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In this present paper, a discrete age-structured model of tuberculosis (TB) transmission is formulated and
analyzed. The existence and stability of the model equilibriums are discussed based on the basic reproduction
ratio. A sensitivity analysis of the model parameters is determined. We then apply the optimal control
strategy for controlling the transmission of TB in child and adult populations. The control variables are TB
prevention, chemoprophylaxis of latent TB, and active TB treatment efforts. The optimal controls are then derived
analytically using the Pontryagin Maximum Principle. Various intervention strategies are performed numerically
to investigate the impact of the interventions. We used the incremental cost-effectiveness ratios (ICER) to assess
the benefit of each one the control strategies.

1. Introduction

Tuberculosis (TB) is an airbome infectious disease. It is caused by
the bacillus Mycobac terium wberculosis. TB is a major global health prob-
lem, and the mortality rate without treatment is high; in fact, TB is
one of the top ten diseases causing high mortality. Researchers have
found that 70% of people with sputum smear-positive pulmonary TB
die within ten years [1]. Based on that prevalence, there were 1.4 mil-
lion TB deaths and 10.4 million new TB cases, including 5.9 million
new cases in men, 3.5 million in women, and 1.0 million in children.
The data include 1.2 million HIV-positive patients [1]. About one-third
of the world’s population has latent TB infections. People with latent
TB infections have been infected by the TB bacteria, but they are not
infectious [2].

TB attacks both children and adults. Children with latent TB in-
fections are difficult to diagnose. The symptoms of a TB infection
in a child only emerge when they have a cough and fever, in some
cases it is tied in with influenza. There is little transmission risk, from
children with TB. Hence, TB affecting various age groups can indi-
cate a new transmission method [3]. One million children under 14
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years have been infected with TB, and 170,000 TB-infected children
{excluding children with HIV coinfection) died from the disease in
2015 [2].

Mathematical models have become effective tools with which to
understand the dynamics of TB transmission. Some deterministic and
stochastic models for TB have been developed to address the spread of
the disease, see, for instance, [4, 5]. The model in [4] discussed the
dynamics of a TB outbreak by considering the TB treatment effect at
home. The stochastic model for a TB outbreak was shown in [5]. Fur-
thermore, mathematical models of a dynamic TB outbreak with optimal
control were presented in [6, 7, 8, 9, 10]. The TB model in [6] consid-
ered the optimal control for undetected TB cases. The authors in [7]
analyzed the optimal strategy to a TB outbreak model by considering
the migration of susceptible populations in each area. Silva and Tor-
res discussed an optimal strategy for the TB model with reinfection
and post-exposure interventions [8]. The authors in [9] studied opti-
mal control interventions to minimize the number of infectious and
latent TB populations using real data from Angola. Rodrigues et al.
[10] applied an optimal control problem for TB model with exogenous
reinfection. The cost-effectiveness analysis also was done in [10] to in-
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Table 1
Parameters interpretation of the
model (1).
Parameter  Interpretation
A recruitment rate
a immunity loss rate
B successful infection rate
" natural death rate
o TB prog ression rate
e recovery rate
d TB-induced death rate

vestigate the effect of each one of the control strategies, separately or
combined.

A number of discrete age-structured mathematical models have been
developed for vector-bome diseases such as in [11, 12, 13, 14]. For the
epidemic models with direct transmission, most of the age-structured
models is formulated in the form of integro-partial differential equa-
tions, such as in the TB model [15, 16], HIV maodel [17], and Buruli ul-
cer model [18]. Few studies have considered the discrete age-structure
of an epidemic model with direct transmission. The authors in [19]
investigated an epidemic model as an age-structured TB transmission
model in discrete time units and applied it to predict TB infection in
China.

In this present paper, we study the dynamics of a TB outbreak within
a discrete age-structured population using ordinary differential system.
We also explore the impact of the optimal control strategy in reduc-
ing latent and active TB populations. The controls are represented by
TB prevention, chemoprophylaxis for latent TB, and treatment efforts.
The main purpose of optimal control is to reduce latent and active
TB populations. The remaining part of the paper is arranged as fol-
lows: the formulation of the TB model is addressed in Section 2. The
stability analysis and sensitivity analysis of the model parameters are
given in Sections 3 and 4. The application of the optimal control prob-
lem and the numerical simulation to support the analytic results are
shown in Section 5 and 6. The cost-effectiveness discussion is per-
formed in Section 7. The concluding remark is summarized in Sec-
tion 8.

2. Model formulation

First, we construct a TB spread model by taking into account a sin-
gle age-structured population. The population is assumed to be closed
and is divided into four classes, which are the susceptible class (5),
the latent TB class (), the active TB class (), and the recovered class
(R). The latent TB class consists of hosts infected by TB bacteria, but
without an infectious status. The active TB class consists of hosts with
infectious status. The single age-structured TB spread model is as fol-
lows.

d—S=A+9R—ﬁSI—;rS,

dr

9E _pSTI-(a+WE, @
dt

d—I=f.rE—(y+;r+d)!,

di

dR

ar =yl —(u+0)R.

We assume that the parameters used in the model equation (1) are
constant and non-negative. Moreover, Table 1 consists of the interpre-
tation of the parameters.

Next, we construct a TB spread model by taking into account a dis-
crete age-structured population. This model represents an extension of
model (1). We split the population into child (C') and adult (4) popu-
lations. Furthermore, each population is partitioned into four classes,
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Fig. 1. A discrete age-structured TB transmission diagram.

Table 2
Parameters description of model (2).
Description Parameter
Recruiment rate into the population A
Child survival rate £
MNatural death rate "
Child Adult
population  population
Infection rate fie: Ba
Progression rate from latent to infectious  a. @,
Natural recovery rate ¥e Ta
Immunity loss rate 8. i,
TB death rate dy. d,

namely, the susceptible classes (S, 5,), the latent TB classes (E,
E ), the active TB classes (-, I,), and the recovered classes (Rq, R ).
Therefore, the total size the populationis N = S+ Sy + Ec+ E + I+
Iy + Re + Ry. In this second model, we use the average natural death
rate of the total population, i.e., the natural death rates of the child and
adult populations are assumed to be equal.

Children with TB are less likely to spread the TB bacteria to oth-
ers [3, 20]. Hence, we assume that the children were infected by TB
through contacts with active-TB adults. Hence, only the active TB adults
can spread the TB bacteria in the population. The transmission dia-
gram is given in Fig. 1 for deriving a discrete age-structured model. The
model is derived as follows.

dS¢

d: =A+0cRe— P S 1y —(u+28) Se.
a8,

v =g ScH Ry —fy Syl —pSy.
dE.-

i =fcScly—(ac +u+g)Ee.

dE, _

T =PaSalatg B —lag+p) By (2)
dl-

T:: = E-—(pe+pu+g+do) I,

dl

TI'A sy Ey+gle—(yg+ut+dy)l,.

d R

— =rcle—(u+g+0c) Re.

dr

dR,

T =yala+gRe—(u+0,0R,.

All of the parameters used in model (2) are assumed to be con-
stant and non-negative. Their description can be seen in Table 2.
Furthermore, model (2) has the region of biological interest as fol-
lows.

o= {(SC,S,,,, Fe B de I R ROER
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Model (2) is well-defined in the region © due to the vector field
of the model on the boundary of the region £ does not point to the
exterior area. Hence, if we give an initial condition in the region, then
the solution of the model is well-defined for all time 1 = () and remains
in the feasible region Q.

3. Analysis of the model

First, we analyze model (1). Model (1) has two equilibria. Its disease-

free equilibrium is Ef= (‘%,0,0,0) and its basic reproduction ratio is

s _ afi A
07 wla+ )y +p+d) 3)

The basic reproduction ratio describes the expected number of sec-
ondary case from primary case during the infectious period of the
primary case [21, 22].
Moreover, model (1) has the endemic equilibrium = (%’ E 15,
0
R’), where

(R"] —Diy+pu+d)@+ A
= R:][(9+ widla+ ) +ply+p)+ap(y+0+mw)
(R:] — e+ pah
R:][(9+ W (dla+ )+ ply + ) +apl(y +0 +w)]
[R:] —DayrA
REO+ i) (dla+p)+ ply + )+ ap(y +0 4]

=

R =

The equilibrium £ is locally asymptotically stable if R < I, other-
wise it is unstable. Furthermore, the equilibrium £ exists and is locally
asymptotically stable if R} >1 [23].

Model (2) has disease-free equilibrium E"] = (l,g—"\,0,0,0, 0,0,
ghp e

0). Furthermore, it has the basic reproduction ratio

_ g Aoy By ity ny + e p oy 0y +ac )l

Ry
FERy iz M iy Hls

@)
where iy =g+, m=ac+put+g.ns=u+p,ny=yc+p+g+deand ns =
¥a+u+d,. The ratio R, comes from the 1 x | next-generation matrix
because only the active TB adult population [, can spread TB infections.
Using Theorem 2 in [23], the equilibrium EJ is locally asymptotically
stable if R; < |, otherwise it is unstable.

In addition to the equilibrium E{], maodel (2) also has an endemic
equilibrium E{ = (S;_.,S;,Ef,_., E;,!‘i__,!it, Rf,__, R’A) if Ry > 1. All of the
components of E| are positive if R, > 1. The components depend on the
equilibrium state 1. The equilibrium state I, is the positive root of the
quadratic equation Ax” + Bx + C =0, where

A=y fo(nansng —wgra 0a)(nam ng — ac yo 0c) >0,
B=ninmamts Falnsnsn —wayatiy)
=& P B Nyt i 0y + Ry Mg My e + @y ey )
+ 1345017 o p (g 0y fg — e v Bc),
C=—(Ry = 1)y mamy 1y s 96 17

where 5y =+ g+ 0 and 57 = u + 0,4. The coefficient C has negative
value if R, > 1. Hence, I, > 0if Ry > 1.

The equilibrium E| is locally asymptotically stable if R, > 1. The
bifurcation diagram of model (2) with respect the ratio R, can be seen
in Fig. 2.

4. Sensitivity analysis of parameters

In the present section, we implement a sensitivity analysis of the
parameters from models (1) and (2). This allows us to determine the
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Fig. 2. Bifurcation diagram of model (2).
Table 3
Parameter values for simulations.
Parameter  Value Ref. Parameter  Value Ref.
A 1000 Assumed Ta 0.21 [34]
g L (2] re 0.2 [34]
I 0.02 33) 'R 0.873 Assumed
# 0.02 33] 0, 0.83 Assumed
fie 0.01 33) " 0.0143 135]
a 0.005  [35] d 0.05751  [36]
a, 0,005  [35] d, 0.05751  [36]
ap 0.005  [35] dy. 0.0575 136]
v 0.21 [34)
Table 4

Sensitivity index of the parameters in models (1) and (2).

Parameter (p)  Sensitivity index Y:'I' Parameter (p)  Sensitivity index Tf"

A 1 A 1
# 1 P 0.000105
a 0.7409 Ba 0.923
v 0.7452 B 0.0768
P 17917 @, 0.7379
d 0.2041 ap -0.000143
Ya -0.745
v -0.00238
" 1.89
dy -0.204
dy. -0.000685

parameters that have a great influence on the basic reproduction ra-
tios (R} and R;). We adopt the same approach in [24] to derive the
analytic formulation for the sensitivity index of R} and R, to each pa-
rameter. The sensitivity index of O related to parameter k, is defined
as

o k
¥ = ﬁ X a (5)
The sensitivity indices Y‘f?' \ Y:.‘\‘, ‘(ﬁ“ are equal to one and do not
depend on the values of the other parameters. The sensitivity indices
of R} and R, related to the remaining parameters can be calculated in
the same way as in (5). Using the parameter values in Table 3, their
sensitivity indices are given in Table 4.
A positive index indicates that the value of R} or R, increasesas a
parameter is increased. To the contrary, a negative index means that the

value of R} or R, decreases as a parameter is increased. The sensitivity

R,

index of Y, =0.923 means that an increase of 10% in the value g,

1
A
will increase Ry by 9.23%. Likewise, a sensitivity index of Yf:‘ =—(.745
indicates that an increase of 10% in the value y , will decrease R, by

7.45%.
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Next, we compare the sensitivity indices of basic reproduction ratios
of models (1) and (2) with respect to some parameters. From Table 4,
it can be seen that, when using model (1), the sensitivity indices of
the basic reproduction ratio R, with respect to the TB infection rate
() and the TB progression rate («) are 1 and 0.7409, respectively.
While, for model (2), the sensitivity indices of the basic reproduction
ratio R, with respect to the TB infection rates for adults (#,) and
children () are significantly different, i.e., 0.923 and 0.0768, respec-
tively. Similarly, the sensitivity indices of the basic reproduction ratio
R, with respect to TB progression for adults («,) and children («..) are
0.7379 and —0.000143, respectively. The significant difference in sensi-
tivity indice values is due to the fact that only active TB adults can
spread TB in the population. Hence, the discrete age-structured model
provides a more realistic description of TB transmission in the popula-
tion.

5. Formulation of the optimal control

In the present section, we propose the optimal control problem of
the spread of TB within the discrete age-structured model. The control
aspect to be optimized in this work is the prevention efforts («,) for the
susceptible population, chemoprophylaxis (u,) for the latent TB popula-
tion, and treatment (u,) for the active TB population. All of the controls
are incorporated into the child and adult populations. The TB spread
model involving the discrete age-structured population with three con-
trols is as follows.

d8-
T=A+9r_'Rr_'_f1_“l)ﬁCSc‘JA_fF""'K)SC:
a8,

' =gSeH0, Ry —(l—u)fy Sy 1, —uS,.

1E
( jc =(l—u) oSl —la, +pu+g)Eq— b-u,y B,

ar

E, .

i =l ) Sl +egEr—lug+ ) Ey —bqua By,
die

Tf="-'r_'EC_U’c+|"+3+“lc‘”c‘_'r’CI‘AJc‘: (&)
dl

T=r.r,1£',1 tele—(pa+tu+d) Iy —bausly.

«
d R )

o =pede —(u+g 400 R+ 80, Eq + bouy I,

il
dR

TI'A =y dy+ERe—(u+8 R, +6,u, Ey +bu 1.

The parameters 6. and §, represent the recovery rate from chemo-
prophylaxis for the child and adult populations, respectively. More-
over, the parameters b~ and b, denote the recovery rate from treat-
ment for the child and adult populations, respectively. We could ob-
tain the optimal control strategies by minimizing following cost func-
tion.

iy

J = Bt Eg L+l 2 e 22+ 24l
(tey diz . liz) = e+ Eq+I+ A+?IH+?I!2+?H3(F, @)

(1]

where ¢;, ¢5, and ¢y are weighting constants for the TB prevention
efforts, chemoprophylaxis of latent TB, and treatment for active TB,
respectively.

We use a quadratic form to measure the control costs [25, 26, 27,
28]. The terms ¢, u],c;u; and e;u} depict the costs correlated with
the TB prevention, chemoprophylaxis, and TB treatment controls, re-
spectively. Thus, greater values of ¢, ¢, and ¢y will indicate higher
implementation costs for the prevention of TB, chemoprophylaxis, and
treatment, respectively.
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We seek the optimal controls uy, uj, and uj such that

J(u:,u;,u;)= min J(uy, ty,0), (8)
v

where I' = {(111,112,113)|051q <li= 1,2,3}. In this region, when the

value of a control is zero, then no investment in control have been

made. Moreover, when the value of a control is one, then a control ef-

fort has been carried out maximally.

The conditions necessary for determining the optimal controls u},
us, and I that satisfy condition (8) with constraint model (6) will
be found wia Pontryagin’s Maximum Principle [29]. This principle
converts equations (6), (7), and (8) into a problem of minimizing
the Hamiltonian function H, pointwise with respect to (u,.u.us),
ie.,

]
€L 2 €2 3 O3 o
H=E +E 4L+, + 5@+ 25+ 2u+ ) 4 f,
- = - i=1

where f; denotes the right-hand side of model (6). The adjoint variables
A; for i= 1,2, ..., 8 satisfy the following co-state system.

dH

A=—— =4[l —up el gt u+gl—Arg— Azl —up) P14,
EAYS
: i H
A= — T = A=) Pl g+ ] = Ay (L =) pady,
a5,
Ay=— oH =—l+As(fcur+g+pu+ac)—Ayg — As g — A7 S ua,
dE -
4=7£=7l+r14(8’1u-,+;r+ad)7ﬂhu’174384u,,
dE , - -
ds= —% =—l+dslthous+ g+ p+yc+de)— Agg— A7 (beus +yc). (9)
dl ¢
- i H
’1\‘:=_;T=_1+(’ll_’13)[1_“l)lﬁr_"gc""u’l_’14)(1_“1)I6ASA
A
+ (g — Agdya + batn) + Aglp + dg).
; dH
A7=—E=—Alﬂc-+r17(,u+g+9c-)—rlsg,
dH
8 —m=—flz94+rls(ﬂ+94),

where the transversality conditions 4 tp)=0,i=12...,8
The steps needed to obtain the optimal controls u = {u}, 3.1 ) are
as follows [30, 31].

1. Minimize the Hamiltonian function H with respect to u. We ob-

tain
0, foru; <0
“:lc_ Ty llds—a) Wi -'"il""“-t—*zlﬂv"'AJ’ for 0 <u, <1
1, foru, =1
0, foru, <0
W= 5.45.434—5.45.4*3:5(_'5(_' A= Ep d¢ 5\—.’ for0 <u, <1
1-, foru, =1
0, for uy £0
W= oy da—Taby i\u:;f(_' by ds—Ie be dy . for0< w < 1
1‘, for w21

2. Solve the state system (1) = %, where x = (8,8, E. Ey 1. 14,
R, Ry), A=(4A}, 43,....4g), using the initial condition x;.
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3. Solve the co-state system A(1) = —% with transversality conditions
Alt)=0,fori=12.3 .8

Based on the above steps, the optimum control (u’l‘,
in the following theorem.

u;,n;} is given

Theorem 1. The optimal control [u’l‘
gty .z, uz)on s

o = nm_x{(],miu{ 1 Tl(ds = 4)) B S+ 04y = A2) g Sy ) }}

1 .
€1

g = ma {0, m,m{  Eaduds =By dst Bedchs = Ecocdy } }

€2

u"=max{0 min{l Tybyds—Iabydg+lcheds —Ipbe 4y }}
2 ] .

€3

uj.u) minimizing the cost function

sy,

where 4;, i=1,2.3,....8, are the solutions of co-state system (9).

Next, the solutions of the optimal system will be solved numerically
for various strategies.

6. Numerical results

In the present section, we demonstrate the comparison of the nu-
merical results of the model with control (6) and the model without
control (2). We use the fourth order Runge-Kutta (RK4) scheme to
solve the optimal control strategy. First, we implement the forward RK4
scheme to solve the state systems. After that, we utilize the backward
RK4 scheme to solve the co-state system. We update the controls until
the current state, the adjoint, and the control values converge suffi-
ciently [32].

Parameters used for the simulations could be seen in Table 3, for
which the basic reproduction ratio R, = 104.51. We also employed
parameters values 6, = 0.7, é- =07, b, =055 and b- =055 [34].
Moreover, the initial condition is Se(0) = 3000, S4(0) = 5000, E-(0) =
100, EA(0) = 150, 1-(0) = 100, 1,(0) = 160, R-(0) = 50, R,(@0) = 55.
We assume that ¢y > ¢y > ¢;. This assumption is based on the facts
that the cost associated with treatment for active TB is more ex-
pensive than treatment for latent TB, while the cost associated with
prevention is cheaper than the treatment for latent TB. Hence, the
weighting constants in the objective function are ¢, = 50, ¢, = 70 and
¢y = 90. We investigate four control strategies which are given as fol-
lows.

1. Combination of TB prevention () and chemoprophylaxis for latent
TB (u2).

2. Combination of TB prevention (v, ) and active TB treatment (u;).

3. Combination of chemoprophylaxis for latent TB (u,) and active TB
treatment (u;).

4. Combination of TB prevention (u, ), chemoprophylaxis for latent TB
(u5), and active TB treatment (u).

6.1. First strategy

In the first strategy, combination of TB prevention (u,) and chemo-
prophylaxis for latent TB (u,) is used. Meanwhile, the TB treatment
control is not used (uy =0). The profile of optimal controls uy and uy
is plotted in Fig. 3. The TB prevention should be done intensively for
almost 10 years and then decreasing in year 10. Meanwhile, the chemo-
prophylaxis for latent TB should be done intensively for the first 2.5
years and then decreasing.

Furthermore, the dynamics of latent TB in the child and adult pop-
ulations are given in Fig. 4, and the dynamics of active TB in the child
and adult populations are given in Fig. 5. Figs. 4(a)-4(b) show that
TB prevention and chemoprophylaxis for latent TB controls provide a

Heliyon 6 (2020) 03030
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Fig. 3. Profile of optimal controls «} and u}.

significant reduction in latent TB in the child and adult populations
compared to having no controls. Similar conditions also hold for active
TB in the child and adult populations, i.e., active TB in both populations
are lower compared to running the model without controls as depicted
in Figs. 5{a)-5(b).

6.2. Second strategy

In the second strategy, the optimal controls for TB prevention )
and TB treatment (u}) are implemented. The profile of the optimal con-
trols u and «] is given in Fig. 6. Using this strategy, TB prevention
should be done intensively for nearly 10 years. Meanwhile, TB treat-
ment is at the upper bound of 100% and decreases gradually to lower
bound in 10 years.

Figs. 7 and 8 provide the dynamics of latent TB infections in the
child and adult populations as well as active TB in the child and adult
populations, respectively, using the optimal controls u} and uj. This
strategy provides a significant reduction in latent TB in the child and
adult populations compared to the scenario without controls. Using this
strategy, active TB in the child and adult populations decreases more
than it would in the absence of controls.

6.3. Third strategy

In the third strategy, we implement the combination of opti-
mal controls for chemoprophylaxis for latent TB (u5) and TB treat-
ment (1) for simulation. The profile of the optirnalﬁ controls u3 and
u; is given in Fig. 9. Using this strategy, chemoprophylaxis for la-
tent TB and TB treatment should be done intensively for almost
10 and 9.5 years, respectively, and then decreases to the lower
bound.

Figs. 10 and 11 show the dynamics of latent TB and active TB in the
child and adult populations, respectively, using the optimal controls «
and u;. In utilizing this strategy, we observe in Figs. 10(a)-10(b) that
latent TB in both populations is less than the latent TB in both popu-
lations when no controls are used. Similarly, in Figs. 11{a)-11(b), we
observed that active TB in both populations is lower when the control
strategies are adopted than it is without controls.

6.4. Fourth strategy

In the last strategy, a combination of optimal controls for TB preven-
tion (u’l‘ ), chemoprophylaxis for latent TB (u;), and TB treatment (u;)
are implemented simultaneously. The profile of the optimal controls is
given in Fig. 12. By using this strategy, TB prevention, chemoprophy-
laxis for latent TB, and TB treatment should be done intensively for
almost 10, 2.3, and 1 years, respectively, and then decreased to the
lower bound.
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! — The comparison between the dynamics for latent TB and active TB
oo uy for the single- and two-age-structured models are shown in Fig. 15. The
08 simulation results of Fig. 15(a) show that the total latent TB population
o7t for the two-age-structured model decreases more than the single-age

B osf model when using the fourth strategy. Similarly, Fig. 15(b) shows that
£ osl the total active TB population in the two-age-structured model is less
% oal than that for the single-model using this set of controls. The signif-
o

val icant reduction indicates that the two-age-structured model is better
than the single-age model at controlling the spread of TB in the popu-

ogr lation.
oir The corresponding control profile for TB prevention (u,) is displayed
> + , . X o in Fig. 16, while the chemoprophylaxis («,) and TB treatment () are

4 L]
Time (¥ eans)

Fig. 6. Profile of optimal controls u; and u}.

Figs. 13 and 14 provide the dynamics of latent TB and active TB in
the child and adult population, respectively, using the fourth strategy.
The figures show that this optimal strategy provides a significant reduc-
tion in both latent TB and active TB in the child and adult population
compared the scenario without controls.

Next, we compare the dynamics of models (1) and (2) (the single-
and two-age-structured models) for the fourth strategy. First, we expand
model (1) by incorporating TB prevention (u,) for the susceptible popu-
lation (), chemoprophylaxis (u, ) for the latent TB population (E), and
TB treatment () for the active TB population (I). The cost function is
given by

Iy
Ty g 04) = E+F+r—lxlz+r—2112+ r—hﬁdl’
11y, Uy TR T LA

L]

(1)

presented in Figs. 17(a) and 17(b), respectively. It can be seen from
Fig. 16 that the efforts expended on TB prevention for the single- and
two-age-structured models are not different. Moreover, from Fig. 17,
we can see that the efforts expended on chemoprophylaxis and TB treat-
ment for the single-age-structured model is greater than those expended
for the two-age-structured model. The different efforts expended here
are due to everyone in one-age-structured model is being treated using
the adult rate.

7. Cost-effectiveness analysis

We could not easily determine the best optimal strategy due to the
figures in Section 6 exhibiting similar patterns. Meanwhile, the third
strategy performed the most poorly (see Figs. 10 and 11). Here, we
conduct a cost-effectiveness analysis to determine the most effective
strategy of the four strategies presented in Section 6.

To measure the differences between the costs and health outcomes
of these four strategies, we use the incremental cost-effectiveness ratio
(ICER) [37, 38, 39]. We use ratio ICER for comparing two interven-
tion strategies that compete for the same resources. Ratio ICER could
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Fig. 8. The dynamics of active TB in children (a) and adults (b) using optimal controls «} and u}.

! ' ' ' ) The strategy to be excluded at each step is that corresponding to the
o8 highest ICER [41]. First, we compared the cost-effectiveness of strate-
o8 gies 1 and 2. The ICERs are calculated as follows.
07
£os ICER(1) = _383.3547-0 =0.3092
EM 1.2399 % 10° -0
<
B _
& 04 ICER(2) = 318.8270 — 383.3547 — _0.3199.
0s L4416 % 10° — 1.2300 x 10°
02 From the values of ICER(1) and ICER(2), we can observe that
a1 strategy 2 is cheaper than strategy 1. In other words, strategy 1 is
. . . . more costly and less effective than strategy 2. Therefore, strategy 1
0 2 * e wﬁ,;]b i 0 is excluded from the set of options, and strategies 2 and 3 are com-
pared.
Fig. 9. Profile of optimal controls i) and u}.
L 318.8270
ICER(2) = —2=0_ — 2212
L4416 x 10°
be interpreted as the additional cost per additional health outcome.
I ) L. T82.2304 — 318.8270
When measuring two or more competing strategies incrementally, one ICER(3) = =12.2760
. - : . . 1.6452 x 10* — 1.4416 x 103
intervention should be compared with the next-less-effective altemative
[40]. The ICER formula is as follows. Similarly, from the values of ICER(2) and ICER(3), it can be seen
that strategy 2 is cheaper than strategy 3. Therefore, strategy 3 should
ICER = Difference in costs produced by strategies i and j be excluded from the set of options because strategy 3 is more costly and
_ Difference in the total number of infection averted in strategies i and j less effective than strategy 2. Hence, we continue on to the comparison
of strategies 2 and 4.
The total number of averted infections is calculated from the dif- ¥
ference between the total number of infected individuals without con- ICER(2) = 318.8270 —02212
trols and the total infected individuals with controls. Moreover, for T ladlex 10T
the total cost for the implemented strategies, we employed the cost
. e 26 2 G o2 . 486.8425 — 318.8270
functions, -2‘-14[, F 13, and 5 u; over time. We also used the param- ICER(4) = S - A =.5586.
eter values in Table 3 to compute the total cost and total infections 1.7424 X 10° — 14416 X 1(°
averted, as in Table 5, with an increasing order of total averted infec- Finally, from the values for ICER(2) and ICER(4), we can observe
tions. that strategy 2 is cheaper than strategy 4. Therefore, strategy 4 should
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Y o tence and local stability of the equilibria. If the ratios are less than unity,
.l \ - then the disease-free equilibriums are locally asymptotically stable. On
08 Y Uy the contrary, the disease will endemic in the population whenever the
0T * ratios are greater than unity. We also compared the sensitivity indices
% 08 . of the basic reproduction ratios with respect to the parameters of the
% sk . single- and the two-age-structured models. Finally, we extended the TB
Eoaf S transmission model for an age-structured population by applying opti-
osk N mal control strategies.
nsh b We simulated the optimal control system by comparing with the sys-
0' Tl tem without control. The numerical simulations indicated that control
AS -
T strategies have a significant impact in terms of reducing TB infections
o 2 5 10 in the population. However, the combination of chemoprophylaxis for

L]
Time (Years)

Fig. 12. Profile of optimal controls u, «} and u.

be excluded from the set of options since itis more costly and less effec-
tive than strategy 2. Hence, we deduce that strategy 2 (the combination
of TB prevention and TB treatment only) is the most cost-effective of all
the strategies for TB control interventions.

Repeating the iteration process, we can decide the next most cost-
effective strategy. Thus, we arrive at strategy 4 being the next most
cost-effective strategy after strategy 2, followed by strategy 1, then
strategy 3. These findings indicate that strategy 3 is the least effective
strategy.

8. Conclusion
In this paper, we constructed epidemic models of TB transmission

within single- and two-age-structured populations. From the analysis of
the models, we got the basic reproduction ratios that determine the exis-

latent TB and TB treatment has the least impact on TB infection reduc-
tion.

From the comparison results for the application of three control vari-
ables, it is shown that the total latent and infected populations for the
two-age-structured model decreased more than they did in the single-
age model. Thus, the effort expended for chemoprophylaxis for latent
TB and TB treatment for two-age-structured model is less than that
expended for the single model. The greater effort needed in single-age-
structured population is due to all patients being managed via adult
intervention.

Furthermore, we conducted [CER analysis for cost-effectiveness to
deduce the most cost-effective control intervention. From the pair-
wise comparison results, we conclude that the combination of TB pre-
vention and TB treatment is the most cost-effective strategy to im-
plement. This is followed by the combination of three controls, the
combination of TB prevention and chemoprophylaxis for latent TB,
then the combination of chemoprophylaxis for latent TB and TB treat-
ment.
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4 i, 1.7424 % 10" 486.8425
Competing interest statement

The authors declare no conflict of interest.
Additional information
No additional information is available for this paper.

References

[1] World Health Organization, Global Tuberculosis Report 2016. World Health Orga-
nization, Switzerland, 2016.

[2] World Health Organization, Factsheet on the world tuberculosis report, WHO,
[Online] Available from, http://www.who.int/mediacentre/factsheets, fs104/en/,
2017. (Accessed 7 June 2017).

[3] AA. Velayati, Tuberculosis in Children, International Journal of Mycobacteriology,
51-52 Sciencedirect: Elsevier, 2016,

[4] H.F. Huo, M.X. Zou, Modelling effects of treatment at home on tuberculosis trans-
mission dynamics, Appl. Math. Model. 40 (2016) 9474-9484.

[5] Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Dynamics of a stochastic tuberculosis
model with constant recruitment and varying total population size, Physica A 469
(2017) 518-530.

[6] D.P. Moualeu, M. Weiser, R. Ehrig, P. Deflhard, Optimal control for tuberculosis
model with undetected cases in Camercon, Commun. Nonlinear Sci. Numer. Simul
20 (2015) 986-1003.

[7] Ahmadin, Fatmawati, Mathematical modeling of drug resistance in tuberculo-
sis transmission and optimal control treatment, Appl. Math. Sci. 8 (92) (2014)
4547-4559.

[8] C.1. Silva, D.F.M. Torres, Optimal control for a tuberculosis model with reinfection
and postexposure interventions, Math. Biosci. 244 (2) (2013) 154-164

[9] C.1. Silva, D.F.M. Torres, Optimal control strategies for tuberculosis treatment: a
case study in Angola, Numer. Algebra Control Optim. 2 (3) (2012) 601-617.

[10] P. Rodrigues, C.J. Silva, D.F.M. Torres, Cost-effectiveness analysis of optimal control
measures for tuberculosis, Bull. Math. Biol. 76 (10) (2014) 2627-2645.

[11] F. Forouzannia, A.B. Gumel, Mathematical analysis of an age-structured model for
malaria ransmission dy namics, Math. Biosci. 247 (2014) 80-94.,

[12] D. Aldila, T. Giitz, E. Soewono, An optimal control problem arising from a dengue
disease transmission model, Math, Biosci. 242 (2013) 9-16.

[13] G.G. Mwanga, H. Haario, V. Capasso, Optimal control problems of epidemic systems
with parameter uncertainties: application to a malaria two-age-classes transmission
model with asymptomatic carriers, Math. Biosci. 261 (2015) 1-12

[14] H. Tasman, A.K Supriatna, N. Nuraini, E. Soewono, A dengue vaccination model for
immigrants in a two-age-class population, Int. J. Math. Math. Sci. (2012) 236352,
15 pages.

[15] C. Castillo-Chavez, Z. Feng, Global stability of an age-structure model for TB and its
applications to optimal vaccination strategies, Math. Biosci. 151 (1958) 135-154.

10

[16] J.P. Aparicio, C. Castillo-Chavez, Mathematical modelling of tuberculosis epidemics,
Math. Biosci. Eng. 6 (2) (2009) 209-237.

[17] J. Wang, R. Zhang, T. Kuniya, Mathematical analysis for an agestructured hiv in-
fection model with saturation infection rate, Electron. J. Differ. Equ. 30 (2015) 1-9.

[18] E. Bonyah, 1. Dontwi, F. Nyabadza, Fatmawati, An age-structured model for the
spread of buruli ulcer: analysis and simulation in Ghana, Br. J. Math. Comput. Sci.
4 (16) (2014) 2298-2319.

[15] H. Cao, Y. Zhou, The discrete age-structured SEIT model with application to tuber-
culosis transmission in China, Math. Comput. Model. 55 (2012) 385-395.

[20] Centers for Disease Control and Prevention, TBin children in the United States, CDC,
[Online] Available from, https://‘www.cde.gov,/th/ topic/populations /thinchildren,
default.htm, 2018, (Accessed 20 February 2018).

[21] O. Diekmann, J.AP. Heesterbeel, J.A.J. Metz, On the definition and the computa-
tion of the basic reproduction ratio R, in models for infectious diseases in heteroge-
nous populations, J. Math. Biol. 28 (1990) 362-382.

[22] O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Dis-
eases, Model Building, Analysis and Interpretation, John Wiley & Son, 2000,

[23] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold en-
demic equilibria for compartmental models of disease transmission, Math. Biosci.
180 (2002) 29-48.

[24] N. Chirnis, J.M. Hyman, J.M. Cushing, Determining important parameters in the
spread of malaria through the sensitivity analysis of a mathematical model, Bull.
Math. Biol. 70 (2018) 1272-1296.

[25] Fatmawati, H. Tasman, An optimal control strategy to reduce the spread of malaria
resistance, Math. Biosci. 262 (2015) 73-79.

[26] Fatmawati, H. Tasman, An optimal treatment control of TB-HIV coinfection, Int. J.
Math. Math. Sci. (2016) 8261208, 11 pages.

[27] K.O. Okosun, 0.D. Makinde, A co-infection model of malaria and cholera diseases
with optimal control, Math. Biosci. 258 (2014) 19-32

[28] K.O. Okosun, 0.D. Makinde, Optimal control analysis of hepatitis C virus with acute
and chronic stages in the presence of reatment and infected immigrants, Int. J.
Biomath. 7 (2) (2014) 1450019, 23 pages.

[25] L.5. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathe-
matical Theory of Optimal Processes, Wiley, New York, 1962,

[30] F.L Lewis, V.L. Syrmos, Optimal Control, John Wiley & Sons, New York, 1995,

[31] D.5. Naidu, Optimal Control Systems, CRC PRESS, New Yorl, 2002,

[32] 5. Lenhart, J.T. Workman, Optimal Control Applied to Biological Models, John
Chapman and Hall, 2007,

[33] C.P. Bhunu, Mathematical analysis of a three-strain tuberculosis transmission model,
Appl. Math. Model. 35 (2011) 4647-4660

[34] F.B. Agusto, Optimal chemoprophylaxis and treatment control strategies of a tuber-
culosis rransmission model, World J. Model. Simul. 5 (3) (2009) 163-173.

[35] S. Athithan, M. Ghosh, Optimal control of tuberculosis with case detection and treat-
ment, World J. Model. Simul. 11 (2) (2015) 111-122

[36] J.J. Tewa, 5. Bowong, B. Mewoli, Mathematical analysis of two-patch model
for the dynamical transmission of tuberculosis, J. Appl. Math. Model. 36 (2012)
2466-2485.

[37] G.T. Tilahun, 0.D. Makinde, D. Malonza, Modelling and optimal control of pneumo-
nia disease with cost-effective strategies, J. Biol. Dyn. 11 (S2) (2017) 400-426.

[38] G.T. Tilahun, 0.D. Makinde, D. Malonza, Modelling and optimal control of typhoid
fever disease with cost-effective strategies, Comput. Math. Methods Med. (2017)
2324518, (1-16 pages).

[39] G.T. Tilahun, O.D. Makinde, D. Malonza, Co-dynamics of pneumonia and typhoid
fever diseases with cost- effective optimal control analysis, Appl. Math. Comput. 316
(2018) 438-459.

[40] K.O. Okosun, 0. Rachid, N. Marcus, Optimal control strategies and cost-effectiveness
analysis of a malaria model, Biosystems 111 (2013) 83-101.

[41] B. Bucnomo, B.D. Marca, Optimal bed net use for a dengue disease model with
maosquito seasonal pattern, Math, Methods Appl. Sci. (2017) 1-20.




Optimal control of a discrete age-structured model for
tuberculosis transmission

ORIGINALITY REPORT

19, 13+ 17« 0O«

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

link.springer.com

Internet Source

T

repository.ubaya.ac.id

Internet Source

(K

Alfred Hugo, Oluwole Daniel Makinde,
Santosh Kumar, Fred F. Chibwana. "Optimal
control and cost effectiveness analysis for
Newcastle disease eco-epidemiological model
in Tanzania", Journal of Biological Dynamics,
2016

Publication

T

arxiv.org

Internet Source

(K

scholar.sun.ac.za

Internet Source

T

Jemal Mohammed-Awel, Eric Numfor.
"Optimal insecticide-treated bed-net coverage
and malaria treatment in a malaria-HIV co-

<1%



infection model", Journal of Biological
Dynamics, 2016

Publication

www.ncbi.nlm.nih.gov

Internet Source g <1 %

n Okosun, K.O., 0.D. Makinde, and I. Takaidza. <1 o
"Impact of optimal control on the treatment ’
of HIV/AIDS and screening of unaware
infectives", Applied Mathematical Modelling,
2013.
Publication
www.tandfonline.com

n Internet Source <1 %
repositorium.sdum.uminho.pt

Inte'r::letSource p <1 %
Xiaoyan Li, Alexander Doroshenko, Nathaniel

. e < | %
D. Osgood. "Applying particle filtering in both
aggregated and age-structured population
compartmental models of pre-vaccination
measles”, PLOS ONE, 2018
Publication

A. O. Egonmwan, D. Okuonghae. "Analysis of <1 o

a mathematical model for tuberculosis with
diagnosis", Journal of Applied Mathematics
and Computing, 2018

Publication

hdl.handle.net



Internet Source

<1 %
www.worldacademicunion.com

Internet Source <1 %
"Mathematics Applied to Engineering,

15 . . , < | %
Modelling, and Social Issues", Springer
Science and Business Media LLC, 2019
Publication

Kazeem O. Okosun, Ouifki Rachid, Nizar <1 o
Marcus. "Optimal control strategies and cost- ’
effectiveness analysis of a malaria model”,
Biosystems, 2013
Publication

Lianwen Wang, Zhijun Liu, Dashun Xu, Xinan <1 o
Zhang. "Global dynamics and optimal control ’
of an influenza model with vaccination, media
coverage and treatment", International
Journal of Biomathematics, 2017
Publication
doaj.or

InterngtSourgce <1 %

Soyoung Kim, Aurelio A. de los Reyes, Eunok <1 o

Jung. "Mathematical model and intervention
strategies for mitigating tuberculosis in the
Philippines", Journal of Theoretical Biology,
2018

Publication




rr.hec.gov.pk
IEw)ternetSourcge p <1 %
tb-mac.or
Internet Source g <1 %
www.m-hikari.com
Internet Source <1 %
Sungim Whang, Sunhwa Choi, Eunok Jung. "A <1 o
dynamic model for tuberculosis transmission ’
and optimal treatment strategies in South
Korea", Journal of Theoretical Biology, 2011
Publication
creativecommons.or
Internet Source g <1 %
Abdulfatai A. Momoh, Armin Figenschuh. <1 y
"Optimal control of intervention strategies ’
and cost effectiveness analysis for a Zika virus
model", Operations Research for Health Care,
2018
Publication
Okosun, Kazeem O., Ouifki Rachid, and Nizar <1 o
Marcus. "Optimal control strategies and cost- ’
effectiveness analysis of a malaria model”,
Biosystems, 2013.
Publication
hal.archives-ouvertes.fr
Internet Source <1 %




Emilene Pliego-Pliego, Olga Vasilieva, Jorge <1 o
Velazquez-Castro, Andrés Fraguela Collar.
"Control strategies for a population dynamics
model of Aedes aegypti with seasonal
variability and their effects on dengue
incidence", Applied Mathematical Modelling,
2020
Publication

Cristiana J. Silva, Delfim F. M. Torres. "A TB- <1 o
HIV/AIDS coinfection model and optimal ’
control treatment”, Discrete & Continuous
Dynamical Systems - A, 2015
Publication

Oluwasgun S.haro!'ni, Tufail Malik. "Optimal <1 o
control in epidemiology", Annals of
Operations Research, 2015
Publication

Soovoojeet Jana, Palash Haldar, T. K. Kar. <1 o
"Mathematical analysis of an epidemic model ’
with isolation and optimal controls”,
International Journal of Computer
Mathematics, 2016
Publication

Gabriel Otieno, Joseph K. Koske, John M. <1 o

Mutiso. "Transmission Dynamics and Optimal
Control of Malaria in Kenya", Discrete
Dynamics in Nature and Society, 2016

Publication




Liuyong Pang, Sanhong Liu, Xinan Zhang, <1
Tianhai Tian. "The Cost-Effectiveness Analysis &
and Optimal Strategy of the Tobacco Control",
Computational and Mathematical Methods in
Medicine, 2019
Publication

Liuyong Pang, Zhong Zhao, Xinyu Song. "Cost- <1 o
effectiveness analysis of optimal strategy for ’
tumor treatment”, Chaos, Solitons & Fractals,

2016
Publication
orbi.uliege.be

InternetSourc% <1 %
Tahir Khan, Zakir Ullah, Nigar Ali, Gul Zaman.

- » . <l%
"Modeling and control of the hepatitis B virus
spreading using an epidemic model", Chaos,

Solitons & Fractals, 2019
Publication
ueaeprints.uea.ac.uk

InternetEource <1 %

Hui Cao, Hgngwu Ta.n. ."The discretg <1 o
tuberculosis transmission model with
treatment of latently infected individuals”,

Advances in Difference Equations, 2015
Publication
Tsanou Berge, Samuel Bowong, Jean M.-S. <1 o

Lubuma. "Global stability of a two-patch



cholera model with fast and slow
transmissions", Mathematics and Computers
in Simulation, 2017

Publication

kuscholarworks.ku.edu
Internet Source <1 %
www.eudoxuspress.com
Internet Source p <1 %
T.K. Kar, Swapan Kumar Nandi, Soovoojeet
42 . < | %
Jana, Manotosh Mandal. "Stability and
bifurcation analysis of an epidemic model
with the effect of media", Chaos, Solitons &
Fractals, 2019
Publication
T.Itl.JS Okello Orwa, Rachel Wae.ma Mbogo, <'] o
Livingstone Serwadda Luboobi.
"Mathematical model for the in-host malaria
dynamics subject to malaria vaccines", Letters
in Biomathematics, 2018
Publication
www.math.yorku.ca
Internet Source y <1 %
WWwW.mdpi.com
InternetSourcep <1 %
46 E. P. Fenichel, R. D. Horan. "Gender-Based <1 o

Harvesting in Wildlife Disease Management",



American Journal of Agricultural Economics,
2007

Publication

barada.canisius.edu
Internet Source <1 %
"Recent Advances in Mathematical and <1
_ . . %
Statistical Methods", Springer Science and
Business Media LLC, 2018
Publication
Aldila, Dipo, Thomas Go6tz, and Edy Soewono. <'] o
"An optimal control problem arising from a ’
dengue disease transmission model",
Mathematical Biosciences, 2013.
Publication
Ashenafi Kelemu Mengistu, Peter J. Witbooi.
. nat <l
"Modeling the Effects of Vaccination and
Treatment on Tuberculosis Transmission
Dynamics", Journal of Applied Mathematics,
2019
Publication
Lee, Kwang Sung, and Abid Ali Lashari. <1 o

"Stability analysis and optimal control of pine
wilt disease with horizontal transmission in
vector population", Applied Mathematics and
Computation, 2013.

Publication




M.A. Khan, Syed Wasim Shah, Saif Ullah, J.F.
Gomez-Aguilar. "A dynamical model of
asymptomatic carrier zika virus with optimal
control strategies", Nonlinear Analysis: Real
World Applications, 2019

Publication

<1%

ﬁgr\:;at?Oirejindifferenceequations.springeropen.cor%1 o
Irn1t§r|cr)](;tnsilutrtcjeraIspublishing.com <1 o
o, <Tw
D. Aldila, N. Nuraini, E. Soewono. "Optimal <1 o

control problem in preventing of swine flu
disease transmission", Applied Mathematical
Sciences, 2014

Publication

Dhiraj Kumar Das, Subhas Khajanchi, T.K. Kar. <1
. . o %
"Transmission dynamics of tuberculosis with
multiple re-infections", Chaos, Solitons &
Fractals, 2020
Publication
F. B. AGUSTO, K. O. OKOSUN. " OPTIMAL <1 o

SEASONAL BIOCONTROL FOR ", International
Journal of Biomathematics, 2011

Publication




Hui Cao, Xiaoyan Gao, Dongxue Yan, Suxia <1
. %
Zhang. "The dynamics of an age - structured
TB transmission model with relapse”,
Mathematical Methods in the Applied
Sciences, 2020
Publication
m J.S. Heo, K.Y. Lee, R. Garduno-Ramirez. <1 o
"Multiobjective Control of Power Plants Using ’
Particle Swarm Optimization Techniques",
|IEEE Transactions on Energy Conversion, 2006
Publication
Roop-0O, Pariyaporn, Wirawan Chinviriyasit, <1
o %
and Settapat Chinviriyasit. "The effect of
incidence function in backward bifurcation for
malaria model with temporary immunity",
Mathematical Biosciences, 2015.
Publication
aip.scitation.or
InteEnetSource g <1 %
demon.eltc.ru
Internet Source <1 %
iins.jalaxy.com.tw 1
Iiternejt Sourcgl < %
mtbi.asu.edu '
Internet Source < %

www.aimsciences.org

Internet Source



<1%

o7 I <1u
m "Structured Population Models in Biology and <1 o
Epidemiology", Springer Nature, 2008
Publication
E Anuj Kumar, Prashant K. Srivastava. <1 %
"Vaccination and treatment as control
interventions in an infectious disease model
with their cost optimization", Communications
in Nonlinear Science and Numerical
Simulation, 2017
Publication
Bashier, Eihab B.M., and Kailash C. Patidar. <'] o
"Optimal control of an epidemiological model ’
with multiple time delays", Applied
Mathematics and Computation, 2017.
Publication
Mamatjan Mastahun, Xamxinur Abdurahman. <1 o
"Optimal Control of an HIV/AIDS Epidemic
Model with Infective Immigration and
Behavioral Change", Applied Mathematics,
2017
Publication
Omar Zakary, Mostafa Rachik, Ilias EImouki. <1 o

"A new analysis of infection dynamics: multi-



regions discrete epidemic model with an
extended optimal control approach”,
International Journal of Dynamics and
Control, 2016

Publication

"Impacts of Vaccination and Behavior Change <'I o
in the Optimal Intervention Strategy for ’
Controlling the Transmission of Tuberculosis",

CIM Series in Mathematical Sciences, 2015.
Publication

"Posters", Clinical Microbiology and Infection, <1 o
2011
Publication
Dongxue Yan, Hui Cao. "The global dynamics

75 . <l%
for an age-structured tuberculosis
transmission model with the exponential
progression rate", Applied Mathematical
Modelling, 2019
Publication

Traoré Bakary, Sangaré Boureima, Traoré <1 %

Sado. "A mathematical model of malaria
transmission in a periodic environment",
Journal of Biological Dynamics, 2018

Publication

Exclude quotes Off Exclude matches Off

Exclude bibliography On



Optimal control of a discrete age-structured model for
tuberculosis transmission

GRADEMARK REPORT

FINAL GRADE GENERAL COMMENTS

/O Instructor

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10




