% | | 39 | onlinelibrary.wiley.com Internet Source | <1% | | 40 | philpapers.org Internet Source | <1% | | 41 | publication-bi.org Internet Source | <1% | | 42 | www.jed.or.kr Internet Source | <1% | | 43 | Angkeara Bong, Gamini Premaratne. "Regional Integration and Economic Growth in Southeast Asia", Global Business Review, 2018 Publication | <1% | | 44 | Anna T. Falentina, Budy P. Resosudarmo. "The impact of blackouts on the performance of micro and small enterprises: Evidence from Indonesia", World Development, 2019 Publication | <1% | | 45 | Eduardo Gonçalves, Juliana Gonçalves<br>Taveira, Adalberto Labrador, João Gabriel Pio. | <1% | "Is trade openness a carrier of knowledge spillovers for developed and developing countries?", Structural Change and Economic Dynamics, 2021 GEORGE E. HALKOS, NICKOLAOS G. TZEREMES. "THE EFFECT OF ACCESS TO IMPROVED WATER SOURCES AND SANITATION ON ECONOMIC EFFICIENCY: THE CASE OF SUB-SAHARAN AFRICAN COUNTRIES", South African Journal of Economics, 2012 <1% Publication Hans Lööf. "Imports, Productivity and Origin Markets: The Role of Knowledge-intensive Economies", World Economy, 03/2010 <1% Publication Paula Bustos. "Trade Liberalization, Exports, and Technology Upgrading: Evidence on the Impact of MERCOSUR on Argentinian Firms", American Economic Review, 2011 <1% Publication Sumbal Fatima, Bateer Chen, Muhammad Ramzan, Qamar Abbas. "The Nexus Between Trade Openness and GDP Growth: Analyzing the Role of Human Capital Accumulation", SAGE Open, 2020 <1% | 50 | dspace.lib.cranfield.ac.uk Internet Source | <1% | |----|-------------------------------------------------------------------------------------------------------------------------------------------|-----| | 51 | eprints.glos.ac.uk Internet Source | <1% | | 52 | fintp.ijf.hr<br>Internet Source | <1% | | 53 | irgu.unigoa.ac.in Internet Source | <1% | | 54 | media.proquest.com Internet Source | <1% | | 55 | mpra.ub.uni-muenchen.de Internet Source | <1% | | 56 | rmictr.gsu.edu<br>Internet Source | <1% | | 57 | www.kier.kyoto-u.ac.jp Internet Source | <1% | | 58 | www.pure.ed.ac.uk Internet Source | <1% | | 59 | "Micro- and Macrodata of Firms", Springer<br>Science and Business Media LLC, 1999 | <1% | | 60 | Anastasios Trakakis, Miltiadis Nektarios,<br>Styliani Tziaferi, Panagiotis Prezerakos. "Total<br>Productivity Change of Health Centers in | <1% | Greece in 2016-2018: A Malmquist Index Data Envelopment Analysis Application for the Primary Health System of Greece.", Research Square Platform LLC, 2021 | 61 | Laura Solanko. "Unequal fortunes: a note on income convergence across Russian regions", Post-Communist Economies, 2008 Publication | <1% | |----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 62 | Miguel Angel Esquivias, Samuel Kharis Harianto. "Does competition and foreign investment spur industrial efficiency?: firm- level evidence from Indonesia", Heliyon, 2020 Publication | <1% | | 63 | Suyanto Suyanto, Yenny Sugiarti, Idfi<br>Setyaningrum. "Clustering and firm<br>productivity spillovers in Indonesian<br>manufacturing", Heliyon, 2021 | <1% | | 64 | ageconsearch.umn.edu Internet Source | <1% | | 65 | d-nb.info<br>Internet Source | <1% | | 66 | dspace.lu.lv<br>Internet Source | <1% | | 67 | espace.curtin.edu.au Internet Source | <1% | | 68 | ro.uow.edu.au<br>Internet Source | <1% | |----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | 69 | tel.archives-ouvertes.fr Internet Source | <1% | | 70 | tesisenxarxa.net Internet Source | <1% | | 71 | ugspace.ug.edu.gh Internet Source | <1% | | 72 | www.ijesar.org Internet Source | <1% | | 73 | David Hadley. "Patterns in Technical Efficiency<br>and Technical Change at the Farm-level in<br>England and Wales, 1982-2002", Journal of<br>Agricultural Economics, 3/2006<br>Publication | <1% | | 74 | Journal of Property Investment & Finance,<br>Volume 30, Issue 5 (2012-07-28) | <1% | | 75 | Kizito Uyi Ehigiamusoe, Hooi Hooi Lean. "Do economic and financial integration stimulate economic growth? A critical survey", Economics: The Open-Access, Open-Assessment E-Journal, 2019 | <1% | | 76 | Devasmita Jena, Alokesh Barua. "Trade, governance and income convergence in the | <1% | ## European Union: Evidence on the "theory of relative backwardness"", Research in Globalization, 2020 Publication Junbing Huang, Xiang Chen, Kaizhi Yu, Xiaochen Cai. "Effect of technological progress on carbon emissions: New evidence from a decomposition and spatiotemporal perspective in China", Journal of Environmental Management, 2020 <1% Publication www.eria.org Internet Source <1% Exclude quotes Off Exclude bibliography On Exclude matches Off ### Total factor productivity convergence of Indonesia's provincial economies. 2011–2017 | GRADEMARK REPORT | | |------------------|------------------| | FINAL GRADE | GENERAL COMMENTS | | /0 | Instructor | | | | | PAGE 1 | | | PAGE 2 | | | PAGE 3 | | | PAGE 4 | | | PAGE 5 | | | PAGE 6 | | | PAGE 7 | | | PAGE 8 | | | PAGE 9 | | | PAGE 10 | | | PAGE 11 | | | PAGE 12 | | | PAGE 13 | | | PAGE 14 | | | PAGE 15 | | | PAGE 16 | | | PAGE 17 | | | PAGE 18 | | | PAGE 19 | | | PAGE 20 | |---------| | PAGE 21 | | PAGE 22 | | PAGE 23 | | PAGE 24 | | PAGE 25 | | PAGE 26 | | PAGE 27 |