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Abstract A new numerical scheme for the Caputo-Fabrizio operator is proposed. We initially pre-

sent a bank model with real data and then present the model in the fractional Caputo-Fabrizio

derivative. We estimate and fit the model parameter using the least square curve fitting. The

Caputo-Fabrizio model is solved numerically by using three steps Adams-Bashforth method. The

proposed scheme is used to obtain graphical results for bank data of rural and commercial. The real

data of rural and commercial banks are used to fit with Caputo-Fabrizio model. We show that the

Caputo-Fabrizio model show good fitting for the fractional order parameters versus the real data of

rural and commercial bank. Further, we show graphical illustration for some values of the frac-

tional order in order to show the effectiveness of the proposed new numerical scheme.
� 2020 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mathematical models are considered useful to understand bet-
ter the dynamics of a real word problem. The mathematical
model is not only described the dynamics of the problem but

also provide some important future predictions associated.
Mathematical models associated to science, social science
and engineering attracted many researchers around the globe.

The mathematical models associated to social science filed are
also getting attentions from researchers. Understanding the
dynamics of banking and financial data and its future perspec-
tive would be more prominent through a mathematical mod-

els. The mathematical models associated to banking finance
has vital role to better understand effectively the present and
future dynamics. The banking data about the collections and

their investment on the citizens are important for their society
and economic growth [1]. Rural and commercials banks are
the important banking sectors in Indonesia where it is
observed that financial affectivities of rural and less than that

of commercial activities although with the same products [2–4].
For the economic growth of the country the finance and

banking has a vital role. Banking systems with rural and com-

mercial type are the important to do business activities in
Indonesia. With the same business products amnion rural
and commercial banks in Indonesia, there may possibility of

competition among them. The competition among two things,
species can be handled effectively by a system of Lotka Vol-
terra system. The importance of Lotka Volterra system and
exandria
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its application to practical financial and others related prob-
lems are briefly discussed in [5–12].

Now-a-days, fractional orders models getting too much

attentions from researchers from different fields of science,
social science and engineering. Due to the wide applications of
the fractional derivatives, many authors formulated problems

in different fields, see for example [14–19]. It documented that
the fractional differential equations associated to a practical
problem with real data statistics has best parameters and fit-

tings, for example see [20–23]. Regarding some more results
about fractional operators and their applications in real world
problems are studied in [24–27]. A real statistical data were used
to obtain theTBdisease analysis through fractional derivative in

[24]. The application of the Atangana-Baleanu derivative to
Belousov-Zhabotinskii reaction systems is considered in [25].
The dynamics of computer virus in fractional derivative and

the fractional calculus with power law is studied by the authors
in [26,27]. Some recent and related fractional papers where the
authors studied the numerical approximations to the fractional

operators, see [28], solution of reaction diffusion equations [29],
time fractional diffusion equations [30], applications chaos [31],
related to natural phenomenon [32], solution to time MKDV

fractional equations [33], fractional Fisher’s type equations
[34], new derivative with normal distribution kernel [35], appli-
cation to chemical equations [36], tomeasles epidemic [37]. In all
these papers, fractional operators were chosen differently, such

as Caputo, Caputo-Fabrizio and the Atangana-Baleanu. The
fractional derivatives have the advantages to capture the
dynamics of the problem with different order, but in the case

of integer order we cannot see this property. Also, the fractional
calculus have been found interesting for data fitting, as we dis-
cussed the related references above.

The purpose of this work is to analyze the novel numerical
solution for the Caputo-Fabrizio derivative and its application
to the real data of banking finance in Indonesia for 2004–2014

[38]. Initially, we taking a competition model and obtained its
parameters through estimations techniques of least curve fit-
ting and then formulate the model in fractional derivative of
the type of Caputo-Fabrizio. The Caputo-Fabrizio model is

then solved numerically by using the three steps Adams-
Bashforth rule and provide data fitting results for arbitrary
value of fractional order parameter. The section-wise informa-

tion related to the paper as is follows: The basics related to
Caputo-Fabrizio definitions are shown in Section 2. Formula-
tion of competition systems in integer older and fractional

order are studied in Section 3. Numerical solution of the frac-
tional model with three steps rule is carried out in Section 4.
The results are briefly discussed and summarized respectively
in Section 5 and 6.

2. Basics related to Caputo-Fabrizio derivative

We present here the related concept of fractional operator

Caputo-Fabrizio in the following.

Definition 1. A v tð Þ 2 H1 q1; q2ð Þ and 0 < s < 1. Then, it
follows from [39] the definition of Caputo-Fabrizio (CF)

operator is,

CFDs
t v tð Þð Þ ¼ M sð Þ

1� s

Z t

a

v0 yð Þ exp �s t� yð Þ
1� s

� �
dy; ð1Þ
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where M 0ð Þ ¼ M 1ð Þ ¼ 1 and M sð Þ denote the normalization

function. If v tð Þ does not belong to H1 q1; q2ð Þ, then another
shape of the derivative is,

CFDs
t v tð Þð Þ ¼ sM sð Þ

1� s

Z t

a

v tð Þ � v yð Þð Þ exp �s t� yð Þ
1� s

� �
dy: ð2Þ

Remark 1. Choosing b ¼ 1�s
s 2 0;1ð Þ, then s ¼ 1

1þb, and so the

Eq. (2) becomes,

CFDs
t v tð Þð Þ ¼ M bð Þ

b

Z t

a

v0 yð Þð Þ exp � t� yð Þ
b

� �
dy; ð3Þ

where M 0ð Þ ¼ M 1ð Þ ¼ 1,

Remark 2. We present the following property,

lim
b!0

1

b
exp

� t� yð Þ
b

� �
¼ l y� tð Þ;

where l y� tð Þ represent the Dirac delta function: ð4Þ

Definition 2. [40] Later on Losada and Nieto modified this
derivative and presented the following,

CFDs
t v tð Þð Þ ¼ 2� sð ÞM sð Þ

2 1� sð Þ
Z t

a

v0 yð Þ exp �s t� yð Þ
1� s

� �
dy; ð5Þ

and their integral is given by

CFIst v tð Þð Þ ¼ 2 1� sð Þ
2� sð ÞM sð Þ v tð Þ þ 2s

2� sð ÞM sð Þ
Z t

a

v yð Þdy; t P 0:

ð6Þ
3. Mathematical model

We taking a competition model of Lotka-Volterra system

that usually formulated for the competition among two spe-
cials for which the compete. Competition among species for
food or other financial bodies are important for their servile.

Nations around the world can be developed and developing
due their competition. For a strong economic growth the
banks have important values in their growth. The banks

may be rural or commercial or any other type. Therefore,
in the present section, we proposed a model of Lotka-
Volterra to study the competition among rural and commer-
cial banks in Indonesia by giving the following system of dif-

ferential equations:

du1
dt

¼ h1u1 1� u1
K1

� �
� w1u1u2;

du2
dt

¼ h2u2 1� u2
K2

� �
� w2u1u2;

ð7Þ

with initial conditions u1 0ð Þ ¼ u10 and u2 0ð Þ ¼ u20. The model
(7) described the competition among rural and commercial

banks, where the dynamics of the commercial banks at any
time of t is given by u1 tð Þ while the dynamics of rural banks
is given by u2 tð Þ. The growth rate of the commercial bank is

given by h1 while the rural bank growth by h2. The parameter
K1 and K2 respectively show the maximum profit gained by
commercial and rural banks. The parameters w1 represent
the coefficient for commercial while w2 is for rural bank. It is
ompetition model among bank data in Caputo-Fabrizio derivative, Alexandria
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clear that the parameters is hi;Ki and wi for i ¼ 1; 2 are

positive.
3.1. Stability of the equilibrium points of the model

We obtain the equilibrium points for the model given in (7), by

solving the equations below in the absence of the rate of
change,

du1
dt

¼ 0;
du2
dt

¼ 0; ð8Þ

which leads to the following equations,

h1u1 1� u1
K1

� �
� w1u1u2 ¼ 0;

h2u2 1� u2
K2

� �
� w2u1u2 ¼ 0:

ð9Þ

The following equilibrium points exists for our model (13) and

(7),

Z0 ¼ 0; 0ð Þ; Z1 ¼ 0;K2ð Þ; Z2 ¼ K1; 0ð Þ;
Z3 ¼ K1h2 w1K2�h1ð Þ

w1w2K1K2�h1h2
; K2h1 w2K1�h2ð Þ
w1w2K1K2�h1h2

� �
;

among these fixed points, we get w1K2 � h1 > 0;w2K1 � h2 > 0
and w1w2K1K2 � h1h2 > 0. If the solutions lines at equilibrium
point Z3 of the model lies in the first quadrant and interest

each other, then the model will have positive equilibrium
point. We show the stability of the model (7) at these points
below: The Jacobian matrix in of the system is given by:

J ¼
1� u1

K1

� �
h1 � u1h1

K1
� u2w1 �u1w1

�u2w2 1� u2
K2

� �
h2 � u2h2

K2
� w2u1

0
BB@

1
CCA:

ð10Þ
The stability at the point Z0 ¼ 0; 0ð Þ, we obtain two positive

eigenvalues from the Jacobian matrix J, that is, h1, h2, which
shows instability at Z0. At the equilibrium point Z1 ¼ 0;K2ð Þ,
we get the eigenvalues �h2; h1 � K2w1. The equilibrium point

would be stable at Z1 if h1 < K2w1. At the equilibrium point
Z2, we get the eigenvalues �h1 < 0; h2 � K1w2. If h2 < K1w2,
Fig. 1 Model versus data, (a) co
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then the equilibriumpointZ2 is stable. For the equilibriumpoint

Z3, we get the following characteristics equation:

k2 þ a1kþ a2 ¼ 0; ð11Þ
where

a1 ¼ h1h2 h1þh2�K2w1�K1w2ð Þ
h1h2�K1K2w1w2

;

a2 ¼ h1h2 h1�K2w1ð Þ h2�K1w2ð Þ
h1h2�K1K2w1w2

:
ð12Þ

The coefficients a1 and a2 can be positive if

h2 > K1w2; h1 > K2w1 and h1h2 > K1K2w1w2, then the equilib-
rium point Z3 becomes locally asymptotically stable.

3.2. A Caputo-Fabrizio fractional model

We apply the definition of the Caputo-Fabrizio derivative on
the model (7) that leads to the following shape:

CFDs
t u1 tð Þð Þ ¼ h1u1 1� u1

K1

� �
� w1u1u2;

CFDs
t u2 tð Þð Þ ¼ h2u2 1� u2

K2

� �
� w2u1u2;

ð13Þ

with initial conditions u1 0ð Þ ¼ u10 and u2 0ð Þ ¼ u20, and s
denotes the fractional order of Caputo-Fabrizio operator.

3.3. Estimations of parameters

The parameters estimated for the banking data of rural and
commercial banks since 2004–2014 for the fractional model
(13) at s ¼ 1. We use the least square method to obtain best fit-

ting to our data. For the best parameters values and their fit-
ting, we present the following and objective functions,

� ¼ argmin
Xn

j¼1

utj � utj
� �2

;

where utj determines the actual banking data and utj explains

the solution associated to the model at tj, the actual data

points is measured by n. Utilizing this method, we
present the parameters estimations for our considered model

(13) are w1 ¼ 3:90� 10�10;w2 ¼ 3:9� 10�8;K1 ¼ 669318:198;
K2 ¼ 17540:6219; h1 ¼ 0:6 and h2 ¼ 0:58 and depict the fitting
results are given in Fig. 1. These estimated parameters will be
mmercial data, (b) rural data.

mpetition model among bank data in Caputo-Fabrizio derivative, Alexandria
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Fig. 2 Bank data of commercial banks versus model at

s ¼ 1; 0:9; 0:8; 0:75; 0:7.
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used further to obtain graphical results for the model using the

numerical scheme of Adams-Bashforth three steps described
below.

4. Numerical solution using Three-step Adams-Bashforth scheme

The numerical solution of a fractional nonlinear differential
equations are difficult to solve exactly, therefore, the

researcher from time to developed and developing some novel
numerical methods for their solution. The numerical methods
to handle problems of fractional differential equations have
been developed to obtain the approximate solution. Usually

these methods are based on the discretization. In these meth-
ods, we include here Adams-Bashforth-Moulton type
predictor-corrector methods, finite difference methods, and

finite element methods [41–44]. In the present work, we utilize
and follow the method explained in [45] for our proposed
problem (13). This methods is based on the rule of Adams–

Bashforth with three steps.
Consider a general fractional differential equations in

Caputo-Fabrizio derivative,

CFDs
t v tð Þð Þ ¼ g t; v tð Þð Þ; 0 < s < 1; ð14Þ

where CFDs
t :ð Þ, represents the CF derivative defined in Eq. (1).

We apply the fractional integral shown below:

CFIst g tð Þð Þ ¼ 1� s
M sð Þ g tð Þ þ s

M sð Þ
Z t

0

g xð Þdx; ð15Þ

to both sides of the Eq. (14), we get

CFIst
CFDs

t v tð Þð Þ ¼ CFIst g t; v tð Þð Þð Þ;
v tð Þ � v 0ð Þ ¼ CFIst g t; v tð Þð Þð Þ;

¼ 1�s
M sð Þ g t; v tð Þð Þ þ s

M sð Þ
R t

0
g s; v sð Þð Þds:

ð16Þ

Now discretizing the interval 0; t½ � of time with h steps and
have the sequence

t0 ¼ 0; tkþ1 ¼ tk þ h; k ¼ 0; 1; 2; :::; n� 1; tn ¼ t. It follows from
Eq. (16), we get the recursive formula in the following:

v tkþ1ð Þ � v 0ð Þ ¼ 1� s
M sð Þ g tk; v tkð Þð Þ þ s

M sð Þ
Z tkþ1

0

g t; v tð Þð Þdt ð17Þ

and

v tkð Þ � v 0ð Þ ¼ 1� s
M sð Þ g tk�1; v tk�1ð Þð Þ þ s

M sð Þ

�
Z tk

0

g t; v tð Þð Þdt: ð18Þ

It follows from (17) and (18), we get

v tkþ1ð Þ � v tkð Þ ¼ 1� s
M sð Þ g tk; vkð Þ � g tk�1; vk�1ð Þ½ � þ s

M sð Þ

�
Z tkþ1

tk

g t; v tð Þð Þdt: ð19Þ

Now, we explain and deriving in details the procedure of three-

step Adams–Bashforth rule. To do this, we approximate the
integral in Eq. (19) given byZ tkþ1

tk

g t; v tð Þð Þdt;
Please cite this article in press as: X. Gong et al., A new numerical solution of the c
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by the approximation
R tkþ1

tk
P2 tð Þdt, where P2 tð Þ denote the

interpolation polynomial associated to Lagrange with degree
that passes through the given three points tk�2; g tk�2;ðð
v tk�2ð ÞÞÞ; tk�1; g tk�1; v tk�1ð Þð Þð Þ, and tk; g tk; v tkð Þð Þð Þ. That is,

P2 tð Þ ¼
X2

i¼0

g tk�i; vk�ið ÞLi tð Þ; ð20Þ

where Li tð Þ for the three points tk�2; tk�1; tkð Þ are the Lagrange
basis polynomials. Using the change of variable s ¼ tkþ1�t

h
, and

using the Lagrange basis polynomials and their integrating, we
have

R tkþ1

tk
g t;v tð Þð Þds¼h

R 1

0

s�2ð Þ s�3ð Þ
1�2ð Þ 1�3ð Þg tk;vkð Þþ s�1ð Þ s�3ð Þ

2�1ð Þ 2�3ð Þg tk�1;vk�1ð Þ
h

þ s�2ð Þ s�1ð Þ
3�2ð Þ 3�1ð Þg tk�2;vk�2ð Þ

i
ds;

¼h 23
12
g tk;vkð Þ� 4

3
g tk�1;vk�1ð Þþ 5

12
g tk�2;vk�2ð Þ� �

;

ð21Þ

where vk�2 ¼ v tk�2ð Þ; vk�1 ¼ v tk�1ð Þ, and vk ¼ v tkð Þ. Then, using
(21) into (19), we present the following iterative formula:

vkþ1 ¼ vk þ 1
M sð Þ 1� sð Þ þ 23

12
hs

� �
g tk; vkð Þ

� 1
M sð Þ 1� sð Þ þ 4

3
hs

� �
g tk�1; vk�1ð Þ

þ 5hs
12M sð Þ g tk�2; vk�2ð Þ:

ð22Þ

If we consider s ¼ 1 in the above expression (22), then, we get

a classical Adams–Bashforth three-steps rule. One can obtain
the truncation error for the given three steps rule with the
Lagrange interpolating polynomial by to estimate the error,

say

g t; v tð Þð Þdt ¼ P2 tð Þ þ E2 tð Þ; ð23Þ
where

E2 tð Þ ¼ g3 nk; v nkð Þð Þ
3!

t� tkð Þ t� tk�1ð Þ t� tk�2ð Þ; nk
2 tk�2; tkð Þ: ð24Þ

Then we have
ompetition model among bank data in Caputo-Fabrizio derivative, Alexandria
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Fig. 3 Bank data of rural banks versus model at s ¼ 1; 0:9; 0:8.

Fig. 4 Model predictions of with data for long time behavior when s ¼ 1; 0:9.
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Fig. 5 Numerical solution of the model for s ¼ 1; 0:9.
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R tkþ1

tk
E2 tð Þdt ¼ R tkþ1

tk

g3 nk ;v nkð Þð Þ
3!

t� tkð Þ t� tk�1ð Þ t� tk�2ð Þdt;
� � h4g3 lk ;v lkð Þð Þ

6:3!

R 1

0
s� 1ð Þ s� 2ð Þ s� 3ð Þds;

¼ 3
8
h4g3 lk; v lkð Þð Þ;

ð25Þ

where lk 2 tk�2; tkþ1ð Þ, the mean value theorem is used for the

approximation of the integral.
If we denote expression on the right side of Eq. (22) by v̂k,

then, we have

vkþ1 ¼ v̂k þ 3

8
h4g 3ð Þ lk; v lkð Þð Þ:

The following is the formula to determine the truncation error
associated to Eq. (22), given by

vkþ1�v̂k
h

¼ s
M sð Þ :

3
8h

4g 3ð Þ lk ;v lkð Þð Þ
h

;

¼ 3
8M sð Þ sh

3g3 lk; v lkð Þð Þ:
ð26Þ

Next, we utilize the fractional three-steps rule of Adams–Bash-
forth scheme given by (22) to obtain the solution of model (13)
numerically. In vector form the system can be written as:

CFDs
t v tð Þð Þ ¼ g t; v tð Þð Þ; 0 < s < 1; ð27Þ

where
Please cite this article in press as: X. Gong et al., A new numerical solution of the c
Eng. J. (2020), https://doi.org/10.1016/j.aej.2020.02.008
v tð Þ ¼ u1 tð Þ
u2 tð Þ

� 	
; g t; v tð Þð Þ ¼ g1 t; v tð Þð Þ

g2 t; v tð Þð Þ
� 	

: ð28Þ

The scalar functions g1 and g2 shows the right side of the

model Eqs. (13) given by

g1 t; v tð Þð Þ ¼ h1u1 1� u1
K1

� �
� w1u1u2;

g2 t; v tð Þð Þ ¼ h2u2 1� u2
K2

� �
� w2u1u2:

The fractional integral shown in Eq. (15) is applied on both
sides of the Eq. (27), we get

v tð Þ � v 0ð Þ ¼ CFIst g t; v tð Þð Þð Þ;
¼ 1�s

M sð Þ g t; v tð Þð Þ þ s
M sð Þ

R t

0
g s; v sð Þð Þds: ð29Þ

We have the iterative formula by applying the scheme pre-
sented in Eq. (23)–(30):

vkþ1 ¼ vk þ 1

M sð Þ 1� sð Þ þ 23

12
hs

� 	
g tk; vkð Þ

� 1

M sð Þ 1� sð Þ þ 4

3
hs

� 	
g tk�1; vk�1ð Þ

þ 5hs
12M sð Þ g tk�2; vk�2ð Þ; ð30Þ
ompetition model among bank data in Caputo-Fabrizio derivative, Alexandria
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Fig. 6 Numerical solution of the model for s ¼ 0:7; 0:5.
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where vk�2 ¼ v tk�2ð Þ, vk�1 ¼ v tk�1ð Þ, and vk ¼ v tkð Þ and

v0 ¼ v t0ð Þ ¼ u1 t0ð Þ; u2 t0ð Þ½ �T.

5. Numerical results

We used the numerical scheme for the solution of fractional

differential equation model of competition among rural and
commercial banks. The estimated set of parameter values for
the bank data of Indonesia for the given years 2004–2014

are: w1 ¼ 3:90� 10�10, w2 ¼ 3:9� 10�8;K1 ¼ 669318:198;
K2 ¼ 17540:6219; h1 ¼ 0:6 and h2 ¼ 0:58. The time unit of
these parameters are per year. Using these parameters we uti-
lized the three steps Adams-Bashforth method above and

obtained the graphical results shown in Figs. 2–6. In Fig. 2,
we compared the real data of commercial banks with model
and obtained good fitting for s ¼ 0:7. Fig. 3 is obtained for
the rural bank when comparing the real data versus model,

and showed that the model provide reasonable fitting when
s ¼ 0:8. The long term dynamics of the rural and commercial
banks are depicted in Fig. 4, for s ¼ 1; 0:9. In Fig. 4(a) and (b),

we consider the time-level 100 years and the data is fitted accu-
rately but for Fig. 4(c) and (d), the data is accurately fitted for
70 years when taking s ¼ 0:7, which shows the importance of
Please cite this article in press as: X. Gong et al., A new numerical solution of the co
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the fractional derivatives. Further, to show the novelty and
importance of this new numerical solution, we depicted graph-
ical results for the given model considering many values of the

fractional order s, see Figs. 5 and 6.

6. Conclusion

The present work explored the numerical solution of fractional
differential equation model formulated in Caputo-Fabrizio
derivative. Initially, we consider a competition model of bank

data in Indonesia of real data since 2004–2014 and obtained its
parameters estimations. The estimated parameters are then
used to obtain the numerical solution of the model using a

novel numerical technique of Adams-Bashforth with three
steps. The novel numerical procedure is tested for the bank
model with real data for different values of the fractional order

parameters s. We depicted the real data of rural and commer-
cial bank versus model for suggested value of s. We proved for
s ¼ 0:7, the commercial bank showed good fitting for s ¼ 0:7
and for the rural bank its provide good fitting when s ¼ 0:8.
Further, we showed more graphical results for the illustration
of this novel numerical techniques considering some arbitrary
values of s.
mpetition model among bank data in Caputo-Fabrizio derivative, Alexandria
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Baleanu, Numerical solutions of the fractional Fisher’s type

equations with Atangana-Baleanu fractional derivative by using

spectral collocation methods, Chaos: An Interdiscipl. J.

Nonlinear Sci. 29 (2) (2019) 1–13.
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