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Sugar industry in Indonesia has been experiencing rapid growth in local 
consumption, a decrease in domestic production, an increasingly growing import 
dependency, and a rise in the cost of energy use. This study explores the efficiency 
of energy use in the Indonesian sugar industry from 2010 to 2014 by applying the 
input distance function based on the trans-log model to all sugar mills across the 
country. The results revealed that substantial differences in energy efficiency exist 
across the provinces. The average energy efficiency is nearly 0.68, with the most 
efficient regions reaching nearly 0.77 and the lowest ones scoring about 0.62. The 
sugar mills in the provinces of Gorontalo, Banten, South Sulawesi, and East Java 
are more efficient than those of other provinces. The energy efficiency function 
suggested that increasing production volume can help to achieve more efficient 
energy use. Additionally, as labor and capital are substitute inputs, improvements 
in capital investment (technological upgrade) may yield larger outputs and 
contribute to more energy-efficient production. Meanwhile, raw materials and 
capital are complementary inputs, so improvements in energy efficiency via a 
larger mill size, bigger capital investment, and more efficient sourcing of raw 
materials can support the national government's production targets sustainably. 
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1  1. INTRODUCTION 

As a key success factor of both business and 
environmental sustainability, energy efficiency has 
attracted researchers' attention in both the developed and 
developing world. Efficient energy use has important 
implications for industrial competitiveness, national 
security, economic prosperity, and a sustainable 
environment. Different methods for measuring energy 
efficiency have been proposed thus far, two of which are 
the energy intensity and total-factor energy efficiency 
(TFEE). The former aims at analyzing the use of energy 
at a societal level, mainly related to depletion and 
sustainable use of energy inputs. The latter compares the 
optimal to the actual use of energy inputs. In the TFEE 
context, developments in energy efficiency are 
associated with improvements in the total factor 
productivity and the efficient use of inputs relative to the 
optimal sectoral capability [1]. Stochastic Frontier 
Analysis (SFA) has been employed within the TFEE 
framework to study the efficient use of energy and the 
energy-saving potential within manufacturing activities 
[2]. 
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 In the TFEE approach, manufacturers use inputs 
(raw materials, energy, capital, and labor) to produce 
outputs. Under the assumption of a given technology, 
manufacturers produce their outputs at the lowest 
possible production cost with an appropriate inputs' 
combination. Nevertheless, in the real world, firms may 
not choose an input combination with the lowest costs 
and may only have access to outdated technology in the 
production. In these situations, they may use inputs 
inefficiently, including energy. As such, there needs to 
be an appropriate estimation of production's inefficiency 
by considering the microeconomic theory of production 
[3]. 
 In Indonesia, manufacturing, and transportation 
activities are accountable for approximately 60% of the 
total energy consumption, with the average energy 
demand growing at 9.0%, 40% more than the average 
growth rate in non-manufacturing activities [4]. Within 
manufacturing, six sectors account for nearly 80% of the 
total energy demand—steel, pulp-paper, chemical, non-
metallic minerals, food, and textiles [5]. The sugar 
industry has 46% higher specific energy consumption 
(SEC) than other industries within the food sector, with 
most energy being wasted by the heating system [4]. 
Such non-efficient energy use in the sugar industry is 
partly attributed to the mills’ old age as more than 65% 
of them have been operating for 100 to 185 years. Sugar 
mills in Indonesia have indeed reported low efficiency 
as they work at low capacity, employ outdated, 
inefficient technology, and constantly face an increasing 
cost of inputs [6]. The manufacturing firms in Java have 
been experiencing decreasing productivity and a rise in 
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the cost of energy and labor (almost duplicating in the 
last 15 years) [7]. As nearly 56% of sugar production is 
located within Java Island, it is likely that sugar 
production facilities will continue to face intense 
competitiveness pressures. 
 The literature on sugar production in Indonesia 
pointed out that the sector has met vital challenges. 
Despite the substantial government efforts, the 
plantation area decreased to less than 420,000 hectares 
(ha) in 2020. Similarly, production (total supply) has 
fallen from 29.5 million tons (MT) in 2018 to 27 MT in 
2020 [8]. Aside from the aging mills, the challenges 
come from the decreased cultivated land, lack of suitable 
varieties, farm inefficiency, slow technological progress, 
and lack of product diversification [6]. Low productivity 
and technical inefficiency are often attributed to the lack 
of adequate research and development support [3]. For 
example, in Indonesia, producing one ton of sugar 
requires 5.98 barrel oil equivalent (BOE), substantially 
large compared to the general industry standard of 4.75 
BOE[4]. 
 Still, in Indonesia, sugar is a strategic industry, 
both to meet the annual consumption of nearly 7.2 
million tons (estimated for 2021) and to support the 
related economic activities (e.g., jobs along the value 
chain). In its golden times in the 1930s, Indonesia would 
be a net sugar producer, reaching exports of nearly 3 
million tons [9]. Since then, sugar production has 
declined, stagnating at levels below 2.3 million tons a 
year [8], even below the self-sufficiency production 
target of 3.1 million tons [10]. While sugar demand for 
end-user consumption (retail) grew 30% from 2000 to 
2014 (mainly locally produced), that of for industrial 
sector expanded 2.4 times (mainly import-dependent). 
Meanwhile, the productivity of sugarcane plantations in 
Indonesia declined at the level of 2.56 tons/ha, with the 
extraction rate also decreasing by 0.36 % compared to 
2017, which is below the international levels. Because 
of this low productivity and high demand, the price of 
white crystal sugar in Indonesia remains substantially 
above the international market price. Although the 
government targeted to keep the retail price of white 
sugar at Rp 12.500/kg ($790/ton) the average plantation 
white sugar price in April 2020 reached more than Rp 
18.500/kg ($1,174/ton) [8]. 
 According to InterCAFE [11], the increase in sugar 
prices is linked to the increased costs of inputs, the 
soaring fuel costs, and the per capita GDP growth that 
might drive food demand. The efficiency of sugar 
production, including the efficient use of energy, is also 
an essential determinant of sugar's selling price in the 
domestic market. As sugar production requires intense 
use of energy inputs [12], energy efficiency is at the core 
of sugar industry competitiveness. As such, it becomes 
crucial to analyze whether sugar mills in Indonesia use 
energy efficiently or not; and whether there is energy-
saving potential that could be explored. Inefficiency and 
high operation cost are two of the causes of the low 
sugar mills’ capacity in Indonesia, which is estimated to 
be below 75% [8]. 
 This paper aims to analyze the efficiency of energy 
use in Indonesia's sugar industry using the Stochastic 

Frontier Approach (SFA). We cover a sample of 73 
mills across provinces in Indonesia over the period 
2010-2014 and analyze the efficiency levels. A trans-log 
production function allows for output estimation as a 
function of labor, capital, raw materials, and energy 
inputs. As sugar mills employ a mix of energy sources 
[4], we included all kinds of energy in the energy 
variable such as the consumption of petroleum fuels, 
biomass, coal, gas, and other fuels. Earlier studies on 
technical efficiency in Indonesia's manufacturing sector 
have included energy inputs within the production 
function [7],[13]-[15]. Nevertheless, the sugar industry 
is generally aggregated within the food sector or a wider 
group of sub-sectors. Other studies specifically looking 
at the sugar industry in Indonesia by employing non-
total factor energy potential approaches highlight the 
importance of energy efficiency analysis for the sector, 
and that there was a large room for improvement in the 
energy use of the facilities [4]-[16]. However, studies 
measuring energy efficiency based on the production 
efficiency approach and using firm-level data in 
Indonesia's sugar industry are still limited. We aim to fill 
this research gap. 
 This paper proceeds as follows. In section 2, a brief 
literature review is presented. Data and methodology are 
discussed in section 3. Section 4 discusses our main 
findings. Finally, our conclusions are presented in 
section 5. 

2.  LITERATURE REVIEW 

2.1 Production Function 

The production function is a mathematical or 
quantitative expression of the various technical 
production possibilities encountered by a company” 
[17]. The production function gives the highest number 
of outputs in the physical sense of each level of inputs. 
This can be expressed as follow: 

Q= f(X)  (1) 

where Q is the outputs and X is the inputs. Production 
functions indicate what is technically possible when the 
firm operates efficiently—that is, when the firm uses 
each combination of inputs as effectively as possible 
[18]. 
 In this study, the transcendental logarithmic (trans-
log) production function is applied because of its 
flexibility in estimating the production frontier [19]. In 
contrast with the Cobb-Douglas production function, it 
does not take into account flexible properties, such as 
perfect substitution between factors of production or 
perfect competition on the production factors market 
[20]. The trans-log production function is mostly used to 
study the manufacturing sector because of its flexible 
functional form [21]. The general form of the trans-log 
function is as follows: 

ln(Yit) =β0+� βpln(Xpit)
P

p=1

 (2) 
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P
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2.2 Input Distance Function 

An input distance function defines the production 
technology by looking at a minimal proportional 
contraction of the input vector, given an output vector 
[12]. This can be defined on the input set, P(y), as: 

di(x, y) = max{α: (x/ α) ∈ P(y)} (3) 

where the output vector, y, can be produced by using the 
input set P(y) as an expression of the set of all input 
vector, x. That is, 

P(y) = {x: x can produce y} (4) 

In the production technology point of view, the 
input distance function has the following properties.   

(i) it is non-decreasing in x and increasing in y; 
(ii) it is linearly homogeneous in x; 
(iii) if 𝑥 ∈ 𝑃(𝑦), then 𝑑𝑖(𝑥,𝑦) ≥ 1 and 
(iv) distance is equal to one, 𝑑𝑖(𝑥,𝑦) = 1, if x is 

on the "frontier" of the input set (the isoquant 
y). 

2.3 Energy Efficiency 

Energy is an important element for social and economic 
development as it is needed to achieve social, economic, 
and environmental goals [23]. Appropriate energy 
policies are often portrayed as an indicator of 
sustainable development. As such, energy efficiency has 
attracted policymakers' attention across the globe. 
Specific to developing countries, the increase in energy 
consumption is closely linked to environmental 
degradation [24]. That is to say, a well-organized energy 
program is crucial not only to drive economic 
development and stabilize energy prices but also to 
secure supply and mitigate climate change.  
 A country’s economy can be boosted by the rapid 
development of manufacturing activities, and this has 
long been associated with high demand for energy. 
China uses a substantial amount of power to support its 
manufacturing activities and this has contributed to the 
rapid economic growth [25]. Indonesia also shows rapid 
growth in manufacturing activities; hence the energy 
consumption [4]-[7]. Under the input-output optic, as 
energy is an essential input in production, there has to be 
an efficient model to minimize its use [26]. This is 
because sustainable and efficient economic development 
can only be achieved with the support of energy 
efficiency. 
 Efficiency is generally defined as the ratio of 
useful output to input. According to World Energy 
Council [27], energy efficiency can be interpreted as a 
ratio of the energy service output to energy input. Based 
on the classical definition, energy efficiency means 
using the minimum amount of energy without changing 
the amount of total output [28]. It could also be 
calculated as a ratio of the target consumption and the 
actual consumption. The closer the rate is to one, the 

more efficient it is. But a consensus to define energy 
efficiency today is yet to be sought.  
 There are four indicators to measure energy 
efficiency—the thermodynamic indicators, the physical-
thermodynamic indicators, the economic-
thermodynamic indicators, and the economic indicators 
[28]. Economic-thermodynamic indicators and 
economic indicators such as the energy to GDP ratio are 
more beneficial for macro-level policy study. However, 
they miss separating the effects of technical energy 
efficiency trends. These indicators can spur 
misunderstanding in the interpretation as efficiency can 
only be presented in a numerical value [29]. The energy 
to GDP ratio does not consider the substitution or 
complement of other inputs [30]. In recent years, 
alternative methods to measure energy efficiency based 
on the economic foundation have been proposed [1]. 
 In this study, energy efficiency is calculated from 
an economic point of view and is measured based on the 
total-factor productivity theory [25]. In measuring 
energy efficiency, the Data Envelopment Analysis 
(DEA) and Stochastic Frontier Analysis (SFA) are 
popular methods. These two methods estimate the 
efficient benchmark on the effective frontier and then 
define the efficient indicators as the relative distance 
between the real output or input and the efficient 
benchmark. Even though DEA imposes fewer 
restrictions to calculate the firm efficiency, this method 
cannot directly explain the statistical noise [31]-[32]. 
This could be solved by using technical efficiency 
measures based on the SFA framework's production 
function as it can capture the statistical noise and 
consider exogenous factors in the production function 
[33]. 
 Previous studies employing the TFEE approach 
have been conducted in countries like China [1]-[2], 
Japan, and other developed economies [31], finding 
important differences in the energy use across sectors 
and regions. Previous studies in Indonesia's energy 
efficiency have examined whether ownership, firm size, 
and sectoral activities are sources of energy intensity 
differences [14]. However, to our knowledge, no 
previous study has employed the TFEE approach has 
been applied to the sugar industry in Indonesia, 
comparing the spatial differences across provinces. 

3.  DATA AND METHODOLOGY 

3.1 Data and Variables 

This study uses secondary data from the large and 
medium manufacturing industry survey of Indonesia 
Statistics (Badan Pusat Statistik) over 2010-2014. The 
data employed cover mills under the sugar sub-sector, 
ISIC code number 10721. The panel data of 
observations in 73 mills (cross-sectional data) and five 
years (a timer series from 2010-2014) are used to 
evaluate the energy efficiency using Frontier Version 
4.1 software. All variables are expressed in monetary 
terms and adjusted based on the wholesale price index 
(WPI) published by Indonesia Statistics (BPS) at a 
constant price of 2010. The variables used in this 
empirical study are output, labor, capital, raw materials, 
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and energy. Each output variable is defined as the sum 
of each mill's production value in a specific year. The 
capital stock is calculated by fixed assets' replacement 
value, which contains three types of investment: land 
and buildings, machinery, and other capital goods and 
vehicles. Labor is calculated by the number of workers 
instead of person-hours due to data availability. The raw 
material is the sum of the cost of raw inputs, including 
the domestic and imported. Energy includes the sum of 
all expenditure on all kinds of energy sources used in the 
production process. The physical energy units include 
gasoline, diesel fuel, kerosene, coal, coal briquettes, gas, 
liquefied petroleum gas, lubricants, and other fuels 
(coke, fuel oil, and bunker C). 
 Table 1 depicts the summary statistics of the 
Indonesian sugar industry. The average value of output 
was merely IDR 591.84 billion (USD 65.11 million). 
The minimum and maximum output values are IDR 3.19 
billion (USD 0.35 million) and IDR 20.345 billion (USD 
2.24 million), respectively, suggesting that each mill's 
production level is very different. As noted by 
Toharisman and Triantarti [6], nearly 50% of mills have 

production capacity on tons-of-cane/day (TCD) of 
2,000-4,000 TCD, and less than 5% of mills produce 
more than 8,000 TCD, which are optimal size. The 
average value of capital is equal to IDR 31.87 billion 
(USD 3.51 million). The minimum values of capital 
suggest that several mills employ low physical 
investment compared to the total average value of 
capital in the sector. In the Indonesian sugar industry, an 
average firm employs IDR 316.51 billion (USD 34.82 
million) as a cost of raw materials. The average energy 
expenditure is IDR 26.08 billion (USD 2.87 million) 
with a standard deviation of IDR 99.35 billion (USD 
10.93 million), a relatively large variation. Across the 
mills, the maximum and minimum value of energy cost 
is IDR 1,457.20 billion (USD 160.30 million) and IDR 
0.0043 billion (USD 0.0005 million), respectively. For 
the labor variable, the Indonesia Statistics Survey 
includes only medium (20 up to 99 workers) and large 
enterprises (more than 99 workers). The maximum 
number of workers is 7,862, while the average number 
of employees is 926. 

 
Table 1. Summary statistics of variables. 
Variables Sample Unit Mean Std.Dev Min Max 
Energy (E) 340 Billion Rupiahs 26.08 99.35 0.0043 1,457.20 
Output (Y) 340 Billion Rupiahs 591.84 1,581.82 3.19 20,345.13 
Capital (K) 340 Billion Rupiahs 31.87 118.01 0.0051 1,811.75 
Labor (L) 340 Number of person 926 866.83 20.00 7,862 
Raw Materials (R) 340 Billion Rupiahs 316.51 1,047.28 171.02 14,805.19 
Source: BPS, Annual Manufacturing Survey, by own calculation (Note: 1 USD = 9090.43 IDR). 

 

3.2 Methodology 

Following Zhou et al. [34] and Honma and Hu [35], this 
study examines a production process in sugar mills 
where four inputs (𝑋𝑖) , capital stock (K), labor force 
(L), energy (E) and raw materials (R) are used to 
produce sugar crystal (Y). Conceptually, the production 
technology (T) can be described as: 

 T={(Xi, Y):(Xi) can produce Y} (5) 

 All the feasible input-output vectors are contained 
in T, frequently indicated as the production technology 
graph, which can also be denoted by its equivalent input 
set or output set [36]. In the theory of production, T is 
frequently supposed to be a closed and bounded set. 
Additionally, the inputs and output are frequently 
supposed to be strongly disposable. It says that 
�Xi

' , Y�∈T if �Xi
'�≥(Xi) and Y'≤Y. 

 To measure energy efficiency from the perspective 
of the production function, the Shephard sub-vector 
input distance function for energy use (the Shephard 
energy distance function) can be utilized as follows: 

  𝐷𝐸 = (𝑋𝑖 ,𝑌) = (𝐾, 𝐿,𝑅,𝐸,𝑌)  

    = sup{𝛼: (𝐾, 𝐿,𝑅,𝐸/𝛼,  𝑌)𝑇} 
(6) 

 Equation 6 attempts to diminish energy to the 
maximum viability with given combination of input-
output with the production technology set as 

characterized by Equation 5. Subsequently, E/ DE = (K, 
L, R, E, Y) shows the hypothetical energy use if the firm 
is efficient in energy. At that point, the proportion of 
hypothetical energy use to real energy use is equivalent 
to the reciprocal of the sub-vector distance function. 
This can be specified as the firm's energy efficiency, ie. 

EE=
E/DE(K,L,R,E,Y)

E  

 

EE =  
1

DE(K, L, R, E, Y)  

(7) 

 Energy efficiency measures the energy intensity 
level in an industry, whose scores are between zero and 
one. Following Honma and Hu [35], the stochastic 
frontier input distance function based on trans-log 
production model is as follows. 

LnDE(Kit, Lit, Rit, Eit, Yit) =  β0 + βKLnKit +
βLlnLit +  βRlnRit + βElnEit + βYlnYit +

0.5βKK(lnKit)2 + 0.5βLL(lnLit)2 +
0.5βRR(ln𝑅it)2 +  0.5βEE(lnEit)2 +

0.5βYY(lnYit)2 + βKL(lnKit)(lnLit)  +
βKR(lnKit)(lnRit) + βKE(lnKit)(lnEit) +
βKY(lnKit)(lnYit) + βLR(lnLit)(lnRit) +
βLE(lnLit)(lnEit) + βLY(lnLit)(lnYit) +

βRE(ln𝑅it)(ln𝐸it) + βRY(lnRit)(lnYit) + vit   

(8) 
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Here DE(. )  is a distance function, Kit  is capital, Lit  is 
labor, lnRit is raw material, Eit is energy input, 𝑖 refers 
to regions, t refers to the time, and vit is a random noise, 
which is assumed to be normally distributed and errors 
of estimation. Because the Shephard energy distance 
function is linearly homogeneous in energy and setting 
𝑢𝑖𝑡 = lnDE(Kit, Lit, Rit, Eit, Yit)  by following Lin and 
Long [2], Equation 8 becomes: 

lnDE(Kit, Lit, Rit, Eit, Yit)
= lnEit
+ lnDE(Kit, Lit, Rit, 1, Yit) 

(9) 

The conditions for linear homogeneity in K, L, R are 
shown as follows [2]. 

βK + βL +  βR = 0 

βiK + βiL +  βiR = 0 ;      i = K, L, R 

𝛽𝐾𝑌 + 𝛽𝐿𝑌 + 𝛽𝑅𝑌 = 0 

By substituting Equation 8 to Equation 9 and 
rearranging. It implies that 

βKE(lnKit) + βLE(lnLit) + βRE(lnRit)
+   βYE(lnYit) = 1 − βE (10) 

By substituting Equation 10 to Equation 8 and 
rearranging, it becomes 

−lnEit
= β0 + βKLnKit + βLlnLit + βRlnRit
+   βYlnYit + βEln1 + 0.5βKK(lnKit)2

+  0.5βLL(lnLit)2 + 0.5βRR(lnRit)2
+  βKL(lnKit)(lnLit) +βKR(lnKit)(lnRit)
+  βKY(lnKit)(lnYit)+βLR(lnLit)(lnRit)
+  βLY(lnLit)(lnYit)  + βRY(lnRit)(lnYit)  +  vit
−  lnDE(Kit, Lit, Eit, Rit, Yit) 

(11) 

So,  

ln �
1
𝐸𝑖𝑡
�

= β0 + βKLnKit + βLlnLit +  βRlnRit + βYlnYit
+  0.5βKK(lnKit)2 + 0.5βLL(lnLit)2  
+  0.5βKK(ln𝑅it)2 + 0.5βYY(lnYit)2

+  βKL(lnKit)(lnLit)  + βKR(lnKit)(lnRit)
+  βKY(lnKit)(lnYit) + βLR(lnLit)(lnRit)
+  βKY(lnKit)(lnYit) + Vit − uit 

(12) 

where, uit = lnDE(Kit, Lit, Eit, Rit, Yit)  is a positive 
variable accounting for energy efficiency.  
 As a result, the SFA model shown in Equation 12 
can be estimated by the maximum likelihood technique. 

From Equation 12, the energy inefficiency component 
uıt�  can be calculated, and the energy efficiency can be 
further estimated with EE = exp (-uıt�). uit is assumed to 
be a truncated normal distribution. All the unknown 
parameters in Equation 12 can be estimated with the 
Frontier 4.1 Program (free software version), supported 
by Coelli [37]. 

4.  RESULTS AND DISCUSSION 

This section presents the energy efficiency estimates of 
the Indonesian sugar industry. Mill efficiency was 
estimated by using the software Frontier 4.1. Before 
analyzing the results, it is necessary to choose the best 
production function for this industry. Two production 
functions are compared, the Cobb-Douglas and the 
trans-log model. The likelihood ratio (LR) test is applied 
to select the best model by comparing the value of λ 
with the chi-square table's value. The null hypothesis is 
that the Cobb-Douglas form is a suitable frontier 
production function against the trans-log function. The 
LR test is λ = -2 {ln [L(H0)] – ln [L(H1)]} in which 
ln[L(H0)] is the log-likelihood value of Cobb-Douglas 
model, and ln [L(H1)] is the log-likelihood value of the 
trans-log model. The degree of freedom is the number of 
parameters used as restrictions in the model. The test 
statistic value, λ = 6.034, is greater than the value of χ2 
(13.28 at 1% significance), suggesting the rejection of 
the Cobb-Douglas model. Therefore, the trans-log model 
is a more appropriate model for the sugar industry in 
Indonesia. 
 Table 2 displays the estimation of the parameter of 
the energy input distance function. All the data 
employed are normalized around their means. Thus, the 
estimated first-order parameters in the trans-log function 
can be directly interpreted as production elasticities [38]. 
Because the energy variable is a reciprocal and an 
exogeneous one, a negative (positive) coefficient 
explains that this variable is a factor increasing 
(decreasing) energy efficiency [39]. The elasticity of 
output has a negative sign and is significant at 1%. A 
coefficient for output suggests that increasing 
production will positively impact the efficient use of 
energy. The coefficient of capital and labor interaction is 
positive and statistically significant, which indicates that 
inputs are substitutes. For instance, improvements in 
investment (e.g., technological upgrading and new 
equipment) may be necessary to increase production and 
improve energy efficiency. Factories may be employing 
an insufficient ratio of capital to workers. The 
coefficient of capital and raw material interaction is 
statistically significant, with a negative sign at a 10% 
significance level, showing that this combination 
increases energy consumption. Capital and raw materials 
have complementary effects suggesting that higher 
production requires increases in both inputs, supporting 
the point that sugar is energy-intensive. The value of γ in 
Table 2 indicates that the variance of inefficiency is 
21.84% of the total variance of error components. 
 Table 3 presents the energy efficiency scores based 
on the SFA model by province. The average energy 
efficiency score in 2014 is 0.6775, slightly lower than in 
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2010. The mean energy efficiency scores of the sugar 
industry by province are shown in Figure 1. Four 
provinces score the highest efficiency intensities: East 
Java, Banten, South Sulawesi, and Gorontalo, with 
energy efficiency estimates scoring above 0.70. Among 
all regions, Gorontalo has sugar mills (foreign-owned) 
with the highest energy performance of nearly 0.78. The 
province of East Java has the highest efficiency 
production level in Java. It also has the largest number 
of sugar mills in the country (45%), as well as the 
longest-held tradition of sugar plantations and sugarcane 
processing. The high performance of mills in East Java 
could be associated with its higher scale capacity and 
extensive experience in the production process. The 
variation in energy efficiency scores between East Java 
and other provinces ranges from 6% to 8%. Considering 
the high energy intensity used in sugar mills, 8% is a 

substantial difference. On average, mills in North 
Sumatra report the lowest efficiency scores, while those 
in Gorontalo showed the highest scores. Still, many 
mills are located on the island of Java (78%), remaining 
as the country's main sugarcane engine. As noted in 
previous studies, the scale of sugar mills in Indonesia 
requires an increase to meet the minimum capacity, from 
a current average of 3,900 TCD to at least 6,000 TCD 
per mill [6]. Additionally, to meet national targets for 
efficient sugar production, sugar mills may need to 
produce at a level of 6,000 to 15,000 TCD. Compared to 
other studies, the average sugarcane production in 
countries like China is 6,003 TCD, where a large mill 
produces at a mean energy efficiency level of 0.85 [1]. 
By contrast, the mean efficiency of a comparable sugar 
mill in Indonesia is 0.6775. 

 
Table 2. Maximum likelihood estimation on the parameters. 
Variables Coefficient St.Dev t ratios Sig 
Constant 0.4126 0.2309 1.7870 *** 
Capital (lnK) 0.0584 0.0388 1.4102  
Labor (lnL) 0.0363 0.0655 0.5538  
Raw Material (lnR) 0.0704 0.0856 0.8220  
Output (ln Y) -1.1388 0.0990 -11.4984 * 
lnK × lnK 0.0549 0.0368 1.4939  
ln L × ln L -0.0772 0.0735 -1.0500  
ln R × ln R -0.0098 0.1806 -0.0541  
ln Y × ln Y -0.2735 0.2337 -1.1704  
ln K × ln L 0.1251 0.0425 2.9425 * 
ln K × ln R -0.0855 0.0490 -1.7470 *** 
ln K × ln Y 0.0652 0.0611 1.0676  
ln L × ln R -0.0764 0.0958 -0.7976  
ln L × ln Y 0.0272 0.0993 0.2736  
ln R × ln Y 0.1067 0.1896 0.5625  
sigma-squared 0.4666 0.1117 4.1766 * 
gamma 0.2184 0.1808 1.2078  
mu 0.3086 0.5339 0.5780  
eta -0.0022 0.0735 -0.0295  
Number of observations 340 
* sig at 1%, ** sig at 5%, *** sig at 10%  (Source: Compilation by the author). 

 
Table 3. Average energy efficiency scores of mills in sugar industry by province. 
Province 2010 2011 2012 2013 2014 Average 
North Sumatera 0.6241 0.6235 0.6229 0.6223 0.6217 0.6229 
Jambi  - 0.6418 0.6412 0.6406 0.6400 0.6409 
South Sumatera 0.7414 0.2087 0.7405 0.7400 0.7395 0.6340 
Lampung 0.6547 0.6541 0.6536 0.5732 0.6525 0.6376 
West Java 0.6892 0.6804 0.6779 0.6774 0.6768 0.6803 
Central Java 0.6400 0.6394 0.6388 0.6382 0.6396 0.6392 
Daista Yogyakarta 0.6547 0.6541 0.6535 0.6529 0.6524 0.6535 
East Java 0.7055 0.7050 0.7045 0.7040 0.7035 0.7045 
Banten 0.7306 0.7302 0.7297 0.7395 0.7288 0.7318 
South Sulawesi 0.7224 0.7220 0.7215 0.7210 0.7206 0.7215 
Gorontalo 0.7762 0.7758 0.7754 0.7750 0.7746 0.7754 
Average 0.6939 0.6395 0.6872 0.6804 0.6864 0.6775 
Source: Compilation by the author. 
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Fig. 1. Average energy efficiency scores of mills in sugar industry by province 

 

 
Fig. 2. Average energy efficiency scores for sugar industry (2010-2014). 

 
 Figure 2 presents the average energy efficiency 
scores between 2010 and 2014. Although there were 
slight downward trends in the efficiency scores, the 
overall efficiency did not change substantially during the 
period. The little progress in the efficient use of energy 
in Indonesia is problematic considering the substantial 
increases in the local demand, which should be an 
incentive to greater efficiency. Additionally, growing 
global competition suggests that more efficient 
international producers may outstrip their Indonesian 
counterparts. As noted in Vivadinar et al. [4], the 
specific energy consumption (SEC) of sugar facilities in 
Indonesia is nearly 25% larger than their global peers. 
Chang and Hu [25] noted that Chinese manufacturing 
mills experience efficiency gains of 0.6% a year in 
energy use. Furthermore, government efforts to control 
sugar prices may entail higher fiscal costs as the 
domestic and global price of sugar may widen over time. 

Currently, sugar for end-user consumption (retail) is 
restricted to local producers with the government 
intervening in the pricing.  
 Table 4 presents the average energy efficiency 
scores of mills in the sugar industry by regency from 
2010 to 2014. In this result, only 35.6% of mills have 
relatively high energy efficiency scores with values 
above 0.70. In East Java, the energy efficiency of 
Probolinggo regency is the highest (0.8390). Regionally, 
East Java has the highest energy efficiency scores. The 
differences in energy efficiency at the mill level may 
suggest technological gaps among mills. Similarly, 
managerial know-how may differ across companies, 
causing gaps in energy efficiency across provinces. 
While more foreign-owned mills are allowed to operate 
in the country, they still account for less than a third of 
total sugarcane mills.  
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Table 4. Average energy efficiency scores of mills in sugar industry by regency during period 2010 to 2014. 
Provinces Regency Energy Efficiency 

North Sumatera  
Toba samosir 0.5023 
Mandailing Natal 0.7460 

South Sumatera 
Ogan Ilir 0.7419 
Palembang 0.7207 

Lampung 

Tulang Bawang 0.6066 
Tanggamus 0.8128 
Waykanan 0.5730 
Lampung Utara 0.6693 
Lampung Timur 0.7569 

West Java 

Cirebon 0.6674 
Majalengka 0.7677 
Subang 0.6268 
Ciamis 0.6909 
Bogor 0.7406 

Central Java 

Tegal 0.6120 
Kudus 0.6975 
Brebes 0.7222 
Pekalongan 0.6886 
Pemalang 0.7501 
Klaten 0.5180 
Sragen 0.6794 
Karanganyar 0.7566 
Pati 0.5736 
Kendal 0.4678 
Blora 0.6630 

East Java 

Tunungagung 0.6352 
Lumajang 0.6002 
Malang 0.7634 
Magetan 0.7682 
Pasuruan 0.7790 
Probolinggo 0.8390 
Jombang 0.7082 
Ngawi 0.5120 
Sidoarjo 0.6621 
Mojokerto 0.7928 
Madiun 0.7540 
Situbondo 0.6481 
Nganjuk 0.5983 
Jember 0.6916 
Magetan 0.7577 
Bondowoso 0.6909 
Kediri 0.6834 
Ngawi 0.7386 

Daista Yogyakarta Bantul 0.6552 

South Sulawesi  
Barru 0.7326 
Takalar 0.7019 

Gorontalo Boalemo 0.7764 

Banten 
Cilegon 0.7852 
Serang 0.6734 

Jambi Kerinci 0.6426 
Source: Compilation by the author.  
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 As noted in earlier studies in Indonesia, the 
exorbitant amount of energy used in sugar facilities 
indicates that there is room for improvement. For 
example, sugar facilities can employ self-sufficient 
energy systems to operate [12]. In longer periods, sugar 
factories should be able to become energy producers. 
While our study does not aim at analyzing the potential 
of implementing self-sufficient energy plants, we claim 
that the low improvement in energy efficiency indicates 
that little has been done in the last years. Sulaiman et al. 
[40] noted that current sugar mills need to implement 
superior technologies to increase energy and water 
efficiency if they aim to increase production capacity 
sustainably. Technical efficiency improvements in 
sugarcane plantations are making more substantial 
progress, either due to the government’s promotion to 
adopt new seeds [41] or via expansion of 
production/field areas.  
 The fast-growing rate of sugar consumption in 
Indonesia and its growing dependency on imports 
suggest that the government needs to take more relevant 
roles in supporting the efficient plantation of sugarcane 
and the production of sugar. To no surprise, Indonesia is 
the largest sugar importer in the world. The stagnation in 
energy efficiency in this industry—which requires high 
energy and constantly faces a rapid growth of energy 
cost—suggests that the country may experience further 
decreases in domestic production of sugar, losing to its 
Asian competitors [13]. The Ministry of Industry in 
Indonesia has launched the Indonesian Sugar Industry 
Road Map 2010-2014 [40], aiming at the development 
of the sugar industry through support programs to gear 
towards more efficient plantations, processing, 
marketing, and distribution. However, it seems that 
more efforts in the implementation are needed. Annual 
production targets of 3.1 million tons were not met, 
while consumption went beyond the expected figures. 

5.  CONCLUSION 

In this paper, we employed a Stochastic Frontier 
Analysis (SFA) input distance function to measure the 
energy efficiency of all sugar mills across provinces in 
Indonesia from 2010 to 2014. The average energy 
efficiency is estimated at 0.6775, suggesting a large 
room for improvement. The energy efficiency in mills 
facilities is high in the provinces of Gorontalo (0.7754), 
South Sulawesi (0.7215), Banten (0.7318), and East Java 
(0.7045) (home to 45% of mills). By contrast, the energy 
performance in other regions is still below the industry's 
average level, often by a substantial difference (even at a 
15% disparity). The differences across provinces suggest 
that technological gaps and managerial expertise may 
differ substantially across mills, suggesting that 
convergence in energy use across sugar facilities may 
take a long time.  

The distance function suggests that higher energy 
efficiency could be achieved by increasing the output 
production of mills. The current average production of 
3,900 TCD per mill may need to expand to the targeted 
6,000 to 15,000 TCD per mill. Additionally, the 
significant effect of the interaction between capital and 

labor (substitute inputs) signals that further increases in 
the capital may be needed to increase the energy 
efficiency, suggesting that technological improvements 
in equipment may be required. Capital and raw materials 
appear as complementary inputs, signaling that 
increasing energy-efficient production requires more 
capital investments. As such, government policies 
should build more extensive facilities with superior 
technology. 

Policies supporting research and development, 
development of human resources, finance/banking 
facilitation, and more integrated transportation under the 
Indonesian Sugar Industry Road Map should continue 
albeit with the much-needed improvements in the 
implementation. To accomplish this road map, the 
government should also consider sugar mills' energy 
efficiency in processing facilities, considering the 
substantial energy required in sugar production. Energy 
remains an important input in sugar production, essential 
to achieve competitive and sustainable production. The 
government should encourage efficiency improvement 
by taking measures such as by upskilling workers along 
with the provision of higher technology in mill facilities. 
Allowing foreign technology to be adopted in the sugar 
industry may support further improvements in energy 
efficiency in the sugar production process, as provinces 
with foreign-owned facilities recorded higher efficient 
use of energy than those with mainly domestic-owned 
mills. Finally, because of the limitation of data, other 
factors that impact the energy efficiency of sugar mills 
and environmental factors should be considered in 
further studies. 
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