
A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model

Fatmawati, Muhammad Altaf Khan, Ebenezer Bonyah, Zakia Hammouch and Endrik Mifta Shaiful

http://www.aimspress.com/journal/Math

ISSN (Online): 2473-6988

Publisher: AIMS Press

Home | Journals ▼ | News | About ▼ | Contact Us

AIMS Mathematics	Abstracted in
Journal Home	🗠 E-mail 🔚 Print
Aim and Scope	We strive to have all AIMS journals indexed by all relevant top databases, including Web of Science,
Abstracted in	maximum exposure and citations.
Editorial Board	The journal of AIMS Mathematics is indexed in the following databases:
Instructions for Authors	* Dimensions
Peer Review Guidelines	* DOAJ * Emerging Sources Citation Index (ESCI - Web of Science)
Publication Ethics	* Google Scholar
Special Issues	* Scopus
Aim and Scope Abstracted in Editorial Board Instructions for Authors Peer Review Guidelines Publication Ethics	We strive to have all AIMS journals indexed by all relevant top databases, including Web of Science, Medline, PubMed, Scopus, Google Scholar, etc. Papers published in any of the AIMS journals will receir maximum exposure and citations. The journal of AIMS Mathematics is indexed in the following databases: * Dimensions * DOAJ * Emerging Sources Citation Index (ESCI - Web of Science) * Google Scholar * MathSciNet

* Science Citation Index-Expanded (SCIE) * Zentralblatt MATH

Article Processing Charge

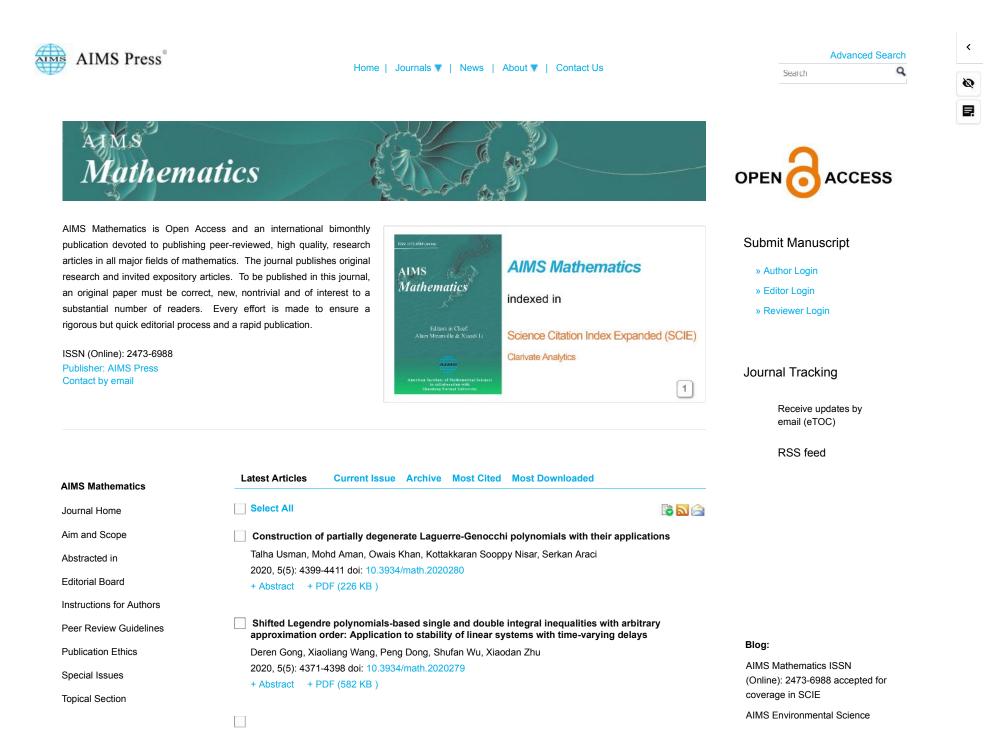
Topical Section

Archived in

* Portico

* CLOCKSS

News & Announcements


Six AIMS journals selected for Emerging Sources Citation Index (ESCI)

AIMS Mathematics ISSN (Online): 2473-6988 accepted for coverage in SCIE

Recommend Conference

Information will be posted here as available

Copyright © AIMS Press

1 of 3

Article Processing Charge

News & Announcements

AIMS Mathematics ISSN (Online): 2473-6988 accepted for coverage in SCIE

Six AIMS journals selected for **Emerging Sources Citation Index** (ESCI)

Recommend Conference

+ More

available + More

Ahmet S. Cevik, Eylem G. Karpuz, Hamed H. Alsulami, Esra K. Cetinalp 2020, 5(5): 4357-4370 doi: 10.3934/math.2020278 + Abstract + PDF (242 KB) The fractional-order unified chaotic system: A general cascade synchronization method and application Hongli An, Dali Feng, Li Sun, Haixing Zhu 2020, 5(5): 4345-4356 doi: 10.3934/math.2020277 + Abstract + HTML + PDF (819 KB)

A Gröbner-Shirshov basis over a special type of braid monoids

An unreliable discrete-time retrial queue with probabilistic preemptive priority, balking customers and replacements of repair times

Shaojun Lan, Yinghui Tang 2020, 5(5): 4322-4344 doi: 10.3934/math.2020276 Information will be posted here as + Abstract + HTML + PDF (394 KB)

L-biconvex sets on some fuzzy algebraic substructures

Hui Yang, Yi Shi 2020, 5(5): 4311-4321 doi: 10.3934/math.2020275 + Abstract + HTML + PDF (227 KB)

A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with timefractional derivative

Ailing Zhu, Yixin Wang, Qiang Xu 2020, 5(5): 4297-4310 doi: 10.3934/math.2020274 + Abstract + HTML + PDF (252 KB)

Invertible weighted composition operators preserve frames on Dirichlet type spaces

Ruishen Qian, Xiangling Zhu 2020, 5(5): 4285-4296 doi: 10.3934/math.2020273 + Abstract + HTML + PDF (227 KB)

Existence and multiplicity of solutions for a class of damped-like fractional differential system

Jie Xie, Xingyong Zhang, Cuiling Liu, Danyang Kang 2020, 5(5): 4268-4284 doi: 10.3934/math.2020272 + Abstract + HTML + PDF (260 KB)

Comprehensive subclasses of analytic functions and coefficient bounds Serap Bulut 2020, 5(5): 4260-4267 doi: 10.3934/math.2020271

ISSN (Online): 2372-0352 accepted for Coverage in Scopus

Five AIMS journals are indexed

AIMS Microbiology (ISSN 2471-1888) accepted for Coverage in Scopus

AIMS Public Health (ISSN

2327-8994) is indexed by

by Scopus

_

+ More

ø R,

Journal Home Image: E-mail Print Aim and Scope Alain Miranville (Editor in Chief) Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, 86962 Chasseneuil Futuroscope Cedex, France Editorial Board Viaodi Li (co-Editor in Chief) School of Mathematics and Statistics, Shandong Normal University Jinan, Shandong, China Peer Review Guidelines Qing Miao (Managing Editor) Managing and Operation (Journal) Special Issues Sectional editors: Topical Section Paul Bracken Department of Mathematics, University of Texas Rio Grand Valley, Edinburg, TX, 78540 USA News & Announcements Antonio Di Crescenzo Dipartimento di Matematical Physics Six AIMS journals selected for Emerging Sources Citation Index (Conline): 2473-6988 accepted for Coverage in SCIE Mathematical College, Sichuan University, Chengdu 610064, P.R. Colinine): 2473-6988 accepted for Coverage in SCIE Shaofang Hong Mathematical College, Sichuan University, Chengdu 610064, P.R. China Algebra and Number theory China Algebra and Number theory	Journal Home Ain and Scope Abstracted in Ain and Scope Abstracted in Alain Miranville (Editor in Chief) Futurscope Cedex, France Analos of Mathematics and Statistics, Shandong Normal University Futurscope Cedex, France Analos of Mathematics and Statistics, Shandong Normal University Futurscope Cedex, France Scott on a General Code of Mathematics and Statistics, Shandong Normal University Futurscope Cedex, France Scott on a General Code of Mathematics and Statistics, Shandong Normal University Futurscope Cedex, France Scott on a General Code of Mathematics, University of Texas Ris Grand Valle Editors: Futurs & Announcements Six AMS Journals selected for Emerging Sources Citation Index Paul Bracken		Home 、	Journals ▼ News About ▼ Contact Us
Alm and Scope Alam Miranville (Editor in Chier) Miranville (Editor in Chier) Alam Miranville (Editor in Chier) Applications, UMR CNRS 7348, SP2MI, 86982 Chasseneull Editorial Board Standu Li (co- Editor in Chier) School of Mathematics and Statistics, Shandong Normal University Pear Review Guidelines Ding Miao (Managing Editor) Managing and Operation (Journal) Special Issues Sectional editors: Topical Section Artiole Processing Charge Department of Mathematics, University of Texas Rio Grand Valley, Editory, TX, 78540 USA New & Announcements Shandong Charge Department of Mathematics, University of Texas Rio Grand Valley, Editory, TX, 78540 USA NIMS Mathematics ISSN (Gine): 2473-8485 accepted for coverage in SCIE Antonio Di Crescenzo Dipartment of Mathematics, University degl Studi di Salemo, Italy Probability and Statistics Recommend Conference Information will be posted here as available Topolitiko Alki II Faculty of Science, Japan Womer's University, Tieyo, Japan Free boundary problem and Hysteresis operator Ratura Balan II Topolitiko Alki II Free boundary problem and Hysteresis operator Institute for Groundwater Studies, University of the Free State, Studies, Editors: State State Studies, University of the Free State, Studies and Their Applications, Methods for Partial Differential Editors, and Their Applications, Methods for Partial Differential Editoria I differential equations, Inth	Chain Control Chain Control Abstracted in Alien Minandile (Editor in Chief) Chivaritifi de Poliens, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2M, 89622 Chasseneull Futurescope Cedex, France Batracted in Xiaod Li (co-Editor in Chief) School of Mathématics and Statistics, Shandong Normal University Anno, Shandong, China Paer Review Quidelines Cing Miao (Managing Editor) Managing and Operation (Journal) Section and Editors: Section and Editors: Topical Section Paul Bracken Department of Mathématics, University of Texas Rio Crand Valle Editory: TX, 7840 USA Nows & Announcements Shaod of Mathématics, University of Texas Rio Crand Valle Editory: TX, 7840 USA Nalis Mathématics ISSN (Chini Di Crescenzo Chini Di Crescenzo Chini Di Crescenzo Chini Probability and Statistics Dipartimento di Mathématica, University, Chengdu 610064, PR Chini Science, Japan Women's University, Chengdu 610064, PR Chini Science, Japan Women's University, Chengdu 610064, PR Chini Science, Japan Women's University, Totyo, Japan Science and Number theory Editors: Faculty of Science, Japan Women's University of Texas Rio Crand Mathématics and Statistics, University of Utexas, Rio Chand Kaingana Rabus Batani Chini Review Toyothiko Aki Chini Review Chini Review, Differential Equations, University of Utexas, Rio Crand Mathématics, Editor Science, Japan Women's University, Totyo, Japan Science and Number theory Recommend Conference information winables	AIMS Mathematics	AIMS Mathematics	
Abstracted in Alain Miranville (Editor in Chier) Applications, UNR CONS 7348, SP2MI, 86962 Chasseneull Editorial Board Viscol Li (co-Editor in Chier) School of Mathematics and Statistics, Shandong Normal University Peer Review Guidelines Oing Mao (Managing Editor) Managing and Operation (Journal) Special Issues Sectional editors: Department of Mathematics, University of Taxas Ro Grand Valley, Employing Statistics, Shandong Normal University Rows & Announcements Paul Bracken Department of Mathematics, University of Taxas Ro Grand Valley, Employing Statistics Six AMS journals selected for Emerging Sources Clatton Index (SSN (Online): 2473-6688 accepted for Conversity of Texas Ro Grand Valley, Employing Statistics Dipartimento di Mathematica, University of Taxas Ro Grand Valley, (ESCI) AMS Mathematics ISSN (Online): 2473-6688 accepted for conversity in Scie Shaofang Hong P Dipartimento di Mathematica, University Chengdu B10064, P.R. China AMS Mathematics ISSN (Online): 2473-6688 accepted for conversity in Scie Statistics China AMS Mathematics ISSN (Online): 2473-6688 accepted for conversity in Scie Faculty of Science, Japan Women's University, Tokyo, Japan Pree Bolaway, Problem All, Science Japan Women's University of News, State Science, Japan Women's University of News, State Science, Science Japan Women's University of News, State Science, Science Japan Women's University of News, State Science, Science Japan Women's University of News, State Science, Japan Women's University of	Abstracted in Alain Miranville (Editor in Chief) Alain Miranville (Editor in Chief) Alain Miranville (Editor in Chief) Applications, SPCM, 60922 Chasseneul Futurescope Cedex, France School of Mathematics and Statistics, Shandong Normal University Peer Review Guidelines Uico-Editor in Chief) School of Mathematics and Statistics, Shandong Normal University Trans, Shandong, China Special Issues Special Issues Sectional editors: Topical Section Affale Processing Charge Paul Bracken Paul Paul Paul Paul Paul Paul Paul Paul	Journal Home	🔛 E-mail 🔚 Print	
Abstracted in Alain Miranville (Editor in Chier) Applications, UNR CONS 7348, SP2MI, 86962 Chasseneull Editorial Board Viscol Li (co-Editor in Chier) School of Mathematics and Statistics, Shandong Normal University Peer Review Guidelines Oing Mao (Managing Editor) Managing and Operation (Journal) Special Issues Sectional editors: Department of Mathematics, University of Taxas Ro Grand Valley, Employing Statistics, Shandong Normal University Rows & Announcements Paul Bracken Department of Mathematics, University of Taxas Ro Grand Valley, Employing Statistics Six AMS journals selected for Emerging Sources Clatton Index (SSN (Online): 2473-6688 accepted for Conversity of Texas Ro Grand Valley, Employing Statistics Dipartimento di Mathematica, University of Taxas Ro Grand Valley, (ESCI) AMS Mathematics ISSN (Online): 2473-6688 accepted for conversity in Scie Shaofang Hong P Dipartimento di Mathematica, University Chengdu B10064, P.R. China AMS Mathematics ISSN (Online): 2473-6688 accepted for conversity in Scie Statistics China AMS Mathematics ISSN (Online): 2473-6688 accepted for conversity in Scie Faculty of Science, Japan Women's University, Tokyo, Japan Pree Bolaway, Problem All, Science Japan Women's University of News, State Science, Japan Women's University of News, State Science, Science Japan Women's University of News, State Science, Science Japan Women's University of News, State Science, Science Japan Women's University of News, State Science, Japan Women's University of	Abstracted in Alain Miranville (Editor in Chief) Applications, UMR CNRS 7348, SP2M, 86962 Chasseneuil Futuroscope Cedex, France Editorial Goard Sachool of Mathematics and Statistics, Shandong Normal Universi Juna, Shandong, China Sachool of Mathematics and Statistics, Shandong Normal Universi Juna, Shandong, China Peer Review Guidelines Cing Miao (Managing Editor) Managing and Operation (Journal) Special Issues Sectional editors: Topical Section Paul Bracken Department of Mathematics, University of Texas Rio Grand Valle Edinburg, TX, 78540 USA News & Announcements Paul Bracken Dipartment of Mathematics, University of Texas Rio Grand Valle Edinburg, TX, 78540 USA NSM Mathematics ISSN (Online): 2473-6888 accepted for coverage in SCIE Aniono Di Crescenzo Dipartmento di Matematica, University, Chengdu 610064, FR China Agebra and Number theory Editors: Editors: Recommend Conference Information will be posted here as available Topotiko Alki Faculty of Science, Japan Womer's University, Tokyo, Japan Free boundary problem and Hysteresis operator Reduca Balan Abdon Atangana Basterina Equations, University of There, Via Science, Japan Womer's University of Texas, Chand Kito Free Fractional Calculus and Their Applications, Methods for Parital Differential Equations Reduca Balan Stota free data definential equations, limit theorems for heavy taled random variable Perre Bieliawsky Institut de Recherche en Mathematics, University of Othexa, 585 King Science Lowas, O	Aim and Scope		lini andik da Delitara ilakandalar da Malk (andiana at
Editorial Board Fulloscope Cefex, France Fulloscope Cefex, France School of Mathematics and Statistics, Shandong Normal University Peer Review Guidelines Cing Mao (Managing Editor) Managing and Operation (Journal) Section and Full Processing Charge Section and Physication Editors: Sectional editors: Department of Mathematics, University of Texas Rio Grand Valley, Editoburg, TX, 78540 USA Differential Geometry, PDE and Mathematical Physics Distribution of Mathematics (ISN) Antonio Di Crescenzo Mathematica Contery, PDE and Mathematical Physics Distribution of Mathematics (ISN) Antonio Di Crescenzo Mathematical Contery, PDE and Mathematical Physics Distribution of Mathematical Siss (ICN) Shaofang Hong Mathematical Contery, PDE and Mathematical Physics Distribution of Mathematical Contery, DE and Mathematical Physics Distribution of Statistics (ISN) Antonio Di Crescenzo Mathematical Contery, DE and Mathematical Physics Distribution of Statistics (ISN) Antonio Di Crescenzo Mathematical Contery, DE and Mathematical Physics Distribution of Statistics (ISN) Additional Physics Distribution of Science, Japan Women's University, Chengdu 610064, P.R. China Agebra and Number theory Editors: Editors: Editors: Addon Atangana Mathematical Conterace Insultation of Coroundayer Studies, University of Texas, Distribution of Creacod Advance, Ontario KIN (ISN), Japan Free Boundary problem and Hysteresis operator Insultation of Coroundayer Studies, University of Texas, Distribute of Canada Statistics, University of Texas, Distribute of Coroundayer Studies, University of Texas, Distribute of Partial Differential Equations (ISN) Advisors of Chanada Statistics, University of Texas, Distribute of Partial Differential Equations (ISN) Advisors of Chanada Statistics, University of Texas, Distribute of Canada Statistics, University of Texas, Distr	Editorial Board Futuroscope Cetex, France Futuroscope Cetex, France School of Mathematics and Statistics, Shandong Normal Universe Jinan, Shandong, China Shandong, China Shandong, China Special Issues Oing Miao (Managing Editor) Anna, Shandong, China Shandong, China Special Issues Sectional editors: Sectional editors: Sectional editors: Sectional editors: Sectional editors: Shandong Normal Universety of Texas Rio Grand Valley Editory, TX, 78540 USA Differential Commercial Sist Miso (Managing Editor) Mathematics, University of Texas Rio Grand Valley Editory, TX, 78540 USA Differential Commercial Sist Miso Saccepted for Emerging Sources Citation Index, Antonio Di Crescenzo Citation Index, Antonio Di Crescenzo Citation Index, Shandong Normal University, Chengdu 610084, PR China Algebra and Number theory Editors: Recommend Conference Information will be posted here as available Toyothio Aki Citation Alagana Citation Index Citation Alagana Citation Alagana Citation Index Citat	Abstracted in		•
Peer Review Guidelines Jinan, Shandong, China Publication Ethics Qing Miao (Managing Editor) Managing and Operation (Journal) Spacial Issues Sectional editors: Topical Section Peul Bracken Department of Mathematics, University of Texas Rio Grand Valley, Edinburg, TX, 784-0 USA News & Announcements Paul Bracken Department of Mathematics, University of Texas Rio Grand Valley, Edinburg, TX, 784-0 USA News & Announcements Paul Bracken Dipartimento di Mathematical Physics Six AMS journals selected for Emerging Sources Citation Index (ESCI) Antonio Di Crescenzo Dipartimento di Mathematical, University adegli Studi di Salerno, Italy Probability and Statistics AlMS Mathematics ISSN (Online): 2473-868 accepted for coverage in SCIE Shaofang Hong Mathematical College, Sichuan University, Chengdu 610064, P.R. China Algebra and Number theory Editors: Recommend Conference Institute for Groundwater Studies, University of the Free State, South Aria Reluca Batan Toyohiko Aiki Faculty of Science, Japan Women's University of Texes, Bergium, Differential Equations, Imit theorems for heavy tailed random variables Reluca Batan Toyohiko Aiki Faculty of Science, Japan Women's University of Ottawe, SS King Graver Avenue, Ottawe, Ottawe, SS King Graver Avenue, Ott	Peer Review Guidelines Jinan, Shandong, China Publication Ethics Oing Miao (Managing Editor) Managing and Operation (Journal) Special Issues Sectional editors: Edinburg, TX, 78540 USA Topical Section Paul Bracken Edinburg, TX, 78540 USA Review & Announcements Paul Bracken Edinburg, TX, 78540 USA Six AMS journals selected for Emerging Sources Clation Index (SCI) Antonio Di Crescenzo Dipartiment of Mathematica, University of Texas Rio Grand Valley Edinburg, TX, 78540 USA AMS Mathematics ISSN (Online): 2473-6988 accepted for coverage in SCIE Shaofang Hong Dipartiment of Mathematica, University, Chengdu 610064, PR China AMS Mathematics ISSN (Online): 2473-6988 accepted for coverage in SCIE Topohiko Alki Faculty of Science, Japan Women's University, Chengdu 610064, PR China Recommend Conference Information will be posted here as available Topohiko Alki Faculty of Science, Japan Women's University of the Free State, South Africa Ratuca Balan Editors: Faculty of Science, Japan Women's University of Utawa, 655 King Edward Avenue, Otawa, Ontario KIN NNS, Canada stochaster partial offerential equations, Initheorems for heavy tailed random variables Pierre Bieliavsky Institut de Recherche en Mathematique et en Physique, Universit utable random variables Department of Mathematics, University of Stochaste catholique de Louvan, Louvan Ia Navez, Bedjum.	Editorial Board		Futuroscope Cedex, France
Peer Review Guidelines Publication Ethics Qing Miao (Managing Editor) Managing and Operation (Journal) Sectional editors: Topical Section Article Processing Charge Paul Bracken Paul Brack	Peer Review Guidelines Jrhan, Shandong, China Publication Ethics Cing Miao (Managing Editor) Managing and Operation (Journal) Sectional editors: Sectional editors: Paul Bracken Paul Paul Bracken P	Instructions for Authors	Viaodi Li (co Editor in Chief) 🕅	School of Mathematics and Statistics, Shandong Normal University
Special Issues Topical Section Article Processing Charge News & Announcements Six AMS journals selected for Emerging Sources Citation Index (ESCI) Alton DI Crescenzo C Shadag Hong Shadag Hong C Shadag Hong C Shadag Hong C Shadag Hong Shadag	Special Issues Sectional editors: Topical Section Article Processing Charge Department of Mathematics, University of Texas Rio Grand Valley News & Announcements Paul Bracken Department of Mathematics, University of Texas Rio Grand Valley Six AIMS journals selected for Energing Sources Claton Index Antonio Di Crescenzo Differential Geometry, PDE and Mathematical Physics JMIS Mathematics ISSN (Colline): 2473-8688 accepted for coverage in SCIE Antonio Di Crescenzo Differential College, Sichuan University, Chengdu 610064, PR coverage in SCIE Recommend Conference Faculty of Science, Japan Women's University, Tokyo, Japan Free boundary problem and Hysteresis operator Institute for Groundwater Studies, University of the Free Stele, South Africa Reluce Belan China South Africa Free boundary problem and Hysteresis operator Institute for Groundwater Studies, University of the Pree Stele, South Africa South Africa South Africa Freetoward Calculus and Their Applications, Methods for Partial Differential Equations Perere Bieliavsky Editories Pierre Bieliavsky Pierre Bieliavsky China Stefano Bonaccorsi China Addition Alangana Editories contains of Mathematics, University of Itento, via Sommarive 14, 33123 Prov (Trento), Italy Mathematics and Statistics, University of Clauada, sotchastic paridi differential e	Peer Review Guidelines		Ji'nan, Shandong, China
Sectional editors: Topical Section Article Processing Charge Department of Mathematics, University of Texas Rio Grand Valley, Editourg, TX, 78540 USA News & Announcements Differential Geometry, PDE and Mathematical Physics Six MMS jumals selected for Emerging Sources Citation Index (Colline): 2473-6088 accepted for coverage in SCIE Dipartimento di Matematica, University degli Studi di Salerno, Italy Probability and Statistics MMS Mathematics ISSN (Online): 2473-6088 accepted for coverage in SCIE Shaotang Hong C Mathematica College, Sichuan University, Chengdu 610064, P.R. China Recommend Conference Toyohiko Aiki C Faculty of Science, Japan Women's University, Tokyo, Japan Free boundary problem and Hysteresis operator Information will be posted here as available Toyohiko Aiki C Faculty of Science, Japan Women's University of the Free State, South Africa Fractional Calculus and Their Applications, Methods for Pantial Differential Equations Ratuca Balan C Department of Mathematics, University of Ottawa, 565 King Edward Avenue, Ottawa, Criato K1N KNS, Canada stochastic pantial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky C Institut de Recherche en Mathématicus to the study of Stochastic catiolique de Louvain, Louvain ta Neuve, Belgium, Differential Geometry and Lie Theory Department of Mathematics, University of Trento, via Sommarive 14, 38123 Prov (Trento), Italy Malliavin calculus and its aplications to thest	Sectional editors: Sectional editors: Article Processing Charge Department of Mathematics, University of Texas Rio Grand Valie; News & Announcements Paul Bracken Editorg, TX, 78540 USA Differential Geometry, FDE and Mathematical Physics Six AtMS journals selected for Energing Sources Citation Index Antonio DI Crescenzo Dipartimento di Matematica, University Chengdu 610064, PR AIMS Mathematics ISSN Mathematica College, Sichuan University, Chengdu 610064, PR China AlMS Mathematics ISSN Sheofang Hong Mathematica College, Sichuan University, Tokyo, Japan Free boundary problem and Hysteresis operator China Algebra and Number theory Editors: Recommend Conference Toyohiko Aiki Fee boundary problem and Hysteresis operator Institute for Groundwater Studies, University of the Free State, South Africa South Africa Fractional Cacluus and Their Applications, Methods for Partial Differential Equations Department of Mathematics, University of Totava, S68 King Edward Avenue, Ottawa, Ontario Kin 8h5, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Institute de Recherche en Mathématique et en Physique, Universit valied andom variables Pierre Bieliavsky China Stefano	Publication Ethics	Qing Miao (Managing Editor) 🛛 🔤	Managing and Operation (Journal)
Topical Section Article Processing Charge Department of Mathematics, University of Texas Rio Grand Valley, Edihourg, TX, 78540 USA News & Announcements Differential Geometry, PDE and Mathematical Physics Six AIMS journals selected for Energing Sources Citation Index (SCI) Antonio Di Crescenzo C Dipartimento di Matematica, Università degli Studi di Salemo, Italy Probability and Statistics AIMS Mathematics ISSN (Online), 2473-6888 accepted for coverage in SCIE Shaofang Hong C Mathematical College, Sichuan University, Chengdu 610084, PR. China Algebra and Number theory Recommed Conference Information will be posted here as available Toyohiko Aiki C Faculty of Science, Japan Women's University, Tokyo, Japan Free boundary problem and Hysteresis operator Information will be posted here as available Toyohiko Aiki C Faculty of Science, Japan Women's University of the Free State, South Arica Raluca Balan C Statistice for Groundwater Studies, University of the Free State, South Arica South Arica Perre Bieliavsky C Institut de Recherche en Mathématics to Heavy talled random variables Pierre Bieliavsky C Institut de Recherche en Mathématics, University of Theno, via Sommarive 14, 38123 Prov (Ternto), Italy Malliavin calculus and its applications to the study of stochastic evolution equations in infinite dimensions, Stochastic evolution equations in infinite dimensions, Stochastic evolution equations on networks	Topical Section Article Processing Charge Department of Mathematics, University of Texas Rio Grand Valle, Editiburg, TX, 7840 USA News & Announcements Paul Bracken III Six AIMS journals selected for Emerging Sources Clation Index (EGO) Antonio Di Crescenzo IIII Attomic Di Crescenzo IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Special Issues	Sectional editors:	
Paul Bracken Dipartimento di Matematica, University di Heaa kob Stalid Valley, Paul Bracken Stalid Valley, Paul Braken Bracken Stalid Valey Stalid Valley, Paul Braken Bracken Stali	Paul Bracken Pa	Topical Section	Dectional editors.	
Six AIMS journals selected for Emerging Sources Citation Index (ESCI) AIMS Mathematics ISSN (Online): 2473-6988 accepted for coverage in SCIE Shaofang Hong C Editors: Recommend Conference Information will be posted here as available Reluca Batan C Reluca Batan C Reluca Batan C Stefano Bonaccorsi C Stefano Bonaccorsi C Tomasz Brzezinski C Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy Malievandos in Informations, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Department of Mathematics, Swansea University, Swansea, U.K.	Six AIMS journals selected for Energing Sources Citation Index (CSCI) AlMS Mathematics ISSN (Online): 2473-5088 accepted for coverage in SCIE Shaofang Hong S Editors: Recommend Conference Information will be posted here as available Toyohiko Aiki S Abdon Atangana S Reluca Balan S Reluca Balan S Reluca Balan S Stefano Bonaccorsi S S		Paul Bracken 🚩	Edinburg, TX, 78540 USA
AIMS Mathematics ISSN (Online): 2473-96988 accepted for coverage in SCIE Shaofang Hong S Mathematical College, Sichuan University, Chengdu 610064, P.R. China Algebra and Number theory Editors: Recommend Conference Information will be posted here as available Toyohiko Aiki S Faculty of Science, Japan Women's University, Tokyo, Japan Free boundary problem and Hysteresis operator Abdon Atangana Abdon Atangana Faculty of Science, Japan Women's University of the Free State, South Africa Fractional Calculus and Their Applications, Methods for Partial Differential Equations Ratuca Balan Sis King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Institute Recherche en Mathématique et en Physique, Université catholique de Louvain, Louvain la Neuve, Belgium. Differential Geometry and Lie Theory Department of Mathematics, University of Trento, via Sommarive 14, 39123 Povo (Trento), Italy Maliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks	AIMS Mathematics ISSN (Online): 2473-9898 accepted for coverage in SCIE Shaofang Hong S Hotima: Algebra and Number theory Editors: Recommend Conference Information will be posted here as available Toyohiko Aiki S Abdon Atangana S Reluca Balan S Reluca Balan S Pierre Bieliavsky S Pierre Bieliavsky S Stefano Bonaccorsi S Stefano Bonacc	Six AIMS journals selected for Emerging Sources Citation Index	Antonio Di Crescenzo M	Dipartimento di Matematica, Università degli Studi di Salerno, Italy
Editors: Recommend Conference Information will be posted here as available Toyohiko Aiki Toyohiko Aiki Faculty of Science, Japan Women's University, Tokyo, Japan Free boundary problem and Hysteresis operator Institute for Groundwater Studies, University of the Free State, South Africa Institute for Groundwater Studies, University of the Free State, South Africa Raluca Balan Raluca Balan Department of Mathematics and Statistics, University of Ottawa, 685 King Edward Avenue, Ottawa, Ontario K1N KINS, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Institut de Recherche en Mathématique et en Physique, Université catholique de Louvain, Louvain la Neuve, Belgium. Differential Geometry and Lie Theory Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy Mallavia calculus and the applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks	Editors: Recommend Conference Information will be posted here as available Toyohiko Aiki I Abdon Atangana Faculty of Science, Japan Women's University, Tokyo, Japan Free boundary problem and Hysteresis operator Institute for Groundwater Studies, University of the Free State, South Africa Institute for Groundwater Studies, University of the Free State, South Africa Raluca Balan Raluca Balan Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6NS, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Institut de Recherche en Mathématique et en Physique, University catholique de Louvain, Louvain la Neuve, Belgium. Differential Geometry and Lie Theory Stefano Bonaccorsi Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy Mallavin calculus and its applications to the study of stochastic cultion equations with inhomogeneous boundary conditions and applications to the study of stochastic cultion equations with inhomogeneous boundary conditions and applications to evolution equations on networks Tomasz Brzezinski Department of Mathematics, Swansea University, Swansea, U.K. Noncommutative geometry, Hopf algebras Southeast University, Nanjing 210996, Jiangsu, China Southeast University, Nanjing 210996, Jiangsu, China	(Online): 2473-6988 accepted for	Shaofang Hong 💟	Mathematical College, Sichuan University, Chengdu 610064, P.R.
available Toyohiko Aiki Free boundary problem and Hysteresis operator Abdon Atangana Institute for Groundwater Studies, University of the Free State, South Africa Fractional Calculus and Their Applications, Methods for Partial Differential Equations Practional Calculus and Their Applications, Methods for Partial Differential Equations Raluca Balan Reluca Balan Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Institut de Recherche en Mathématique et en Physique, Université catholique de Louvain, Louvain la Neuve, Belgium. Differential Geometry and Lie Theory Department of Mathematics, University of Stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Department of Mathematics, Swansea University, Swansea, U.K.	available Toychiko Aiki Free boundary problem and Hysteresis operator Institute for Groundwater Studies, University of the Free State, South Africa Fractional Calculus and Their Applications, Methods for Partial Differential Equations Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Pierre Bieliavsky Department of Mathematics, University of Trento, via Sommarive 14, 38123 Prov (Trento), Italy Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Department of Mathematics, Swansea University, Swansea, U.K. Noncommutative geometry, Hopf algebras Southeast University, Nanjing 210996, Jiangsu, China	Recommend Conference	Editors:	
Abdon Atangana South Africa Fractional Calculus and Their Applications, Methods for Partial Differential Equations Raluca Balan Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Institut de Recherche en Mathématique et en Physique, Université catholique de Louvain, Louvain la Neuve, Belgium. Differential Geometry and Lie Theory Stefano Bonaccorsi Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Tomasz Brzezinski Department of Mathematics, Swansea University, Swansea, U.K.	Abdon Atangana South Africa Fractional Calculus and Their Applications, Methods for Partial Differential Equations Raluca Balan Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Institut de Recherche en Mathématique et en Physique, Universit catholique de Louvain, Louvain la Neuve, Belgium. Differential Geometry and Lie Theory Stefano Bonaccorsi Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Tomasz Brzezinski Department of Mathematics, Swansea University, Swansea, U.K. Noncommutative geometry, Hopf algebras	Information will be posted here as	Toyohiko Aiki 💟	
Raluca Balan S85 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Institut de Recherche en Mathématique et en Physique, Université catholique de Louvain, Louvain la Neuve, Belgium. Differential Geometry and Lie Theory Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Tomasz Brzezinski Department of Mathematics, Swansea University, Swansea, U.K.	Raluca Balan S85 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada stochastic partial differential equations, limit theorems for heavy tailed random variables Pierre Bieliavsky Institut de Recherche en Mathématique et en Physique, Universit catholique de Louvain, Louvain la Neuve, Belgium. Differential Geometry and Lie Theory Stefano Bonaccorsi Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Tomasz Brzezinski Department of Mathematics, Swansea University, Swansea, U.K. Noncommutative geometry, Hopf algebras		Abdon Atangana 🛛	South Africa Fractional Calculus and Their Applications, Methods for Partial
Pierre Bieliavsky Stefano Bonaccorsi Stefano Bonaccorsi Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Tomasz Brzezinski Department of Mathematics, Swansea University, Swansea, U.K.	Pierre Bieliavsky ≤ catholique de Louvain, Louvain la Neuve, Belgium. Differential Geometry and Lie Theory Department of Mathematics, University of Trento, via Sommarive 14, 38123 Povo (Trento), Italy Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Tomasz Brzezinski Southeast University, Nanjing 210996, Jiangsu, China		Raluca Balan 💟	585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada stochastic partial differential equations, limit theorems for heavy
Stefano Bonaccorsi 14, 38123 Povo (Trento), Italy Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Tomasz Brzezinski Department of Mathematics, Swansea University, Swansea, U.K.	Stefano Bonaccorsi 14, 38123 Povo (Trento), Italy Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and applications to evolution equations on networks Tomasz Brzezinski Department of Mathematics, Swansea University, Swansea, U.K. Noncommutative geometry, Hopf algebras Southeast University, Nanjing 210996, Jiangsu, China		Pierre Bieliavsky 💟	catholique de Louvain, Louvain la Neuve, Belgium.
Tomasz Brzezinski 🔛	Tomasz Brzezinski Moncommutative geometry, Hopf algebras Southeast University, Nanjing 210996, Jiangsu, China		Stefano Bonaccorsi 💟	14, 38123 Povo (Trento), Italy Malliavin calculus and its applications to the study of stochastic differential equations in infinite dimensions, Stochastic evolution equations with inhomogeneous boundary conditions and
			Tomasz Brzezinski 💟	

<

8

	Dynamics of neural networks
Tomás Caraballo 💟	Departamento de Ecuaciones Diferenciales y Análisis Numérico. Facultad de Matemáticas, Universidad de Sevilla. Avenida Reina Mercedes s/n. 41012-Sevilla, Spain Non-autonomous and Stochastic dynamical systems, Differential equations with delay and memory
Claudia Ceci 🔟	Department of Economics, University "G. D'Annunzio" of Chieti- Pescara, Viale Pindaro, 42, I-65127 Pescara, Italy Stochastic models in finance, Filtering and stochastic control
Jean-Paul Chehab 💟	Laboratoire LAMFA (UMR CNRS 7352), Université de Picardie Jules Verne, Pôle Scientifique, 33, rue Saint Leu, 80 039 Amiens Cedex 1, France Numerical Analysis and Numerical Linear Algebra
Laurence Cherfils 🚩	Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle cedex 1, France. PDEs and Numerical analysis
Monica Conti 💟	Dipartimento di Matematica, Politecnico di Milano, Italy Asymptotic behavior of dynamical systems , Equations with memory
Feiqi Deng 💟	South China University of Technology, China Stabilization and control, Nonlinear and networked systems
Zengji Du 🚩 💟	Jiangsu Normal University, China Dynamical systems, Singular perturbation theory, Mathematical biology
Arnaud Ducrot 🚩	Université Le Havre Normandie, Le Havre, France Differential Equations and Applications in Biology
Jean-François Dupuy 💟	Institut de Recherche Mathématiques de Rennes, INSA de Rennes, 20 Avenue des Buttes de Coësmes, CS 70839, 35708 Rennes cedex 7, France Statistical modeling and Data analysis
Alberto Facchini 🔛	Dipartimento di Matematica, University of Padova, Padova, Italy. Module theory and Ring theory
Raúl M. Falcón 💟	Departamento de Matemática Aplicada I. Universidad de Sevilla. Spain Combinatorics, Algebraic Geometry
Zhaosheng Feng 💟	School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, Texas 78539, USA lie in analysis on differential equations (odes and pdes), mathematical physics and mathematical biology
Anna Fino 💟	Dipartimento di Matematica "G. Peano", Università di Torino, via Carlo Alberto 10, 10123 Torino, Italia Differential Geometry and Complex Geometry
Emmanuel Frénod 💟	Emmanuel Frénod, Université Bretagne Sud & LMBA (UMR6205), Campus de Tohannic, 56000 Vannes, France Asymptotic Analysis, Mathematical Modelling
Stefania Gatti 🎴	Dipartimento di Scienze Fisiche, Informatiche e Matematiche Università degli Studi di Modena e Reggio Emilia via Campi 213/B Modena, Italy Partial differential equations , Asymptotic behavior of dynamical systems associated with evolution equations of hyperbolic and parabolic type

<

8

Yuxin Ge 💟	Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062 TOULOUSE Cedex 9, France
	Geometric analysis and Elliptic PDE
Benjamin Gess 🎽	Max Planck Institute for Mathematics in the Sciences (MIS), Leipzig, Germany Stochastic partial differential equations, Scalar conservation laws
Paolo Gibilisco 💟	Department of Economics and Finance, University of Rome "tor Vergata"
	Information geometry and Uncertainty relations
Maurizio Grasselli 🎴	Dipartimento di Matematica, Politecnico di Milano, Italy. Infinite-dimensional dissipative dynamical systems, Phase field models
Marcus Greferath 🚩	Dept. Mathematics and Systems Analysis, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto, Finland Algebra and Discrete Mathematics, Mathematics of Communications
Xiaoying Han 💟	Auburn University, USA Non-autonomous and random dynamical systems, Stochastic differential equations and applications
Jens Høyrup 🚩	Section for Philosophy and Science Studies, Roskilde University, Denmark History of mathematics in pre- and early Modern cultures , Interaction between cultures and between scholarly and practitioners' mathematics
Aziz Hamdouni 💟	Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle cedex 1, France Modelling and Fluid mechanics
Salvador Hernández 🞽	Departamento de Matematicas, Universitat Jaume I, 12071 Castellon, Spain Topological groups , Spaces and groups of continuous functions
Boualem Khouider 🔛	University of Victoria, Canada Applied mathematics, Numerical analysis and PDEs
Syed N.U.A.Kirmani 🛛	Department of Mathematics, University of Northern Iowa, Cedar Falls, Iowa 50614-0506, U.S.A. Probability(applied probability and stochastic processes), Mathematical Statistics(applications to statistical machine learning and predictive analytics)
Yang Kuang 💟	School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA Mathematical and computational biosciences Mathematical medicine
Igor Kukavica 💟	Department of Mathematics, University of Southern California, 3620 S. Vermont Ave., KAP 108, Los Angeles, CA 90089, USA Fluid dynamics and Navier-Stokes equations
Leskelä Lasse 🚩	Aalto University School of Science Department of Mathematics and Systems Analysis Otakaari 1, 02015 Espoo, Finland Applied probability , Random graphs and network statistics
Manue de Leon 🚩	Instituto de Ciencias Matemáticas, CSIC, c/ Nicolás Cabrera 13-15, 28049 Madrid, Spain Differential geometry and Symplectic geometry, Poisson manifolds

< 8 B

Xiaohu Li 🚩	Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken NJ 07030, USA Statistics and applied probability, Financial and actuarial risk
Jia Liu 🔛	Department of Mathematics and Statistic, University of West Florida, Pensacola, USA Iterative methods and Preconditioning techniques
Alfonso Suarez Llorens 💟	Departamento de Estadística e I. O. Universidad de Cádiz, Facultad de Ciencias, Polígono Río San Pedro, 11510, Puerto Real, Cádiz Spain Risk Management and Reliability
Haifeng Ma 💟 💟	Department of Mathematics, Harbin Normal University, China Linear algebra, matrix theory and operator theory
Kirill Mackenzie 🚩	School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK Poisson geometry, Multiple lie theory
Pierre Magal 💟	Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351 cours de la libération 33400 Talence, France Differential Equations, Dynamical Systems, and mathematical modeling; epidemiology; ecology modeling
Yu Miao 🔛	College of Mathematics and Information Science, Henan Normal University, China. Probability and Mathematical statistics
Dumitru Motreanu 💟	Department of Mathematics, University of Perpignan,Perpignan, France Nonlinear elliptic problems and Variational methods
Alfred G. Noël 💟	Department of Mathematics. The University of Massachusetts at Boston 100 Morrissey Blvd. Boston, MA 02125-3393, USA Representation Theory and Computational Lie Theory
Sotiris K. Ntouyas 💟	Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece Initial and Boundary Value Problems for Differential Equations, Inequalities, Asymptotic behavior, Controllability
Morgan Pierre 🚩	Université de Poitiers & CNRS, Téléport 2—BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France Numerical analysis of phase transition models (Allen-Cahn, Cahn- Hilliard and phase-field crystal type equations), Optimization of ship hulls
Alfred Peris M	Institut Universitari de Matemàtica Pura i Aplicada,Universitat Politècnica de València,València,SPAIN Topological dynamics, Linear dynamics
Yuming Qin 💟	Donghua University, Shanghai, China Fluid dynamics
Ramon Quintanilla 🚩	Departament de Matemàtiques, ESEIAAT, Universitat Politècnica de Catalunya (UPC), Colom 11, S-08222 Terrassa, Barcelona, Spain Classical and Non-classical Thermoelasticitym, Spatial and Time stability
Vicentiu Radulescu 💟	Institute of Mathematics "Simion Stoilow" of the Romanian Academy, 21 Calea Grivitei, 010702 Bucharest, Romania Nonlinear elliptic partial differential equations, Variational and topological methods

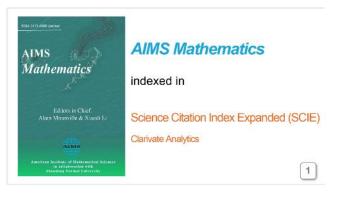
<

8 B

Maria Alessandra Ragusa 🛛	Universita di Catania, Viale Andrea Doria, 6-95125 Catania, Italy Morrey spaces, Parabolic and ultraparabolic type in nondivergence and divergence form, Linear and quasilinear differential equations of elliptic
Giulio Schimperna 💟	Dipartimento di Matematica,Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy Evolutionary PDEs, Phase transition and thermomechanical models
Óscar Valero Sierra 🔽	Department of Mathematical and Information Sciences, Universidad de las Islas Baleares, Spain Fixed Point Theory, Generalized Metric Structures
Lunji Song 💟	School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China Numerical analysis
Ricardo L.Soto 💟	Department of Mathematics, Universidad Católica del Norte, Angamos 0610. Postal Code 1270709, Antofagasta. CHILE Nonnegative matrices, Nonnegative Inverse elementary divisors problem
Marco Squassina 🔛	Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Via dei Musei 41, I-25121 Brescia, Italy Partial differential equations and Nonlinear Analysis
Martin Stoll 🞽	Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 139106 Magdeburg, Germany Numerical Linear Algebra for Dynamical Systems, Partial differential equations
Chunyou Sun 💟	School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China Dissipative evolution PDEs in mathematical physics, Attractors and long time dynamics
Raafat Talhouk 💟	Department of Mathematics, Lebanese University, Hadath, Lebanon Fluid dynamics and PDEs
Kok Lay Teo 🔛	Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth Western Australia 6845, Australia Engineering Mathematics, Optimization and Control
Shou-Fu Tian 💟	School of Mathematics, and Institute of Mathematical Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China Nonlinear Dispersive Waves; Mathematical Physics and Integrable Systems
Shouhong Wang 💟	Department of mathematics, Indiana University, Bloomington, IN 47405. Fluid and geophysical fluid dynamics, Field theory and general relativity
Chuanju Xu 💟	School of Mathematical Sciences, Xiamen University,Xiamen, China Numerical PDEs and Spectral methods
Shengyuan Xu 💟	Nanjing University of Science and Technology, Nanjing 210094, PR China Complex systems, Delay systems, and Control theory
Xu Zhang 🞽	Yangtze Center of Mathematics, Sichuan University, Chengdu 610064, China

	Control theory	<
Shihui Zhu 🎴 🎴	School of Mathematical Sciences, Sichuan Normal University, Chengdu, 610066, P R China Nonlinear PDEs in Mathematical Physics, Blow-up and Stability	8
Mohamed Ziane 💟	University of Southern California, 3620 S. Vermont Avenue, KAP 108, Los Angeles, CA 90089, USA Partial Differential Equations, Navier-Stokes Equations	

Copyright © AIMS Press


Home | Journals 🔻 | News | About 🔻 | Contact Us

<

AIMS Mathematics is Open Access and an international bimonthly publication devoted to publishing peer-reviewed, high quality, research articles in all major fields of mathematics. The journal publishes original research and invited expository articles. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers. Every effort is made to ensure a rigorous but quick editorial process and a rapid publication.

ISSN (Online): 2473-6988 Publisher: AIMS Press Contact by email

	Latest Articles Current Issue Archive Most Cited Most Downloaded
AIMS Mathematics	
Journal Home	Volumes+
Aim and Scope	
Abstracted in	Select All
Editorial Board	Research article
Instructions for Authors	A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model
Peer Review Guidelines	Fatmawati, Muhammad Altaf Khan, Ebenezer Bonyah, Zakia Hammouch, Endrik Mifta Shaiful
Publication Ethics	2020, 5 (4): 2813-2842. doi: 10.3934/math.2020181
Special Issues	+ Abstract + HTML + PDF(1124 KB) Special Issues
Topical Section	Fractional order SEIR model with generalized incidence rate
Article Processing Charge	Muhammad Altaf Khan, Sajjad Ullah, Saif Ullah, Muhammad Farhan
	2020, 5 (4): 2843-2857. doi: 10.3934/math.2020182
News & Announcements	+ Abstract + HTML + PDF(1963 KB)
AIMS Mathematics ISSN (Online): 2473-6988 accepted for	
coverage in SCIE	Distinguished subspaces in topological sequence spaces theory
Six AIMS journals selected for	Merve Temizer Ersoy, Hasan Furkan
Emerging Sources Citation Index (ESCI)	2020, 5 (4): 2858-2868. doi: 10.3934/math.2020183 + Abstract + HTML + PDF(230 KB)
+ More	
	On the dissipative solutions for the inviscid Boussinesq equations
	Feng Cheng 2020, 5 (4): 2869-2876. doi: 10.3934/math.2020184
	+ Abstract + HTML + PDF(220 KB)
Recommend Conference	
Information will be posted here as available	On the number of irreducible polynomials of special kinds in finite fields
+ More	Weihua Li, Chengcheng Fang, Wei Cao
	2020, 5 (4): 2877-2887. doi: 10.3934/math.2020185
	+ Abstract + HTML + PDF(231 KB)

<

2

Generalized iterative method for the solution of linear and nonlinear fractional differential
equations with composite fractional derivative operator
- 4

Krunal B. Kachhia, Jyotindra C. Prajapati 2020, 5 (4): 2888-2898. doi: 10.3934/math.2020186 + Abstract + HTML + PDF(528 KB)

Fundamental units for real quadratic fields determined by continued fraction conditions

Özen Özer 2020, 5 (4): 2899-2908. doi: 10.3934/math.2020187 + Abstract + HTML + PDF(221 KB)

 \square H_∞ filter design for a class of delayed Hamiltonian systems with fading channel and sensor saturation

Weiwei Sun, Mengyang Qiu, Xinyu Lv 2020, 5 (4): 2909-2922. doi: 10.3934/math.2020188 + Abstract + HTML + PDF(363 KB)

The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order

Shuqin Zhang, Lei Hu 2020, 5 (4): 2923-2943. doi: 10.3934/math.2020189 + Abstract + HTML + PDF(268 KB)

TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information

Harish Garg, Rishu Arora 2020, 5 (4): 2944-2966. doi: 10.3934/math.2020190 + Abstract + HTML + PDF(269 KB)

Unfold+

Copyright © AIMS Press

AIMS Mathematics, 5(4): 2813–2842. DOI:10.3934/math.2020181 Received: 01 December 2019 Accepted: 19 February 2020 Published: 17 March 2020

http://www.aimspress.com/journal/Math

Research article

A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model

Fatmawati¹, Muhammad Altaf Khan^{2,*}, Ebenezer Bonyah³, Zakia Hammouch⁴ and Endrik Mifta Shaiful¹

- ¹ Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115, Indonesia
- ² Faculty of Natural and Agricultural Sciences, University of the Free State, South Africa
- ³ Department of Mathematics Education, University of Education Winneba, Kumasi Campus, Kumasi, Ghana
- ⁴ Département de Mathématiques, Faculté des Sciences et Techniques Errachidia, Université Moulay Ismail, Morocco
- * Correspondence: Email: altafdir@gmail.com.

Abstract: We consider a novel fractional model to investigates the (tuberculosis) TB model dynamics with two age groups of human, that is, the children and the adults. First, we formulate the model and present the basic results associated to the model. Then, using the fractional operators, Caputo and the Atangana-Baleanu and obtain a generalized model. Further, we give a novel numerical approach for the solution of the fractional model and obtain their approximate solution. We show graphical results with various values of the fractional order. A comparison of the two operators are shown graphically. The results obtained through Atangana-Baleanu operator is flexible than that of Caputo derivative. The infection in tuberculosis (TB) infected people decreases fast when decreasing the fractional order.

Keywords: tuberculosis; two-age-class transmission; fractional differential equations; Caputo derivative; Atangana-Baleanu (A-B) derivative **Mathematics Subject Classification:** 34A34

1. Introduction

The human population has not been spared by infectious diseases irrespective of the medical facilities. In spite of great achievement in the advancement of medicine, the world is still struggling to combat infectious diseases [1]. Mycobacterium tuberculosis (MTB) is responsible for Tuberculosis (TB) infection which primarily affects the lungs (pulmonary TB). However, the disease can also affect

some other systems in the human body such as the circulatory system, the central nervous system, the genital-urinary system. TB can be transmitted through a medium including the kiss, speak, cough, sneeze [1, 2]. It can even affect individuals through the utilization of infected persons unsterilized eating utensils. In some instance, pregnant women who have an active TB can affect the baby in the womb. The actively infected individuals can cause infection but not the latent TB patient. The transmission of TB dependents on the number of infectious droplets expelled by a carrier, the quality of ventilation available and finally, the duration of the individuals exposed to virulence of the MTB strain. The spread of TB can be reduced by isolating the active infectious individual and immediately introducing viable anti-tuberculosis therapy [3–5]. At the moment, 95% of the world total TB patients of 8 million each year are found in the developing countries. The age bracket that most affected by TB is 15–59. In the developing countries, TB has been identified as the leading death causes in the majority of the Sub-Sahara counties [6]. TB has been established as the leading cause of death in sub-Saharan Africa which account for at least 2 million deaths [7]. TB in children under the age of fifteen (15) is very critical public health problem since it account for most of the current TB transmission [8].

Adaption of modern practice help improves TB control because of factors such as endogenous reactivation, the presence of multi-drug resistant TB, the high rate of HIV incidence in the last two decades. Exogenous re-infection of TB is another concern and very common in Africa. A comprehensive understanding of treatment with respect to the regional transmission of TB is crucial in the fighting of this disease [9].

Mathematical modeling in recent times has been identified as an essential tool that provides qualitative information about the epidemiology of many diseases and strategies in controlling them. Several theoretical studies have been undertaking with regard to TB infection. Several integer-order TB models have been constructed and investigated by some authors [10–14]. The mentioned integer TB models do not predict accurately because they do not have memory effect in order to provide an accurate prediction. However, non-integer models possess memory effect and most of the operators have crossover properties that enhance accurate predictions.

Fractional calculus (FC) is a branch of applied mathematics that generalizes the integer calculus to fractional order [15, 16]. In recent times, the use of fractional calculus in the scientific community has gained enough attention because of its numerous applications including epidemiology, engineering, water resource management [17–24]. The use of fractional derivative in modeling epidemiology has become important because the result takes into consideration the memory effect which naturally occurs in several biological models. The reason is that fractional derivative models give the real phenomena associated with the given problem. The fractional of derivatives and integrals give a vivid description of the memory and hereditary characteristics inherent in many materials and other processes [25]. Usually, the integer order can provide information about two points which realistically may not be true. The concept of classical fractional-order derivative was proposed by Riemann and Liouville. It was well known that Caputo and Riemann-Liouville have singular kernels. Next, Caputo and Fabrizio in [26] presented a new definition of fractional derivative without singular kernel which proved to be good and many researchers are applying. Caputo and Fabrizio [27] also investigated the notion of fractional derivative and applications to the hysteresis phenomena. The fractional calculus is now used in mathematical modeling of impulsive fractional functional differential equations. A more interesting study regarding the impulsive fractional functional differential equations and their

2815

applications is studied in [28].

Recently, Atangana and Baleanu developed a new operator which is based on generalized Mittag-Leffler function where the kernel is non-singular and non-local kernel [29]. Numerous studies on non-integer order models in the sense Atangana and Baleanu have been carried out by researchers. For instance, Atangana and Koca in [30] studied chaos in a simple nonlinear system using Atangana-Baleanu derivatives in Caputo sense. Atangana and Owolabi in [31] developed a new numerical approach for fractional differential equations for solving the system of fractional derivative equations which proved to be efficient. Atangana and Gomez [32] presented a detailed analysis of the decolonization of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Khan et al. [33] studied the TB dynamics under the framework of the work of Atangana-Baleanu derivative with relapse cases. Bonyah in [34] studied a new 5-D hyperchaotic system with four wings by Atangana-Baleanu operator. Khan and Atangana [35] studied the Ebola disease with different fractional operators. The comparison of Atangana-Baleanu derivative with Caputo-Fabrizio for the dengue model are studied in [36]. Bank data through fractional modeling and their analysis is studied in [37]. The dynamics of the chaotic system through Caputo-Fabrizio and the Atangana-Baleanu derivative is studied in [38]. The authors studied in [39] through different fractional operators of fractional calculus for bank data. Using the Atangana-Baleanu derivative the authors studied the TB dynamics [40]. The previously defined fractional operators have some definiens which may or may not correctly investigate the dynamics of such mathematical models that come from science and engineering fields. The Caputo derivative has a singular and local kernel which may not exactly studied the dynamics of a particular problem but these operators are still well known to the researchers and uses for the modeling dynamics. The Caputo-Fabrizio operator was defined without singular kernel. Many researchers used this operator for modeling purposes and still popular among researchers. To have a more precise definition of fractional operator a new operator called Atangana-Baleanu derivative was defined which has a non-singular and non-local kernel and has been used widely for many problems of science and engineering and found it interesting. This new definition is now much famous among researchers around the world. Here, in this work, we consider this newly operator to formulate a new mathematical model for TB dynamics in which we consider the adults and the children as a two groups and present to discuss deeply its mathematical as well as numerical results. This is the first attempt of the authors to have a new mathematical that exploring the children and adults TB dynamics.

It is well known that integer order model does not describes well the dynamics of the disease because there involve history of the disease and their memory. The fractional order models well address the memory effect involve in the disease. At each value of the fractional order parameters we can have a solution but in integer order model we don't have except at the integer case. The difference between two points can be effectively estimated through fractional order models. It is also well known that fractional order models are good for data fitting, where we have variety of choice's for the fractional order parameter. The Caputo operator is singular and local while the AB operator is non-singular and nonlocal. The cross over behavior in the TB model can be addressed well through the AB derivative. Therefore, we considered both the operators and its comparison through graphical results.

To date, there has not been anyone who has investigated the dynamics of TB model with children and adults population using Caputo and Atangana-Baleanu derivative. So, this study investigates a fractional order model in the Atangana-Baleanu sense to explore the spread of TB diseases with in children and adults population. We classify the population into children and adult classes. Based on the risk of transmission, most TB in children is usually not contagious compared to TB in adults [8,41]. Hence, the TB model that involves two-age-classes that distinguishes children and adults can indicate a new understanding of TB transmission.

This paper begins by mathematical preliminaries of the fractional derivative. The description of the model with the two-age-class transmission is given in Section 3. The TB model in Caputo derivative with basic properties, calculation of the basic reproduction number, and the numerical result are done in Section 4. The expression of the TB model in Atangana–Baleanu derivative with the existence and uniqueness of the solution, the numerical iterative, and also the numerical simulation are presented in Section 5. The comparison results of both derivatives with various fractional order parameters are shown in Section 6. Finally, the conclusion is shown in Section 7.

2. Essentials of fractional calculus

We present the details of the fractional operators in the following sections that should be used later in the proposed study.

Definition 2.1. (see [16]) For $\alpha > 0$, with $n - 1 < \alpha < n, n \in \mathbb{N}$, the fractional derivative in the sense of Caputo is defined to be:

$${}^{C}D_{t}^{\alpha}f(t) = \frac{d^{\alpha}f(t)}{dt^{\alpha}} := \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} (t-s)^{(n-\alpha-1)} f^{(n)}(s) ds,$$
(2.1)

where the symbol $\Gamma(\cdot)$ denotes the gamma function.

The Riemann-Liouville fractional integral is defined by

$$I_t^{\alpha} f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{(\alpha-1)} f(s) ds.$$
 (2.2)

Definition 2.2. (see [29]) Suppose $f \in H^1(0, b)$, b > 0, $\alpha \in [0, 1]$, then the Atangana-Baleanu fractional operator in Caputo sense (ABC) can be written as follows:

$${}^{ABC}_{0}D^{\alpha}_{t}(f(t)) = \frac{B(\alpha)}{1-\alpha} \int_{0}^{t} f'(s)E_{\alpha} \bigg[-\alpha \frac{(t-s)^{\alpha}}{1-\alpha} \bigg] ds,$$
(2.3)

where $B(\alpha) = 1 - \alpha + \frac{\alpha}{\Gamma(\alpha)}$ is a normalized function with B(0) = B(1) = 1 and E_{α} is Mittag-Leffler function

$$E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{(z)^k}{\Gamma(\alpha k + 1)}, \alpha > 0.$$

The integral associated to the ABC derivative in Riemann-Liouville sense is given by,

$$I_t^{\alpha}(f(t)) = \frac{1-\alpha}{B(\alpha)}f(t) + \frac{\alpha}{B(\alpha)\Gamma(\alpha)}\int_0^t f(s)(t-s)^{\alpha-1}ds.$$
 (2.4)

AIMS Mathematics

3. Description of the model

The present section describes the formulation of the mathematical model of TB transmission with two groups of human that is, the children and the adults. We design the model by splitting the population into children (*C*) and the adults class (*A*). Furthermore, each of the classes is divided into three classes, namely, the susceptible classes (S_C , S_A), the latent TB classes (L_C , L_A), and the active TB classes (I_C , I_A), where S_C , L_C and I_C represent the susceptible, latent and the active population at any time *t* respectively, whereas the adults sub-population are respectively shown by S_A , L_A and I_A . Hence, the total population is $N = S_C + L_C + I_C + S_A + L_A + I_A$. Individuals who are in the latent stage are not infectious and are thus unable to transmit bacteria. We also assumed that the natural death rate of the children and adults population is equal as we consider the average natural death rate of the total population.

The majority of the children with tuberculosis are not infectious to others [8,41]. Hence, we assume that only the active TB adults could spread TB with in the population. In this model, it is assumed that children got TB infection by doing contacts with active TB adults. Therefore, the latent TB and active TB children do not spread TB within the population. A small percentage of newly infected individuals from the sub-population is assumed to undergo fast progress directly into the class of active TB, while the rest are latently infected and enter the latent class [42]. Furthermore, the TB patients both children and adults cannot recover completely but will enter the latent stage again. Considering these assumptions and facts the following system of evolutionary dynamics of the TB individuals is described through the following systems where the description of the parameters flows and the variables are given in Figure 1.

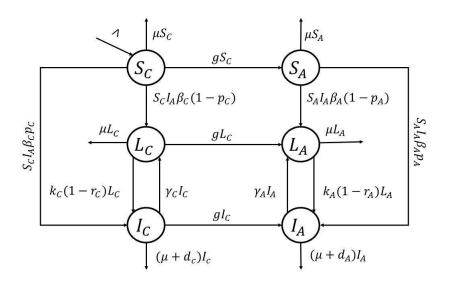


Figure 1. Tuberculosis transmission diagram.

$$\begin{aligned} \frac{dS_C}{dt} &= \Lambda - \beta_C I_A S_C - (g+\mu) S_C, \\ \frac{dL_C}{dt} &= \beta_C (1-p_C) I_A S_C + \gamma_C I_C - k_C (1-r_C) L_C - (g+\mu) L_C. \end{aligned}$$

AIMS Mathematics

$$\frac{dI_C}{dt} = \beta_C p_C I_A S_C + k_C (1 - r_C) L_C - \gamma_C I_C - (g + \mu + d_C) I_C,$$
(3.1)
$$\frac{dS_A}{dt} = gS_C - \beta_A I_A S_A - \mu S_A,$$

$$\frac{dL_A}{dt} = (1 - p_A) \beta_A I_A S_A + gL_C + \gamma_A I_A - k_A (1 - r_A) L_A - \mu L_A,$$

$$\frac{dI_A}{dt} = p_A \beta_A I_A S_A + k_A (1 - r_A) L_A + gI_C - (\gamma_A + \mu + d_A) I_A,$$

where the initial values for the model variables are given by

$$S_C(0) = S_{C0}, L_C(0) = L_{C0}, I_C(0) = I_{C0}, S_A(0) = S_{A0}, L_A(0) = L_{A0}, \text{ and } I_A(0) = I_{A0}.$$

In the above model (3.1), the population of healthy people is generated by the birth rate Λ and the growing up rate of children is shown by g. The natural death rate of children and adults is denoted by μ . The effective contact rate for both the children and adults is shown by β_C and β_A . The proportion of fast progression of latent class children to infected class children is given by p_C while for adults from latent adult class to infected adult class is by p_A . The rate of progression from latent to infected class for the children compartment is shown by k_C while for the adults infection progression from latent to infected class is given by k_A . The rate of effective therapy for children and adults are shown respectively by γ_C and γ_A . The rate of effective chemoprophylaxis for children and adults are shown by r_C and r_A respectively. Natural death from TB disease in children infected class is given by d_C while for the adults with TB infection by d_A . The description of the parameters for the TB model is set out in Table 1.

Table 1. Parameters with descriptions of the TB model.

Description	Parameter	
Populations growth rate	Λ	
Growing-up rate for children	g	
Natural death rate	4	ı
	Children	Adult
	population	population
Infection rate	β_C	β_A
Proportion of fast progression	p_C	p_A
Rate of progression from latent to the infectious	k_C	k_A
Rate of effective therapy	γ_C	γ_A
Rate of effective chemoprophylaxis	r_C	r_A
TB death rate	d_C	d_A

The model (3.1) has the biologically feasible region on Ω_1 with

$$\Omega_1 = \left\{ (S_C, L_C, I_C, S_A, L_A, I_A) \in \mathbb{R}^6_+ : 0 \le N \le \frac{\Lambda}{\mu} \right\},\$$

AIMS Mathematics

which is feasible biologically and all the results associated holds for it. It should be noted that the parameters involved in the model (3.1) are associated to humans so it is non-negative and the region shown by Ω_1 is positive invariant for the described model (3.1) above. The region shown for the model (3.1) below is well-posed and the entire solutions for the initial values belonging to Ω_1 , remains in Ω_1 for every time $t \ge 0$.

Next, in the following section, we explore the TB model in Caputo sense. We apply the definitions of Caputo operator described in above section, and apply it on our model (3.1) and present the results associated to it in the following section in details.

4. A Caputo model

This section present a TB model with two groups of humans which is shown in (3.1), by applying the Caputo derivative on it. The fractional order model of TB transmission with two-age-class in the Caputo sense is given by:

$${}^{C}D_{t}^{\alpha}S_{C} = \Lambda - \beta_{C}I_{A}S_{C} - (g + \mu)S_{C},$$

$${}^{C}D_{t}^{\alpha}L_{C} = \beta_{C}(1 - p_{C})I_{A}S_{C} + \gamma_{C}I_{C} - k_{C}(1 - r_{C})L_{C} - (g + \mu)L_{C},$$

$${}^{C}D_{t}^{\alpha}I_{C} = \beta_{C}p_{C}I_{A}S_{C} + k_{C}(1 - r_{C})L_{C} - \gamma_{C}I_{C} - (g + \mu + d_{C})I_{C},$$

$${}^{C}D_{t}^{\alpha}S_{A} = gS_{C} - \beta_{A}I_{A}S_{A} - \mu S_{A},$$

$${}^{C}D_{t}^{\alpha}L_{A} = (1 - p_{A})\beta_{A}I_{A}S_{A} + gL_{C} + \gamma_{A}I_{A} - k_{A}(1 - r_{A})L_{A} - \mu L_{A},$$

$${}^{C}D_{t}^{\alpha}I_{A} = p_{A}\beta_{A}I_{A}S_{A} + k_{A}(1 - r_{A})L_{A} + gI_{C} - (\gamma_{A} + \mu + d_{A})I_{A},$$
(4.1)

where α represents the fractional order and $0 < \alpha \le 1$. The initial values for the model variables in fractional order model (4.1) are given by,

$$S_{C}(0) = S_{C0}, L_{C}(0) = L_{C0}, I_{C}(0) = I_{C0}, S_{A}(0) = S_{A0}, L_{A}(0) = L_{A0}, \text{ and } I_{A}(0) = I_{A0}.$$

4.1. Non-negative solutions

This section deals with the positivity of the model solution in the Caputo derivative. We assume that the initial condition of the model (4.1) is non-negative. Let us consider

$$\Omega_2 = \left\{ x = (S_C, L_C, I_C, S_A, L_A, I_A) \in \mathbb{R}^6_+ : S_C, L_C, I_C, S_A, L_A, I_A \ge 0 \right\}.$$

Here, recalling the important concept given in [43] to prove our result.

Lemma 4.1. (see [43]) Suppose that $f(t) \in \mathbb{C}[a, b]$ and ${}^{C}D_{t}^{\alpha}f(t) \in \mathbb{C}[a, b]$, for $0 < \alpha \leq 1$, then we have

$$f(t) = f(a) + \frac{1}{\Gamma(\alpha)}{}^C D_t^{\alpha} f(\xi) (t-a)^{\alpha}$$

with $a \leq \xi \leq t$, $\forall t \in (a, b]$.

Corollary 4.2. Consider that $f(t) \in C[a, b]$ and ${}^{C}D_{t}^{\alpha}f(t) \in C[a, b]$, for $0 < \alpha \leq 1$. Then if

(1) $^{C}D_{t}^{\alpha}f(t) \geq 0, \forall t \in (a, b), then f(t) is non-decreasing.$

AIMS Mathematics

(2) $^{C}D_{t}^{\alpha}f(t) \leq 0, \forall t \in (a, b), then f(t) is non-increasing.$

Now, we state the main theorem.

Theorem 4.3. A unique solution exists for $x(t) = (S_C, L_C, I_C, S_A, L_A, I_A)^T$ of the model (4.1) and the solution will be in Ω_2 . Additionally, the solution is non-negative.

Proof. Using Theorem 3.1. and Remark 3.2. of [44], it is easily to prove the solution existence and also the uniqueness of the solution of the model (4.1) for all t > 0. Next, we will prove the positivity of the solution of the model (4.1). In order to do, we have to prove for every hyperplane bounding the nonnegative orthant, of the field points of the vector Ω_2 . It follows from the model given by (4.1), we have

By using Corollary 1, the model solution remains in Ω_2 .

Thus, it follows from the results described above the feasible given by Ω_2 is positively invariant for model (4.1).

4.2. Model fixed points

We present here the possible fixed points of the fractional model given by (4.1) and then, we obtain at these possible equilibrium points the stability analysis of the model. For the given model (4.1), there exists two possible equilibrium points that is, the disease free and the endemic equilibrium. We can obtain these equisetum points by setting the time rate of change equal to zero of the model (4.1) and is given by:

$${}^{C}D_{t}^{\alpha}S_{C}|_{S_{C}=0} = 0,$$

$${}^{C}D_{t}^{\alpha}L_{C}|_{L_{C}=0} = 0,$$

$${}^{C}D_{t}^{\alpha}I_{C}|_{I_{C}=0} = 0,$$

$${}^{C}D_{t}^{\alpha}S_{A}|_{S_{A}=0} = 0,$$

$${}^{C}D_{t}^{\alpha}L_{A}|_{L_{A}=0} = 0,$$

$${}^{C}D_{t}^{\alpha}I_{A}|_{I_{A}=0} = 0.$$

We have the following expression,

$$\Lambda - \beta_C I_A S_C - (g + \mu) S_C = 0,$$

$$\beta_C (1 - p_C) I_A S_C + \gamma_C I_C - k_C (1 - r_C) L_C - (g + \mu) L_C = 0,$$

OIC

AIMS Mathematics

Volume 5, Issue 4, 2813–2842.

Λ

$$\beta_{C} p_{C} I_{A} S_{C} + k_{C} (1 - r_{C}) L_{C} - \gamma_{C} I_{C} - (g + \mu + d_{C}) I_{C} = 0,$$

$$g S_{C} - \beta_{A} I_{A} S_{A} - \mu S_{A} = 0,$$

$$(1 - p_{A}) \beta_{A} I_{A} S_{A} + g L_{C} + \gamma_{A} I_{A} - k_{A} (1 - r_{A}) L_{A} - \mu L_{A} = 0,$$

$$p_{A} \beta_{A} I_{A} S_{A} + k_{A} (1 - r_{A}) L_{A} + g I_{C} - (\gamma_{A} + \mu + d_{A}) I_{A} = 0.$$
(4.2)

At the disease free equilibrium, denoted by E_{01} , we have from (4.2),

$$E_{01} = \left(\frac{\Lambda}{g+\mu}, 0, 0, \frac{g\Lambda}{\mu(g+\mu)}, 0, 0\right).$$

The endemic equilibrium of the model (4.1) is given by $E_{22} = (S_C^*, L_C^*, I_C^*, S_A^*, L_A^*, I_A^*)$ where

$$\begin{split} S_{C}^{*} &= \frac{\Lambda}{I_{A}^{*}\beta_{C} + g + \mu} \\ L_{C}^{*} &= \frac{\beta_{C}(1 - p_{C})I_{A}^{*}S_{C}^{*} + \gamma_{C}I_{C}^{*}}{\mu + g + k_{C}(1 - r_{C})} \\ I_{C}^{*} &= \frac{\beta_{C}p_{C}I_{A}^{*}S_{C}^{*} + k_{C}(1 - r_{C})L_{C}^{*}}{\gamma_{C} + g + \mu + d_{C}} \\ S_{A}^{*} &= \frac{gS_{C}^{*}}{\beta_{A}I_{A}^{*} + \mu} \\ L_{A}^{*} &= \frac{(1 - p_{A})\beta_{A}I_{A}^{*}S_{A}^{*} + gL_{C}^{*} + \gamma_{A}I_{A}^{*}}{k_{A}(1 - r_{A}) + \mu} \\ I_{A}^{*} &= \frac{k_{A}(1 - r_{A})L_{A}^{*} + gI_{C}^{*}}{\gamma_{A} + \mu + d_{A} - \beta_{A}p_{A}S_{A}^{*}}. \end{split}$$

The endemic equilibrium E_{22} exists if $\gamma_A + \mu + d_A > \beta_A p_A S_A^*$.

In order to find the basic reproduction number \mathcal{R}_0 , we consider the method in [45] and the matrices are given by

$$F = \begin{pmatrix} 0 & 0 & 0 & P_9 \\ 0 & 0 & 0 & P_{10} \\ 0 & 0 & 0 & P_{12} \\ 0 & 0 & 0 & P_{13} \end{pmatrix}, \quad V = \begin{pmatrix} P_2 & -\gamma_C & 0 & 0 \\ -P_5 & P_3 & 0 & 0 \\ -g & 0 & P_4 & -r_A \\ 0 & -g & -P_6 & P_7 \end{pmatrix}.$$
 (4.3)

The basic reproduction number is the spectral radius of $\rho(FV^{-1})$ and is given by

$$\mathcal{R}_0 = \mathcal{R}_1 + \mathcal{R}_2 + \mathcal{R}_3 + \mathcal{R}_4, \tag{4.4}$$

where

$$\mathcal{R}_1 = \frac{P_6 P_3 \left(g P_9 + P_2 P_{12}\right)}{\left(P_4 P_7 - P_6 r_A\right) \left(P_2 P_3 - P_5 \gamma_C\right)},$$

AIMS Mathematics

$$\mathcal{R}_{2} = \frac{P_{4}P_{2}(gP_{10} + P_{3}P_{13})}{(P_{4}P_{7} - P_{6}r_{A})(P_{2}P_{3} - P_{5}\gamma_{C})},$$

$$\mathcal{R}_{3} = \frac{P_{6}\gamma_{C}(gP_{10} - P_{5}P_{12})}{(P_{4}P_{7} - P_{6}r_{A})(P_{2}P_{3} - P_{5}\gamma_{C})},$$

$$\mathcal{R}_{4} = \frac{P_{4}P_{5}(gP_{9} - P_{13}\gamma_{C})}{(P_{4}P_{7} - P_{6}r_{A})(P_{2}P_{3} - P_{5}\gamma_{C})},$$
(4.5)

where

$$P_{1} = g + \mu, P_{2} = k_{C} (1 - r_{C}) + g + \mu, P_{3} = \gamma_{C} + d_{C} + g + \mu,$$

$$P_{4} = k_{A} (1 - r_{A}) + \mu, P_{5} = k_{C} (1 - r_{C}), P_{6} = k_{A} (1 - r_{A}),$$

$$P_{7} = \gamma_{A} + d_{A} + \mu, P_{8} = \beta_{C} S_{C}^{0}, P_{9} = \beta_{C} (1 - p_{C}) S_{C}^{0}, P_{10} = \beta_{C} p_{C} S_{C}^{0},$$

$$P_{11} = \beta_{A} S_{A}^{0}, P_{12} = \beta_{A} (1 - p_{A}) S_{A}^{0}, P_{13} = \beta_{A} p_{A} S_{A}^{0},$$
(4.6)

where S_C^0 and S_A^0 represent the disease-free equilibrium (DFE).

Next, we show the stability of the system at the disease-free case, we follow the following theorem.

Theorem 4.4. For any $p_1, p_2 \in \mathbb{Z}$, such that $gcd(p_1, p_2) = 1$. Let $\alpha = (\frac{p_1}{p_2})$ and consider $M = p_2$, then the DFE of the system (4.1) is locally asymptotically stable (LAS) if $|arg(\lambda)| > \frac{\pi}{2M}$, for all roots λ of the characteristic Eq. (4.7) of the matrix $J_{E_{01}}$.

$$det(diag[\lambda^{p_1}\lambda^{p_1}\lambda^{p_1}\lambda^{p_1}\lambda^{p_1}\lambda^{p_1}] - J_{E_{01}}) = 0.$$

$$(4.7)$$

Proof. At the disease free equilibrium E_{01} , the Jacobian matrix is given by

$$J(E_{01}) = \begin{pmatrix} -P_1 & 0 & 0 & 0 & 0 & -P_8 \\ 0 & -P_2 & \gamma_C & 0 & 0 & P_9 \\ 0 & P_5 & -P_3 & 0 & 0 & P_{10} \\ g & 0 & 0 & -\mu & 0 & -P_{11} \\ 0 & g & 0 & 0 & -P_4 & P_{12} + \gamma_A \\ 0 & 0 & g & 0 & P_6 & P_{13} - P_7 \end{pmatrix}.$$
(4.8)

We obtain the characteristics equation associated to $J(E_{01})$, given by

$$(\lambda^{p_1} + \mu)(\lambda^{p_1} + \mu + g)[\lambda^{4p_1} + b_1\lambda^{3p_1} + b_2\lambda^{2p_1} + b_3\lambda^{p_1} + b_4] = 0.$$
(4.9)

The arguments of the roots of the equation $\lambda^{p_1} + \mu = 0$, $\lambda^{p_1} + \mu + g = 0$ are as follow:

$$arg(\Pi_k) = \frac{\pi}{p_1} + k \frac{2\pi}{p_1} > \frac{\pi}{M} > \frac{\pi}{2M}, \text{ where } k = 0, 1 \cdots, (p_1 - 1).$$
 (4.10)

In Eq. (4.9), the roots are negative, i.e., $-\mu$, $-(\mu + g)$, while the rest are computed from

$$Q(\lambda) = [\lambda^{4p_1} + b_1 \lambda^{3p_1} + b_2 \lambda^{2p_1} + b_3 \lambda^{p_1} + b_4],$$
(4.11)

AIMS Mathematics

where

$$b_{1} = \gamma_{A} + d_{A} + k_{A}(1 - r_{A}) - \beta_{A}p_{A}S_{A}^{0} + \gamma_{C} + d_{C} + k_{C}(1 - r_{C}) + 2g + 4\mu,$$

$$b_{2} = \underbrace{(\gamma_{C} + d_{C} + g + \mu)(\gamma_{A} + d_{A} + k_{A}(1 - r_{A}) + 2\mu) - \beta_{A}p_{A}S_{A}^{0}P_{2}P_{4}}_{+ (k_{A}(1 - r_{A}) + \mu)(k_{C}(1 - r_{C}) + g + \mu) + (d_{A} + \mu)(k_{A}(1 - r_{A}) + \mu) + \mu\gamma_{A}} + \underbrace{P_{7}P_{2} - \beta_{A}k_{A}(1 - p_{A})(1 - r_{A})S_{A}^{0}}_{+ ((d_{C} + g + \mu)(k_{C}(1 - r_{C}) + g + \mu) + \gamma_{C}(g + \mu))} \times \underbrace{\left(1 - \frac{\beta_{A}p_{A}S_{A}^{0}(\gamma_{C} + d_{C} + g + \mu) + g\beta_{C}p_{C}S_{C}^{0}}{(d_{C} + g + \mu)(k_{C}(1 - r_{C}) + g + \mu) + \gamma_{C}(g + \mu)}\right)}_{(P_{3} + P_{2})\left(d_{A}(k_{A}(1 - r_{A}) + \mu) + k_{A}(1 - r_{A})(\mu - \beta_{A}S_{A}^{0}) + \mu(\gamma_{A} - \beta_{A}p_{A}S_{A}^{0} + \mu)\right) - g\beta_{C}S_{C}^{0}(k_{A}(1 - r_{A}) + \mu)c(g + 2\mu) + k_{C}(1 - r_{C})),$$

$$b_{4} = C_{1}C_{2}(1 - R_{0}), \qquad (4.12)$$

where $C_1 = (d_A (k_A (1 - r_A) + \mu) + \mu (\gamma_A + k_A (1 - r_A) + \mu)),$ $C_2 = (d_C (k_C (1 - r_C) + g + \mu) + (g + \mu) (\gamma_C + k_C (1 - r_C) + g + \mu)).$

The function $Q(\lambda)$ will give eigenvalues with negative real part if $b_i > 0$ for i = 1, 2, 3, 4 and $b_1b_2b_3 > b_1^2b_4 + b_3^2$. All $b_i > 0$ when $\mathcal{R}_0 < 1$ and the conditions $b_1b_2b_3 > b_1^2b_4 + b_3^2$ ensure the stability of the disease free case when $\mathcal{R}_0 < 1$. If $\mathcal{R}_0 < 1$, then the necessary condition fulfil for all the roots of characteristics equation i.e., $|arg(\lambda)| > \frac{\pi}{2M}$. Thus the DFE is LAS for $\mathcal{R}_0 < 1$.

The following subsection explore the numerical simulation of the Caputo model.

4.3. Numerical simulation for Caputo model

The aim of this section is to discuss a numerical simulation of the model (4.1). The simulation is done with several fractional order values to determine population dynamics in the model. The numerical results of the Caputo derivative are obtained by the Predictor-Corrector method [46, 47]. Parameters values used in these simulations are set out in Table 2. We take the initial condition $S_C(0) =$ $1500, L_C(0) = 135, I_C(0) = 75, S_A(0) = 1000, L_A(0) = 103$ and $I_A(0) = 60$. Here, we use 50 years for the time horizon. The simulations are conducted with different values of the order of the fractional derivative $\alpha = 1, 0.9, 0.8, 0.7, 0.6$ and 0.5. We have the simulation results of the TB model (4.1) in Figure 2. In this case the value of R_0 is $R_0 = 91.5021 > 1$, which indicates the disease will persist in the population. We can observe in Figure 2 that as the values of α decrease, the individuals infected with TB decreases whereas the population of susceptible individuals increases.

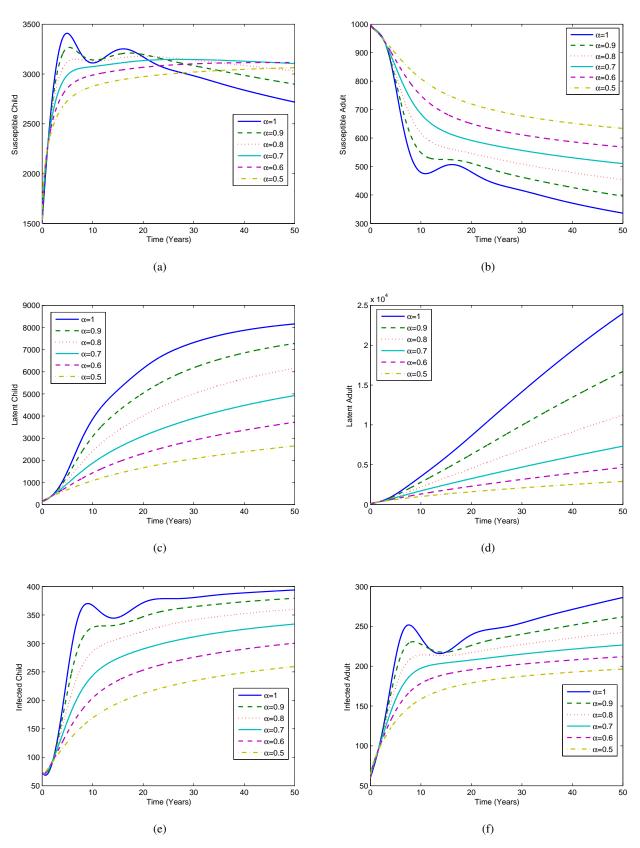


Figure 2. Numerical results for Caputo model.

Next, we will see the effect of chemoprophylaxis and treatment on the active TB populations in both children and adults. The numerical simulation is deployed by varying the effectiveness of chemoprophylaxis (r_c , r_A) and treatment (γ_c , γ_A). In Figures 3, 4, we display the dynamic of the active TB populations for different values of the efficacy of chemoprophylaxis and treatment. For $\alpha = 0.9$, it is shown that the population of the active TB both children and adults have decreased when the efficacy of chemoprophylaxis and treatment have increased. Conversely, when the efficacy of chemoprophylaxis and treatment falls, the population of the active TB both children and adults will rise. The likewise behavior is seen for $\alpha = 0.7$. This shows that chemoprophylaxis and treatment were given to patients with latent stage and active TB respectively can reduce the number of TB infection populations of both children and adults.

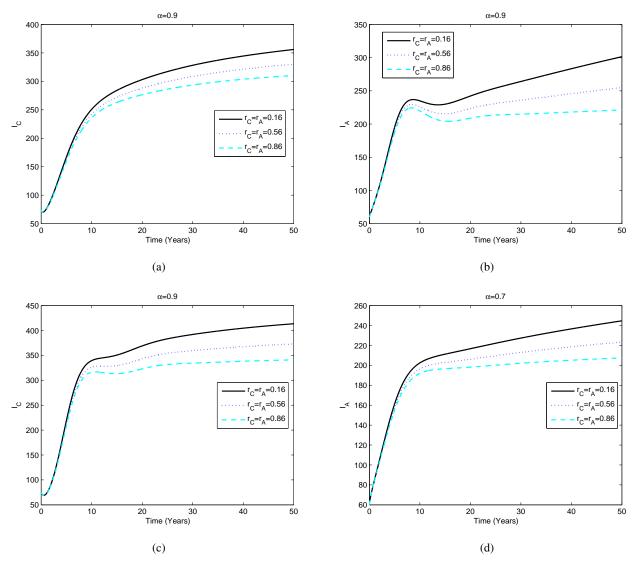
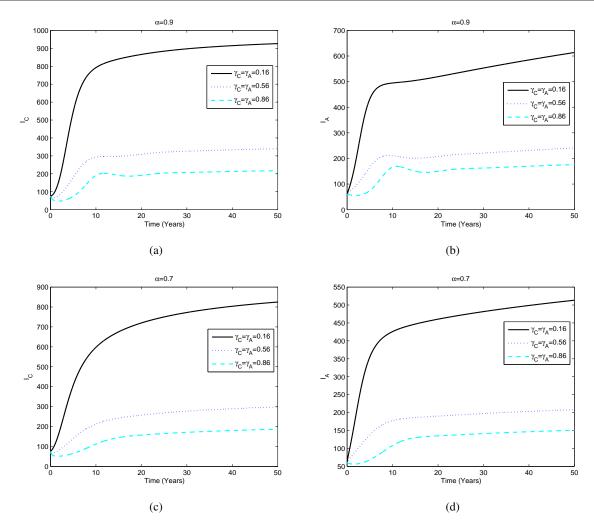



Figure 3. Numerical results for Caputo model with various r_c and r_A .

```
AIMS Mathematics
```


Figure 4. Numerical results for Caputo model with various γ_C and γ_A .

Parameter	Value	Ref.	Parameter	Value	Ref.
Λ	1000	Assumed	β_C	0.01	[48]
β_A	0.02	[48]	μ	0.0143	[49]
g	$\frac{1}{14}$	[50]	γ_C	0.5	Assumed
γ_A	0.5	Assumed	<i>p</i> _C	0.4	Assumed
p_A	0.3	Assumed	k _C	0.005	[49]
k _A	0.005	[49]	r _C	0.5	Assumed
r _A	0.5	Assumed	d_C	0.0575	[51]
d_A	0.05751	[51]	d	0.05751	[51]
р	0.3	Assumed	β	0.02	[48]
γ	0.5	Assumed	k	0.005	[49]
r	0.5	Assumed			

 Table 2. Parameter values for simulations.

Next, we express the model of TB in Atangana-Baleanu derivative where their kernel is non-singular and non-local which best describes the dynamics of real world problem.

5. TB model in the Atangana–Baleanu sense

The newly derivative called the Atangana-Baleanu derivative where their kernel is non-local and non singular is considered here to apply on our model presented in (3.1). We follow the definition described above and have the following representation:

$$\begin{split} {}^{ABC}_{0} D^{\alpha}_{t} S_{C} &= \Lambda - \beta_{C} I_{A} S_{C} - (g + \mu) S_{C}, \\ {}^{ABC}_{0} D^{\alpha}_{t} L_{C} &= \beta_{C} (1 - p_{C}) I_{A} S_{C} + \gamma_{C} I_{C} - k_{C} (1 - r_{C}) L_{C} - (g + \mu) L_{C}, \\ {}^{ABC}_{0} D^{\alpha}_{t} I_{C} &= \beta_{C} p_{C} I_{A} S_{C} + k_{C} (1 - r_{C}) L_{C} - \gamma_{C} I_{C} - (g + \mu + d_{C}) I_{C}, \\ {}^{ABC}_{0} D^{\alpha}_{t} S_{A} &= g S_{C} - \beta_{A} I_{A} S_{A} - \mu S_{A}, \\ {}^{ABC}_{0} D^{\alpha}_{t} L_{A} &= (1 - p_{A}) \beta_{A} I_{A} S_{A} + g L_{C} + \gamma_{A} I_{A} - k_{A} (1 - r_{A}) L_{A} - \mu L_{A}, \\ {}^{ABC}_{0} D^{\alpha}_{t} I_{A} &= p_{A} \beta_{A} I_{A} S_{A} + k_{A} (1 - r_{A}) L_{A} + g I_{C} - (\gamma_{A} + \mu + d_{A}) I_{A}, \end{split}$$

$$\end{split}$$

with some appropriate initial conditions. For the TB fractional model in Atangana-Baleanu form is studied further to obtain their existence and uniqueness. We have the following:

5.1. The existence and uniqueness of the solution

Here, we display the uniqueness and existence results associated to the AB model (5.1). In order to show the results for the model we follow the results of the fixed-point theory. We first write the (5.1) in the form shown below,

$$\begin{cases} {}^{ABC}_{0} D^{\alpha}_{t} u(t) = G(t, u(t)) \\ u(0) = u_{0}, \ 0 < t < T < \infty. \end{cases}$$
(5.2)

In system (5.2), $u(t) = (S_C, L_C, I_C, S_A, L_A, I_A)$ is simply a vector having the state variable and G is therefore a continuous vector function given as

$$G = \begin{pmatrix} G_1 \\ G_2 \\ G_3 \\ G_4 \\ G_5 \\ G_6 \end{pmatrix} = \begin{pmatrix} \Lambda - \beta_C I_A S_C - (g + \mu) S_C \\ \beta_C (1 - p_C) I_A S_C + \gamma_C I_C - k_C (1 - r_C) L_C - (g + \mu) L_C \\ \beta_C p_C I_A S_C + k_C (1 - r_C) L_C - \gamma_C I_C - (g + \mu + d_C) I_C \\ gS_C - \beta_A I_A S_A - \mu S_A \\ (1 - p_A) \beta_A I_A S_A + gL_C + \gamma_A I_A - k_A (1 - r_A) L_A - \mu L_A \\ p_A \beta_A I_A S_A + k_A (1 - r_A) L_A + gI_C - (\gamma_A + \mu + d_A) I_A \end{pmatrix}$$

and $u_0(t) = (S_C(0), L_C(0), I_C(0), S_A(0), L_A(0), I_A(0))$ representing the state variables initial conditions in vector form. The above function namely, G satisfies the condition of Lipschitz continuity and can be described as below:

$$\|G(t, u_1(t)) - G(t, u_2(t))\| \le M \|u_1(t) - u_2(t)\|.$$
(5.3)

The following result is provided in order to show the model existence and their solution as well as uniqueness for the model (5.1).

AIMS Mathematics

Theorem 5.1. (*Existence and uniqueness*) *The model given by* (5.2) *has the unique solution provided that the following condition satisfy,*

$$\frac{(1-\alpha)}{ABC(\alpha)}M + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}T^{\alpha}_{\max}M < 1.$$
(5.4)

Proof. To prove the above statement, we need to use the fractional integral associated to the Atangana-Baleanu model given by (2.4). The application of this integral on (5.2), leads to the following non-linear voltera integral equation:

$$u(t) = u_0 + \frac{(1-\alpha)}{ABC(\alpha)}G(t, u(t)) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\int_0^t (t-\varepsilon)^{\alpha-1}G(\varepsilon, u(\varepsilon))d\varepsilon.$$
(5.5)

We assure that J = (0, T) and take into consideration the operator $\phi : C(J, \mathbb{R}^6) \to C(J, \mathbb{R}^6)$ defined by

$$\phi[u(t)] = u_0 + \frac{(1-\alpha)}{ABC(\alpha)}G(t, u(t)) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\int_0^t (t-\varepsilon)^{\alpha-1}G(\varepsilon, u(\varepsilon))d\varepsilon.$$
(5.6)

Equation (5.5) turns to

$$u(t) = \phi \left[u(t) \right]. \tag{5.7}$$

The supremum norm on J, $\|.\|_J$ is $||u(t)||_J = \sup_{t \in J} ||u(t)||$, $u(t) \in \mathbb{C}$.

Obviously, $C(J, \mathbb{R}^6)$ along the norm $\|.\|_J$ present a Banach space. Additionally, we can demonstrate simply the following inequality

$$\|\int_0^t D(t,\varepsilon) \, u(\varepsilon) \, d\varepsilon\| \le T \|D(t,\varepsilon)\|_J \, \|u(t)\|_J.$$
(5.8)

with $u(t) \in C(J, \mathbb{R}^6)$, $D(t, \varepsilon) \in C(J^2, \mathbb{R})$. In a way that

$$||D(t,\varepsilon)||_J = \sup_{t,\varepsilon\in J} |D(t,\varepsilon)|.$$

Applying the definition of ϕ stated in (5.7), we derive

$$\begin{aligned} \|\phi[u_1(t)] - \phi[u_2(t)]\|_J &\leq \|\frac{(1-\alpha)}{ABC(\alpha)}G(t,u_1(t)) - G(t,u_2(t)) + \frac{\alpha}{ABC(\alpha)T(\alpha)} \\ &\qquad \times \int_0^t (t-\varepsilon)^{\alpha-1} \left(G(\varepsilon,u_1(\varepsilon)) - G(\varepsilon,u_2(\varepsilon))\right) d\varepsilon \|. \end{aligned}$$

Furthermore, using the principles of triangular inequality and Lipschitz condition stated in (5.3) couple with the results in (5.8) we get the following after some algebraic simplification.

$$\|\phi[u_1(t)] - \phi[u_2(t)]\|_J \le \left(\frac{(1-\alpha)}{ABC(\alpha)}M + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}MT^{\alpha}_{\max}\right)\|u_1(t) - u_2(t)\|_J.$$

Thus, we eventually have

$$\|\phi[u_1(t)] - \phi[u_2(t)]\|_J \le \beta \|u_1(t) - u_2(t)\|_J,$$

AIMS Mathematics

where

$$\beta = \frac{(1-\alpha)}{ABC(\alpha)}M + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}MT_{\max}^{\alpha}.$$

Therefore, the operator ϕ will become a contraction if condition (5.4) holds on C (J, \mathbb{R}^6) . As a result of Banach fixed point theorem, system (5.2) possesses a unique solution.

5.2. Numerical scheme for the Atangana - Baleanu model

This section derive the numerical scheme of the TB model in the ABC form which given by Eq. (5.1) using the method in [52] by using Adams-Bashforth method. By using the same procedure in [52], we write (5.1) to the following

$$\begin{array}{rcl}
& {}^{ABC}_{0}D^{\alpha}_{t}S_{C} &= G_{1}(t,S_{C},L_{C},I_{C},S_{A},L_{A},I_{A}) \\
& {}^{ABC}_{0}D^{\alpha}_{t}L_{C} &= G_{2}(t,S_{C},L_{C},I_{C},S_{A},L_{A},I_{A}), \\
& {}^{ABC}_{0}D^{\alpha}_{t}I_{C} &= G_{3}(t,S_{C},L_{C},I_{C},S_{A},L_{A},I_{A}), \\
& {}^{ABC}_{0}D^{\alpha}_{t}S_{A} &= G_{4}(t,S_{C},L_{C},I_{C},S_{A},L_{A},I_{A}), \\
& {}^{ABC}_{0}D^{\alpha}_{t}L_{A} &= G_{5}(t,S_{C},L_{C},I_{C},S_{A},L_{A},I_{A}), \\
& {}^{ABC}_{0}D^{\alpha}_{t}I_{A} &= G_{6}(t,S_{C},L_{C},I_{C},S_{A},L_{A},I_{A}). \\
\end{array}$$
(5.9)

By utilizing the fundamental theorem of fractional calculus, we convert (5.9) to fractional

$$\begin{split} S_{C}(t) - S_{C}(0) &= \frac{(1-\alpha)}{ABC(\alpha)}G_{1}(t,S_{C}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\int_{0}^{t}(t-\varepsilon)^{\alpha-1}G_{1}(\varepsilon,S_{C})d\varepsilon, \\ L_{C}(t) - L_{C}(0) &= \frac{(1-\alpha)}{ABC(\alpha)}G_{2}(t,L_{C}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\int_{0}^{t}(t-\varepsilon)^{\alpha-1}G_{2}(\varepsilon,L_{C})d\varepsilon, \\ I_{C}(t) - I_{C}(0) &= \frac{(1-\alpha)}{ABC(\alpha)}G_{3}(t,I_{C}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\int_{0}^{t}(t-\varepsilon)^{\alpha-1}G_{3}(\varepsilon,I_{C})d\varepsilon, \end{split}$$
(5.10)
$$S_{A}(t) - S_{A}(0) &= \frac{(1-\alpha)}{ABC(\alpha)}G_{4}(t,S_{A}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\int_{0}^{t}(t-\varepsilon)^{\alpha-1}G_{4}(\varepsilon,S_{A})d\varepsilon, \\ L_{A}(t) - L_{A}(0) &= \frac{(1-\alpha)}{ABC(\alpha)}G_{5}(t,L_{C}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\int_{0}^{t}(t-\varepsilon)^{\alpha-1}G_{5}(\varepsilon,L_{A})d\varepsilon, \\ I_{A}(t) - I_{A}(0) &= \frac{(1-\alpha)}{ABC(\alpha)}G_{6}(t,I_{A}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\int_{0}^{t}(t-\varepsilon)^{\alpha-1}G_{6}(\varepsilon,I_{A})d\varepsilon. \end{split}$$

At $t = t_{n+1}$, n = 0, 1, 2, ..., we have

$$S_{C}(t_{n+1}) - S_{C}(0) = \frac{(1-\alpha)}{ABC(\alpha)}G_{1}(t_{n}, S_{C}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\sum_{j=0}^{n}\int_{t_{j}}^{t_{j+1}}(t_{n+1}-\varepsilon)^{\alpha-1}G_{1}(\varepsilon, S_{C})d\varepsilon,$$

$$L_{C}(t_{n+1}) - L_{C}(0) = \frac{(1-\alpha)}{ABC(\alpha)}G_{2}(t_{n}, L_{C}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\sum_{j=0}^{n}\int_{t_{j}}^{t_{j+1}}(t_{n+1}-\varepsilon)^{\alpha-1}G_{2}(\varepsilon, L_{C})d\varepsilon,$$

AIMS Mathematics

$$I_{C}(t_{n+1}) - I_{C}(0) = \frac{(1-\alpha)}{ABC(\alpha)}G_{3}(t_{n}, I_{C}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\sum_{j=0}^{n}\int_{t_{j}}^{t_{j+1}}(t_{n+1}-\varepsilon)^{\alpha-1}G_{3}(\varepsilon, I_{C})d\varepsilon, (5.11)$$

$$S_{A}(t_{n+1}) - S_{A}(0) = \frac{(1-\alpha)}{ABC(\alpha)}G_{4}(t_{n}, S_{A}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\sum_{j=0}^{n}\int_{t_{j}}^{t_{j+1}}(t_{n+1}-\varepsilon)^{\alpha-1}G_{4}(\varepsilon, S_{A})d\varepsilon,$$

$$L_{A}(t_{n+1}) - L_{A}(0) = \frac{(1-\alpha)}{ABC(\alpha)}G_{5}(t_{n}, L_{A}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\sum_{j=0}^{n}\int_{t_{j}}^{t_{j+1}}(t_{n+1}-\varepsilon)^{\alpha-1}G_{5}(\varepsilon, L_{A})d\varepsilon,$$

$$I_{A}(t_{n+1}) - I_{A}(0) = \frac{(1-\alpha)}{ABC(\alpha)}G_{6}(t_{n}, I_{A}) + \frac{\alpha}{ABC(\alpha)\Gamma(\alpha)}\sum_{j=0}^{n}\int_{t_{j}}^{t_{j+1}}(t_{n+1}-\varepsilon)^{\alpha-1}G_{6}(\varepsilon, I_{A})d\varepsilon.$$

The integral in Eq. (5.11) is approximated through the two-point interpolation polynomial. Hence, we have the iterative scheme for the TB model (5.1). After some calculations, we finally obtain the approximation solution as

$$\begin{split} S_{C}(t_{n+1}) &= S_{C}(0) + \frac{(1-\alpha)}{ABC(\alpha)} G_{1}(t_{n}, S_{C}) \\ &+ \frac{\alpha}{ABC(\alpha)} \sum_{j=0}^{n} \left(\frac{h^{\alpha}G_{1}(t_{j}, S_{C})}{\Gamma(\alpha+2)} \left((n+1-j)^{\alpha}(n-j+2+\alpha) \right. \\ &\left. - (n-j)^{\alpha}(n-j+2+2\alpha) \right) - \frac{h^{\alpha}G_{1}(t_{j-1}, S_{C})}{\Gamma(\alpha+2)} ((n+1-j)^{\alpha+1} - (n-j)^{\alpha}(n-j+1+\alpha)) \right), \end{split}$$

$$\begin{split} L_{C}(t_{n+1}) &= L_{C}(0) + \frac{(1-\alpha)}{ABC(\alpha)} G_{2}(t_{n}, L_{C}) \\ &+ \frac{\alpha}{ABC(\alpha)} \sum_{j=0}^{n} \left(\frac{h^{\alpha}G_{2}(t_{j}, L_{C})}{\Gamma(\alpha+2)} \left((n+1-j)^{\alpha}(n-j+2+\alpha) \right. \\ &\left. - (n-j)^{\alpha}(n-j+2+2\alpha) \right) - \frac{h^{\alpha}G_{2}(t_{j-1}, L_{C})}{\Gamma(\alpha+2)} ((n+1-j)^{\alpha+1} - (n-j)^{\alpha}(n-j+1+\alpha)) \right), \end{split}$$

$$\begin{split} I_{C}(t_{n+1}) &= I_{C}(0) + \frac{(1-\alpha)}{ABC(\alpha)}G_{3}(t_{n}, I_{C}) \\ &+ \frac{\alpha}{ABC(\alpha)}\sum_{j=0}^{n} \left(\frac{h^{\alpha}G_{3}(t_{j}, I_{C})}{\Gamma(\alpha+2)}\left((n+1-j)^{\alpha}(n-j+2+\alpha)\right) - (n-j)^{\alpha}(n-j+2+2\alpha)\right) - \frac{h^{\alpha}G_{3}(t_{j-1}, I_{C})}{\Gamma(\alpha+2)}((n+1-j)^{\alpha+1} - (n-j)^{\alpha}(n-j+1+\alpha))\right), \end{split}$$

$$S_A(t_{n+1}) = S_A(0) + \frac{(1-\alpha)}{ABC(\alpha)}G_4(t_n, S_A) + \frac{\alpha}{ABC(\alpha)}\sum_{j=0}^n \left(\frac{h^{\alpha}G_4(t_j, S_A)}{\Gamma(\alpha+2)}\left((n+1-j)^{\alpha}(n-j+2+\alpha)\right)\right)$$

AIMS Mathematics

$$-(n-j)^{\alpha}(n-j+2+2\alpha)) - \frac{h^{\alpha}G_4(t_{j-1},S_A)}{\Gamma(\alpha+2)}((n+1-j)^{\alpha+1} - (n-j)^{\alpha}(n-j+1+\alpha))\bigg),$$

$$\begin{split} L_A(t_{n+1}) &= L_A(0) + \frac{(1-\alpha)}{ABC(\alpha)} G_5(t_n, L_A) \\ &+ \frac{\alpha}{ABC(\alpha)} \sum_{j=0}^n \left(\frac{h^{\alpha} G_5(t_j, L_A)}{\Gamma(\alpha+2)} \left((n+1-j)^{\alpha} (n-j+2+\alpha) \right. \right. \\ &- (n-j)^{\alpha} (n-j+2+2\alpha) \right) - \frac{h^{\alpha} G_5(t_{j-1}, L_A)}{\Gamma(\alpha+2)} ((n+1-j)^{\alpha+1} - (n-j)^{\alpha} (n-j+1+\alpha)) \right), \end{split}$$

$$\begin{split} I_A(t_{n+1}) &= I_A(0) + \frac{(1-\alpha)}{ABC(\alpha)} G_6(t_n, I_A) \\ &+ \frac{\alpha}{ABC(\alpha)} \sum_{j=0}^n \left(\frac{h^{\alpha} G_6(t_j, I_A)}{\Gamma(\alpha+2)} \left((n+1-j)^{\alpha} (n-j+2+\alpha) \right. \right. \\ &- (n-j)^{\alpha} (n-j+2+2\alpha) \right) - \frac{h^{\alpha} G_6(t_{j-1}, I_A)}{\Gamma(\alpha+2)} ((n+1-j)^{\alpha+1} - (n-j)^{\alpha} (n-j+1+\alpha)) \right). \end{split}$$

Next, we present the simulation result of the TB model (5.1) using the numerical scheme.

5.3. Numerical simulation of Atangana-Baleanu model

This section provides the simulation results of Atangana-Baleanu model (5.1) using the iterative scheme obtained in (5.12). The parameter values listed in Table 2 are for obtaining the numerical results 2. The simulation results are shown in Figure 5 by considering different values of $\alpha = 1, 0.9, 0.8, 0.7$ and 0.6. In Figure 5, we can see that by decreasing the values of α , the population of infected compartments decreases, while the susceptible population increase.

In Figures 6 and 7, we present the effect of the efficacy of chemoprophylaxis (r_c and r_A) and treatment (γ_c , γ_A) on the TB transmission for different values of α . From Figure 6, it can be seen that as the chemoprophylaxis strategy increase, the infected TB in both children and adults population decrease. From Figure 7, it is shown that as the treatment strategy increase, the infected TB in both children and adults population decrease significantly.

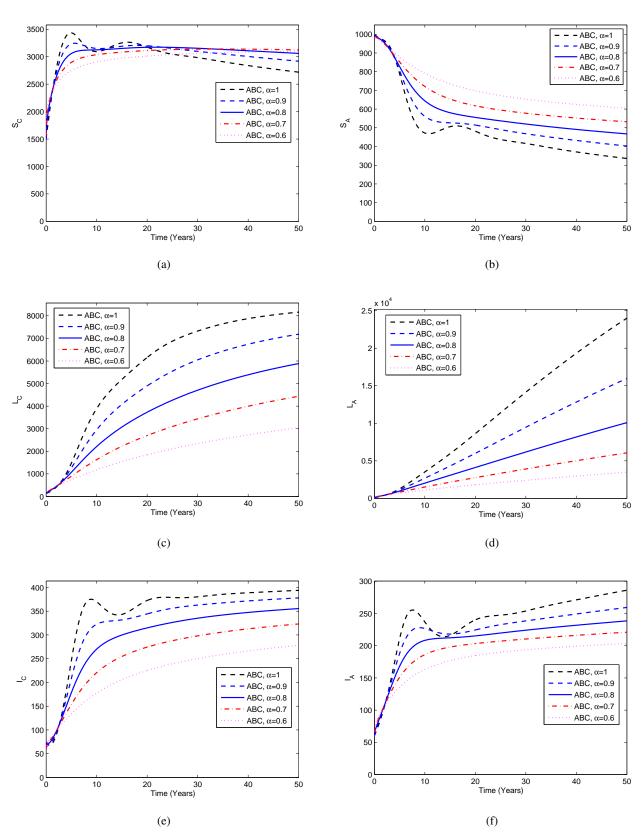
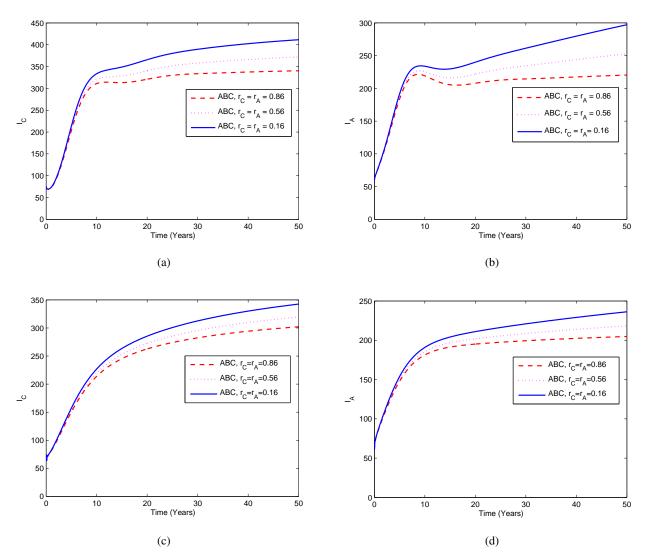
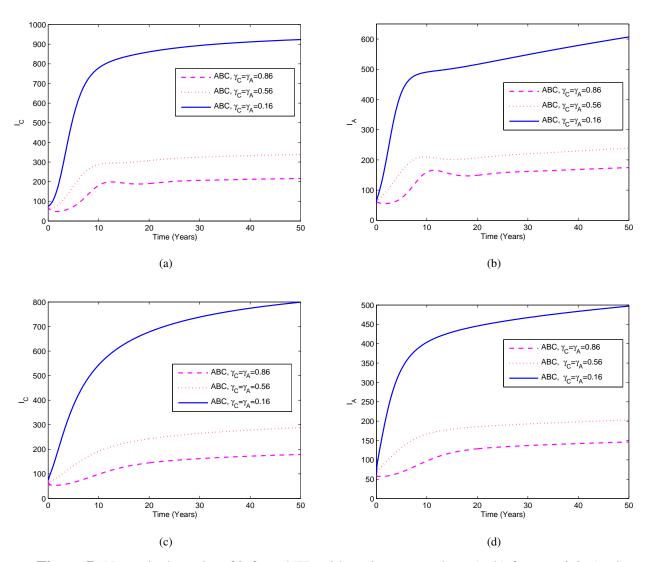




Figure 5. Numerical results for ABC model.

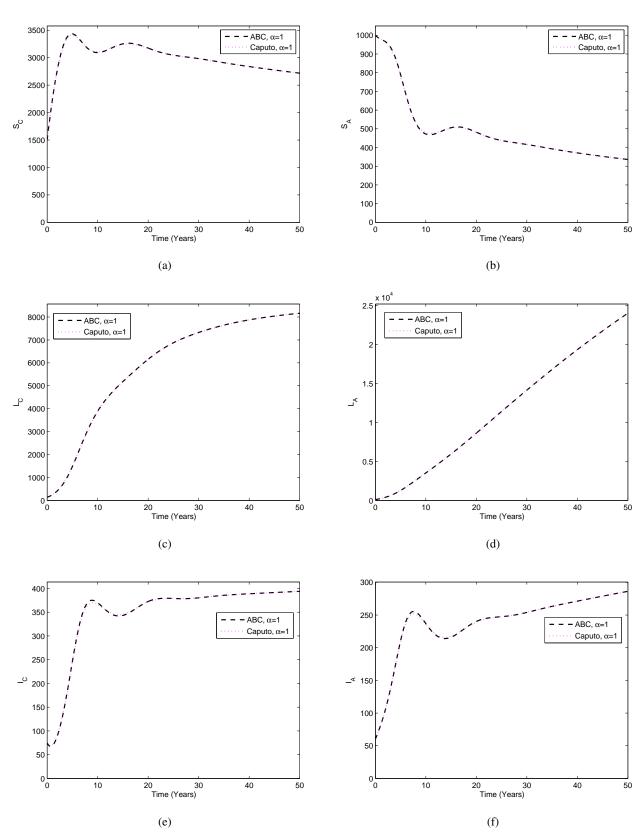

Figure 6. Numerical results of infected TB with various r_c and r_A , (a–b) for $\alpha = 0.9$; (c–d) for $\alpha = 0.7$.

Figure 7. Numerical results of infected TB with various γ_C and γ_A , (a–b) for $\alpha = 0.9$; (c–d) for $\alpha = 0.7$.

6. Comparison of operators

This present section demonstrates the comparison of the Caputo and Atangana-Baleanu operators graphically. The parameter values used in these simulations are given in Table 2. In order to have a comparison of these two operators we considered many values of $\alpha = 1, 0.7, 0.5, 0.3$ and the results were displayed Figures 8–11. It can be seen in Figures 8–11 that there exists a significant difference in the dynamical behavior of the TB infected population when the values of α decrease within both fractional operators. From these figures, we see that Atangana-Baleanu derivative give faster decreases in the results compare to the Caputo derivative when the fractional order parameter decrease for the reduction of TB infection. This comparison section demonstrate the effectiveness of the Atangana-Baleanu derivative over the Caputo derivative.

Figure 8. Comparison results of Caputo and ABC derivative with $\alpha = 1$.

AIMS Mathematics

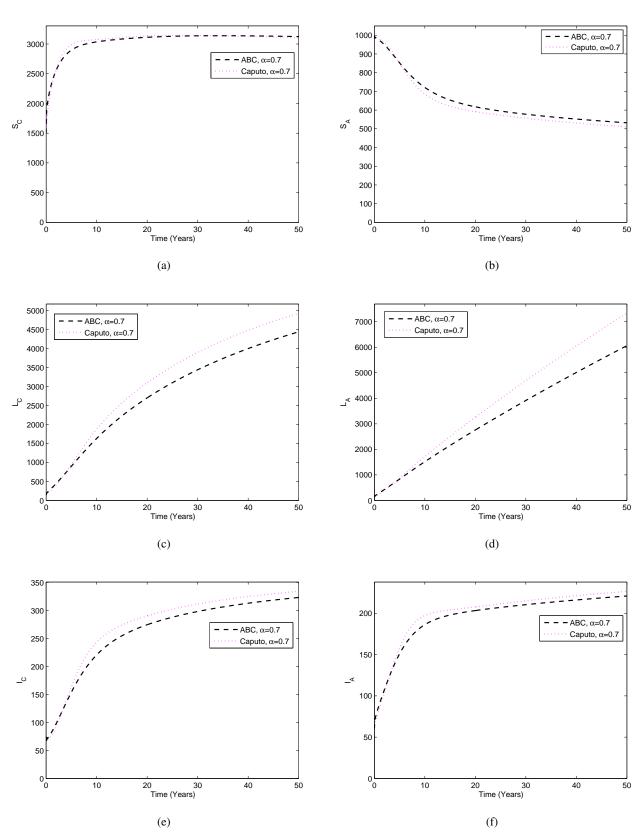


Figure 9. Comparison results of Caputo and ABC derivative with $\alpha = 0.7$.

```
AIMS Mathematics
```

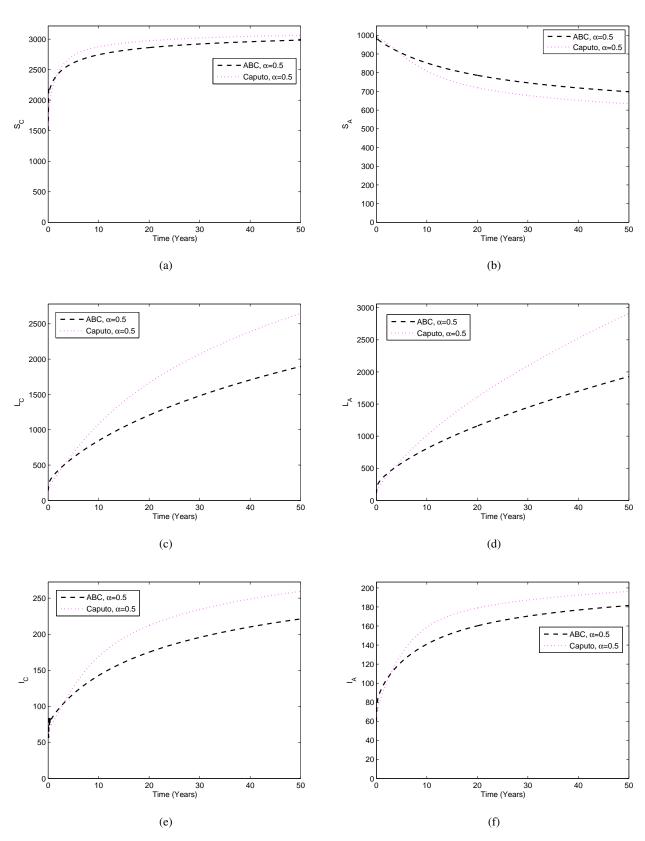


Figure 10. Comparison results of Caputo and ABC derivative with $\alpha = 0.5$.

```
AIMS Mathematics
```

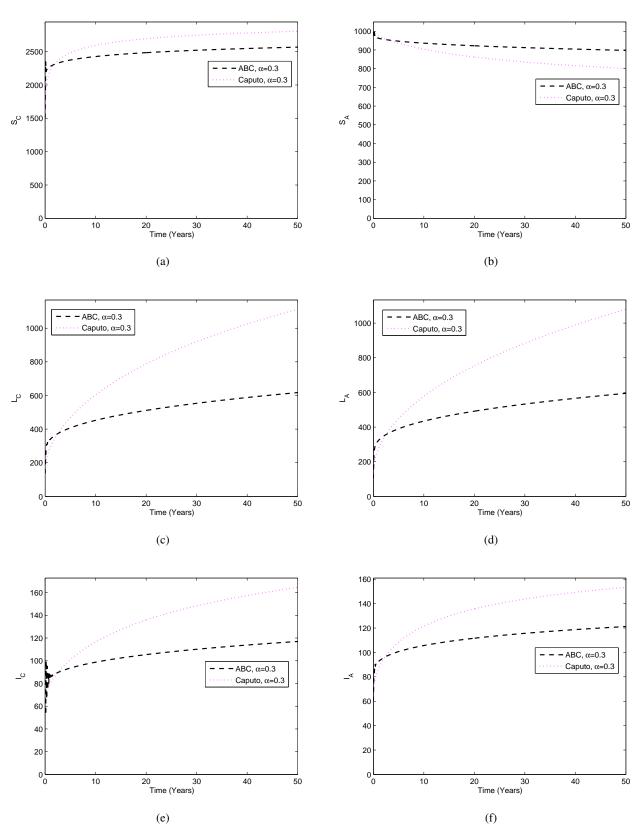


Figure 11. Comparison results of Caputo and ABC derivative with $\alpha = 0.3$.

```
AIMS Mathematics
```

7. Conclusion

The findings reported here shed new light on the fractional-order model with Caputo and Atangana-Baleanu derivative to investigate the spread of TB with children and adults population. Brief mathematical results for the TB model are investigated. The basic reproduction number of the Caputo model and its equilibrium are obtained and presented the results. Each model is studied independently in the fractional operators of Caputo and Atangana-Baleanu. We then performed the numerical simulations of the Caputo model type for different values of the fractional-order using the predictor-corrector method. Then, we apply the fractional Atangana-Baleanu operator to the model and analyzed and obtained the associated results. We proved the uniqueness and existence of the Atangana-Baleanu model. The numerical simulation of the Atangana-Baleanu model was conducted using the Adams-Bashforth scheme. We further presented the graphical results of Atangana-Baleanu model for various fractional order parameters. A comparison of the proposed operators graphically presented. These graphical results for comparison show that the Atangana-Baleanu results are more appropriate for the better decrease in infection while the Caputo is less. We conclude from graphical results that increasing chemoprophylaxis and treatment rates then the TB infective both children and adult cases can be reduced. The graphical results show that a decrease in fractional order parameter causes a significant decrease in the infective TB population. Therefore, the present work is a novel analysis on the TB dynamics and will be more useful for the readers and public health authorities. In future work the TB age fractional model can be considered in the light of fractional impulse model and the results can be compared with non-impulse TB model, stated in [53-55]. This is important because the impulse effect is attracting the receiving considerable attention and eliciting widespread interest in epidemiological models.

Acknowledgements

Part of this research is financially supported by Unversitas Airlangga 2018.

Conflict of interest

All authors declare no conflict of interest.

References

- 1. World Health Organization, *Anti-tuberculosis Drug Resistance in the World: Third Global Report*, No. WHO / HTM / TB / 2004. 343, World Health Organization, 2004.
- 2. J. Cohen, Extensively drug-resistant TB gets foothold in South Africa, Science 313 (2006), 1554.
- 3. L. B. Reichman, J. H. Tanne, *Timebomb: The Global Epidemic of Multi-Drug Resistant Tuberculosis*, 2002.
- 4. Y. Zhou, K. Khan, Z. Feng, et al. *Projection of tuberculosis incidence with increasing immigration trends*, J. Theor. Biol., **254** (2008), 215–228.
- 5. P. Rodrigues, M. G. M. Gomes, *C. Rebelo, Drug resistance in tuberculosis: a reinfection model*, Theor. Popul. Biol., **71** (2007), 196–212.

- 6. N. Blaser, C. Zahnd, S. Hermans, et al. *Tuberculosis in Cape Town: an age-structured transmission model*, Epidemics, **14** (2016), 54–61.
- 7. C. P. Bhunu, W. Garira, Z. Mukandavire, et al. *Tuberculosis transmission model with chemoprophylaxis and treatment*, B. Math. Biol., **70** (2008), 1163–1191.
- 8. Centers for Disease Control and Prevention, *TB in Children in the United States*, CDC, 2014. Available from:

https://www.cdc.gov/tb/topic/populations/tbinchildren/default.htm.

- 9. S. M. Blower, P. M. Small, P. C. Hopewell, *Control strategies for tuberculosis epidemics: new models for old problems*, Science, **273** (1996), 497–500.
- 10. Fatmawati, H. Tasman, *An optimal treatment control of TB-HIV coinfection*, International Journal of Mathematics and Mathematical Sciences, **2016** (2016).
- 11. R. I. Hickson, G. N. Mercer, K. M. Lokuge, A metapopulation model of tuberculosis transmission with a case study from high to low burden areas, PLoS One, 7 (2012).
- R. M. G. J. Houben, T. Sumner, A. D. Grant, et al. Ability of preventive therapy to cure latent Mycobacterium tuberculosis infection in HIV-infected individuals in high-burden settings, P. Natl. A. Sci., 111 (2014), 5325–5330.
- R. Kaplan, J. Caldwell, K. Middelkoop, et al. *Impact of ART on TB case fatality stratified by CD4 count for HIV-positive TB patients in Cape Town*, South Africa (2009-2011), J. Acq. Imm. Def., 66 (2014), 487–494.
- 14. Fatmawati, U. D. Purwati, F. Riyudha, et al. *Optimal control of a discrete age-structured model for tuberculosis transmission*, Heliyon, **6** (2020).
- 15. S. G. Samko, A. A. Kilbas, O. I. Marichev, *Fractional Integrals and Derivatives: Theory and Applications*, Gordon and Breach Science Publishers, 1993.
- 16. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, California, USA, 1999.
- 17. T. Sardar, S. Rana, J. Chattopadhyay, *A mathematical model of dengue transmission with memory*, Commun. Nonlinear Sci., **22** (2015), 511–525.
- 18. J. Huo, H. Zhao, L. Zhu, *The effect on backward bifurcation in a fractional orde HIV model*, Nonlinear Analysis : Real World Applications, **26** (2015), 289–305.
- 19. M. Saeedian, M. Khalighi, N. Azimi-Tafreshi, et al. *Memory effects on epidemic evolution: the susceptible-infected-recovered epidemic model*, Phys. Rev. E., **95** (2017).
- 20. C. M. A. Pinto, A. R. M. Carvalho, *The HIV/TB coinfection severity in the presence of TB multidrug resistant strains*, Ecol. Complex., **32** (2017), 1–20.
- 21. Fatmawati, E. M. Shaiful, M. I. Utoyo, *A fractional order model for HIV dynamics in a two-sex population*, International Journal of Mathematics and Mathematical Sciences, **2018** (2018).
- 22. G. C. Wu, Z. G. Deng, D. Baleanu, et al. New variable-order fractional chaotic systems for fast image encryption, Chaos: An Interdisciplinary Journal of Nonlinear Science, **29** (2019).
- G. C. Wu, T. Abdeljawad, J. Liu, et al. *Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique*, Nonlinear Analysis: Modelling and Control, 24 (2019), 919–936.

- 24. G. C. Wu, D. Q. Zeng, D. Baleanu, Fractional impulisve differential equations: Exact solutions, integral equations and short memory case, Frac. Calc. Appl. Anal., 22 (2019), 180–192.
- 25. M. Itik, S. P. Banks, *Chaos in a three-dimensional cancer model*, Int. J. Bifurcat. Chaos, **20** (2010), 71–79.
- 26. M. Caputo, M. Fabrizio, *A new definition of fractional derivative without singular kernel*, Progr. Fract. Differ. Appl., **1** (2015), 1–13.
- 27. M. Caputo, M. Fabrizio, On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, **52** (2017), 3043–3052.
- 28. T. Zhang, L. Xiong, *Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative*, Appl. Math. Lett., **101** (2020), 106072.
- 29. A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., **20** (2016).
- 30. A. Atangana, I. Koca, *Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order*, Chaos, Solitons & Fractals, **89** (2016), 447–454.
- A. Atangana, K. M. Owolabi, *New numerical approach for fractional differential equations*, Math. Model. Nat. Pheno., **13** (2018).
- 32. A. Atangana, J. F. Gomez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, **133** (2018).
- 33. M. A. Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos, Solitons & Fractals, **116** (2018), 227–238.
- 34. E. Bonyah, *Chaos in a 5-D hyperchaotic system with four wings in the light of non-local and non-singular fractional derivatives*, Chaos, Solitons & Fractals, **116** (2018), 316–331.
- 35. K. Muhammad Altaf, A. Atangana, *Dynamics of Ebola disease in the framework of different fractional derivatives*, Entropy, **21** (2019).
- 36. R. Jan, M. A. Khan, P. Kumam, et al, *Modeling the transmission of dengue infection through fractional derivatives*, Chaos, Solitons & Fractals, **127** (2019), 189–216.
- W. Wang, M. A. Khan, P. Kumam, et al. A comparison study of bank data in fractional calculus, Chaos, Solitons & Fractals, 126 (2019), 369–384.
- 38. M. A. Khan, *The dynamics of a new chaotic system through the Caputo-Fabrizio and Atanagan-Baleanu fractional operators*, Adv. Mech. Eng., **11** (2019).
- 39. M. A. Khan, M. Azizah, S. Ullah, A fractional model for the dynamics of competition between commercial and rural banks in Indonesia, Chaos, Solitons & Fractals, 122 (2019), 32–46.
- 40. S. Ullah, M. A. Khan, M. Farooq, et al. *A fractional model for the dynamics of tuberculosis (TB)* using Atangana-Baleanu derivative, Discrete Cont. Dyn. S, **13** (2019).
- 41. A. A. Velayati, *Tuberculosis in children*, International Journal of Mycobacteriology, 5 (2016).
- 42. C. Castillo-Chaves, B. Song, *Dynamic models of tuberculosis and their applications*, Math. Biosci. Eng., **1** (2004), 361–404.

AIMS Mathematics

- 44. W. Lin, *Global existence theory and chaos control of fractional differential equations*, J. Math. Anal. Appl., **332** (2007), 709–726.
- 45. P. van den Driessche, J. Watmough, *Reproduction numbers and sub-threshold endemic equilibria* for compartmental models of disease transmission, Math. Biosci., **180** (2002), 29–48.
- 46. K. Diethelm, N. J. Ford, A. D. Freed, *A predictor-corrector approach for the numerical solution of fractional differential equations*, Nonlinear Dynamics, **29** (2002), 3–22.
- 47. K. Diethelm, N. J. Ford, A. D. Freed, *Detailed error analysis for a fractional Adams method*, Numerical Algorithms, **36** (2004), 31–52.
- 48. C. P. Bhunu, *Mathematical analysis of a three-strain tuberculosis transmission model*, Appl. Math. Model., **35** (2011), 4647–4660.
- 49. S. Athithan, M. Ghosh, *Optimal control of tuberculosis with case detection and treatment*, World Journal of Modelling and Simulation, **11** (2015), 111–122.
- 50. Word Health Organization, Factsheet on the World Tuberculosis Report 2017, WHO, 2017. Available from: https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis.
- 51. J. J. Tewa, S. Bowong, B. Mewoli, *Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis*, Appl. Math. Model., **36** (2012), 2466–2485.
- 52. M. Toufik, A. Atangana, *New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models*, The European Physical Journal Plus, **132** (2017), 444.
- 53. L. Xu, H. Hub, F. Qinc, *Ultimate boundedness of impulsive fractional differential equations*, Appl. Math. Lett., **62** (2016), 110–117.
- 54. L. Xu, J. Li, S. S. Ge, *Impuls ivestabilization of fractional differential systems*, ISA T., **70** (2017), 125–131.
- 55. L. Xu, X. Chu, H. Hu, *Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses*, Appl. Math. Lett., **99** (2020), 106000.

286-293.

 \bigcirc 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)