A mathe

tuberculosi

with chi

matical mode
S (TB) transm

of

ISSion

dren and adults
groups. Afractional model

by Fatmawati Fatmawati

Submission date: 02-Jun-2020 03:54PM (UTC+0800)

Submission ID: 1336399293
File name: 6..pdf (1.09M)
Word count: 10491
Character count: 45031



AIMS Mathematics, 5(4): 2813-2842.
AIMS Mathematics DOI:10.3934/math.2020181

Received: 01 December 2019

Accepted: 19 February 2020
http://www.aimspress.com/journal/Math Published: 17 March 2020

Research article

A mathematical model of tuberculosis (TB) transmission with children and
adults groups: A fractional model

Fatmawati!, Muhammad Altaf Khan>*, Ebenezer Bonyah®, Zakia Hammouch* and Endrik
Mifta Shaiful’

! Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga

Surabaya 60115, Indonesia

(=

Faculty of Natural and Agricultural Sciences, University of the Free State, South Africa
Department of Mathematics Education, University of Education Winneba, Kumasi Campus,
Kumasi, Ghana

Département de Mathématiques, Faculté des Sciences et Techniques Errachidia, Université Moulay
Ismail, Morocco

* Correspondence: Email: altatdir@gmail.com.

Abstract: We consider a novel fractional model to investigates the (tuberculosis) TB model dynamics
with two age groups of human, that is, the children and the adults. First, we formulate the model and
present the basic results associated to the model. Then, using the fractional operators, Caputo and the
Atangana-Baleanu and obtain a generalized model. Further, we give a novel numerical approach for
the solution of the fractional model and obtain their approximate solution. We show graphical results
with various values of the fractional order. A comparison of the two operators are shown graphically.
The results obtained through Atangana-Baleanu operator is flexible than that of Caputo derivative. The
infection in tuberculosis (TB) infected people decreases fast when decreasing the fractional order.
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1. Introduction

The human population has not been spared by infectious diseases irrespective of the medical
facilities. In spite of great achievement in the advancement of medicine, the world is still struggling to
combat infectious diseases [1]. Mycobacterium tuberculosis (MTB) is responsible for Tuberculosis
(TB) infection which primarily affects the lungs (pulmonary TB). However, the disease can also affect
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some other systems in the human body such as the circulatory system, the central nervous system, the
genital-urinary system. TB can be transmitted through a medium including the kiss, speak, cough,
sneeze [1,2]. It can even affect individuals through the utilization of infected persons unsterilized
eating utensils. In some instance, pregnant women who have an active TB can affect the baby in the
womb. The actively infected individuals can cause infection but not the latent TB patient. The
transmission of TB dependents on the number of infectious droplets expelled by a carrier, the quality
of ventilation available and finally, the duration of the individuals exposed to virulence of the MTB
strain. The spread of TB can be reduced by isolating the active infectious individual and immediately
introducing viable anti-tuberculosis therapy [3-5]. At the moment, 95% of the world total TB patients
of 8 million each year are found in the developing countries. The age bracket that most affected by
TB is 15-59. In the developing countries, TB has been identified as the leading death causes in the
majority of the Sub-Sahara counties [6]. TB has been established as the leading cause of death in
sub-Saharan Africa which account for at least 2 million deaths [7]. TB in children under the age of
fifteen (15) is very critical public health problem since it account for most of the current TB
transmission [8].

Adaption of modern practice help improves TB control because of factors such as endogenous
reactivation, the presence of multi-drug resistant TB, the high rate of HIV incidence in the last two
decades. Exogenous re-infection of TB is another concern and very common in Africa. A
comprehensive understanding of treatment with respect to the regional transmission of TB is crucial
in the fighting of this disease [9].

Mathematical modeling in recent times has been identified as an essential tool that provides
qualitative information about the epidemiology of many diseases and strategies in controlling them.
Several theoretical studies have been undertaking with regard to TB infection. Several integer-order
TB models have been constructed and investigated by some authors [10-14]. The mentioned integer
TB models do not predict accurately because they do not have memory effect in order to provide an
accurate prediction. However, non-integer models possess memory effect and most of the operators
have crossover properties that enhance accurate predictions.

Fractional calculus (FC) is a branch of applied mathematics that generalizes the integer calculus to
fractional order [15, 16]. In recent times, the use of fractional calculus in the scientific community has
gained enough attention because of its numerous applications including epidemiology, engineering,
water resource management [17-24]. The use of fractional derivative in modeling epidemiology has
become important because the result takes into consideration the memory effect which naturally
occurs in several biological models. The reason is that fractional derivative models give the real
phenomena associated with the given problem. The fractional of derivatives and integrals give a vivid
description of the memory and hereditary characteristics inherent in many materials and other
processes [25]. Usually, the integer order can provide information about two points which realistically
may not be true. The concept of classical fractional-order derivative was proposed by Riemann and
Liouville. It was well known that Caputo and Riemann-Liouville have singular kernels. Next, Caputo
and Fabrizio in [26] presented a new definition of fractional derivative without singular kernel which
proved to be good and many researchers are applying. Caputo and Fabrizio [27] also investigated the
notion of fractional derivative and applications to the hysteresis phenomena. The fractional calculus is
now used in mathematical modeling of impulsive fractional functional differential equations. A more
interesting study regarding the impulsive fractional functional differential equations and their
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applications is studied in [28].

Recently, Atangana and Baleanu developed a new operator which is based on generalized
Mittag-Leffler function where the kernel is non-singular and non-local kernel [29]. Numerous studies
on non-integer order models in the sense Atangana and Baleanu have been carried out by researchers.
For instance, Atangana and Koca in [30] studied chaos in a simple nonlinear system using
Atangana-Baleanu derivatives in Caputo sense. Atangana and Owolabi in [31] developed a new
numerical approach for fractional differential equations for solving the system of fractional derivative
equations which proved to be efficient. Atangana and Gomez [32] presented a detailed analysis of the
decolonization of fractional calculus rules: breaking commutativity and associativity to capture more
natural phenomena. Khan et al. [33] studied the TB dynamics under the framework of the work of
Atangana-Baleanu derivative with relapse cases. Bonyah in [34] studied a new 5-D hyperchaotic
system with four wings by Atangana-Baleanu operator. Khan and Atangana [35] studied the Ebola
disease with different fractional operators. The comparison of Atangana-Baleanu derivative with
Caputo-Fabrizio for the dengue model are studied in [36]. Bank data through fractional modeling and
their analysis is studied in [37]. The dynamics of the chaotic system through Caputo-Fabrizio and the
Atangana-Baleanu derivative is studied in [38]. The authors studied in [39] through different
fractional operators of fractional calculus for bank data. Using the Atangana-Baleanu derivative the
authors studied the TB dynamics [40]. The previously defined fractional operators have some
definiens which may or may not correctly investigate the dynamics of such mathematical models that
come from science and engineering fields. The Caputo derivative has a singular and local kernel
which may not exactly studied the dynamics of a particular problem but these operators are still well
known to the researchers and uses for the modeling dynamics. The Caputo-Fabrizio operator was
defined without singular kernel. Many researchers used this operator for modeling purposes and still
popular among researchers. To have a more precise definition of fractional operator a new operator
called Atangana-Baleanu derivative was defined which has a non-singular and non-local kernel and
has been used widely for many problems of science and engineering and found it interesting. This
new definition is now much famous among researchers around the world. Here, in this work, we
consider this newly operator to formulate a new mathematical model for TB dynamics in which we
consider the adults and the children as a two groups and present to discuss deeply its mathematical as
well as numerical results. This is the first attempt of the authors to have a new mathematical that
exploring the children and adults TB dynamics.

It is well known that integer order model does not describes well the dynamics of the disease because
there involve history of the disease and their memory. The fractional order models well address the
memory effect involve in the disease. At each value of the fractional order parameters we can have a
solution but in integer order model we don’t have except at the integer case. The difference between
two points can be effectively estimated through fractional order models. It is also well known that
fractional order models are good for data fitting, where we have variety of choice’s for the fractional
order parameter. The Caputo operator is singular and local while the AB operator is non-singular and
nonlocal. The cross over behavior in the TB model can be addressed well through the AB derivative.
Therefore, we considered both the operators and its comparison through graphical results.

To date, there has not been anyone who has investigated the dynamics of TB model with children
and adults population using Caputo and Atangana-Baleanu derivative. So, this study investigates a
fractional order model in the Atangana-Baleanu sense to explore the spread of TB diseases with in
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children and adults population. We classify the population into children and adult classes. Based on
the risk of transmission, most TB in children is usually not contagious compared to TB in adults [8,41].
Hence, the TB model that involves two-age-classes that distinguishes children and adults can indicate
a new understanding of TB transmission.

This paper begins by mathematical preliminaries of the fractional derivative. The description of the
model with the two-age-class transmission is given in Section 3. The TB model in Caputo derivative
with basic properties, calculation of the basic reproduction number, and the numerical result are done
in Section 4. The expression of the TB model in Atangana—Baleanu derivative with the existence and
uniqueness of the solution, the numerical iterative, and also the numerical simulation are presented
in Section 5. The comparison results of both derivatives with various fractional order parameters are
shown in Section 6. Finally, the conclusion is shown in Section 7.

2. Essentials of fractional calculus

We present the details of the fractional operators in the following sections that should be used later
in the proposed study.

Definition 2.1. (see [16]) For o > 0, withn — 1 < @ < n,n € I, the fractional derivative in the sense
of Caputo is defined to be:

d"f(0)

C pyr =
bifo = dr 7 T(n

! f (t — )" D o), 2.1
- ﬂ’) .

where the symbol I'(-) denotes the gamma function.
The Riemann-Liouville fractional integral is defined by

l o
I'f() = @) f(r—.r)[‘”'l’f(S)d.r. (2.2)

Definition 2.2. (see [29]) Suppose f € HY 0,b), b > 0, @ € [0,1], then the Atangana-Baleanu
fractional operator in Caputo sense (ABC) can be written as follows:

B@) f f’(s)E,,[ gg= ‘f)”st, (2.3)
I-aJy —a

$rCDI(f) = 1

where B(a) = 1 —a + #fr) is a normalized function with B(0) = B(1) = 1 and E, is Mittag-Leffler
function

@
E, )= ) ———,a>0
D= ) ok
k=0
The integral associated to the ABC derivative in Riemann-Liouville sense is given by,

—

L'3 —l a
TGO = 5570 3or@ .

r ()t = )" ds. (2.4)
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3. Description of the model

The present section describes the formulation of the mathematical model of TB transmission with
two groups of human that is, the children and the adults. We design the model by splitting the
population into children (C) and the adults class (A). Furthermore, each of the classes is divided into
three classes, namely, the susceptible classes (S¢, S4), the latent TB classes (L¢, Ls), and the active
TB classes (I¢, 14), where S¢, Le and I¢ represent the susceptible, latent and the active population at
any time ¢ respectively, whereas the adults sub-population are respectively shown by S4, L4 and I,.
Hence, the total populationis N =S¢ + Le + Ic + S 4+ L4 + I4. Individuals who are in the latent stage
are not infectious and are thus unable to transmit bacteria. We also assumed that the natural death rate
of the children and adults population is equal as we consider the average natural death rate of the total
population.

The majority of the children with tuberculosis are not infectious to others [8,41]. Hence, we assume
that only the active TB adults could spread TB with in the population. In this model, it is assumed
that children got TB infection by doing contacts with active TB adults. Therefore, the latent TB
and active TB children do not spread TB within the population. A small percentage of newly infected
individuals from the sub-population is assumed to undergo fast progress directly into the class of active
TB, while the rest are latently infected and enter the latent class [42]. Furthermore, the TB patients both
children and adults cannot recover completely but will enter the latent stage again. Considering these
assumptions and facts the following system of evolutionary dynamics of the TB individuals is described
through the following systems where the description of the parameters flows and the variables are given
in Figure 1.

SclaBc(1 = pe) Salafa(l —pa)

o =
= L P
& gLg 3_30
= =
ey =

k(1 —1c)Lle Yele Yala fea(1—1y)Ly
glc

le Iy
kl-ﬁl : i d’(')'[(' \[-é‘[ + dA)IA

Figure 1. Tuberculosis transmission diagram.

ds ¢
- = A-BcliSc—(g+wSe,
dL-
i = Be(l = pe)aSc + yele — ke(1 —re)Le — (g + p)Le,
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dI-

7; = BepelaSc +ke(l —re)Le — yele — (g + e+ do)le, (3.1
ds

d—.'A = gS¢—PBalsSa—pSa,

dLy

W = (1= pa)BalaSa+gle + yady —ka(l —ra)Ly — pLy,

dl

d_:l = paPalaSa+ k(1 —r)Ly +gle — (ya + p+ dy)ly,

where the initial values for the model variables are given by
§c(0) = Sco, Le(0) = Leo, Ie(0) = Ico, S 4(0) = S 40, La(0) = Lap, and 14(0) = Ly.

In the above model (3.1), the population of healthy people is generated by the birth rate A and the
growing up rate of children is shown by g. The natural death rate of children and adults is denoted by
p. The effective contact rate for both the children and adults is shown by S and B84. The proportion
of fast progression of latent class children to infected class children is given by p. while for adults
from latent adult class to infected adult class is by p,. The rate of progression from latent to infected
class for the children compartment is shown by k- while for the adults infection progression from
latent to infected class is given by k,. The rate of effective therapy for children and adults are shown
respectively by y¢ and y,. The rate of effective chemoprophylaxis for children and adults are shown
by r¢ and r4 respectively. Natural death from TB disease in children infected class is given by d while
for the adults with TB infection by d4. The description of the parameters for the TB model is set out
in Table 1.

Table 1. Parameters with descriptions of the TB model.

Description Parameter
Populations growth rate A
Growing-up rate for children g

Natural death rate 7

Children Adult
population | population

Infection rate Be Ba
Proportion of fast progression pc Pa
Rate of progression from latent to the infectious ke ka
Rate of effective therapy Ye YVa
Rate of effective chemoprophylaxis re ra
TB death rate de dy

The model (3.1) has the biologically feasible region on Q; with

A
Q= {(Sc, LeIe,SaLa, 1) eRE 10 <N < ;},
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which is feasible biologically and all the results associated holds for it. It should be noted that the
parameters involved in the model (3.1) are associated to humans so it is non-negative and the region
shown by €, is positive invariant for the described model (3.1) above. The region shown for the model
(3.1) below is well-posed and the entire solutions for the initial values belonging to ;, remains in £,
for every time ¢ > 0.

Next, in the following section, we explore the TB model in Caputo sense. We apply the definitions
of Caputo operator described in above section, and apply it on our model (3.1) and present the results
associated to it in the following section in details.

4. A Caputo model

This section present a TB model with two groups of humans which is shown in (3.1), by applying
the Caputo derivative on it. The fractional order model of TB transmission with two-age-class in the
Caputo sense is given by:

DiSc = A=PclaSc—(g+Sc,

CD‘,YLC = Be(l = peMaSc+yele — ke(l —re)le — (g + p)Lc,

CDHC = BepclaSc +ke(l —re)Le —yele — (g + p + de)le, 4.1)
“DISs = gSc—PalaSa—pSa,

DLy = (1-p)BaluSa+gLle+yaly—ky(1 = ry)Ly — uLy,

CDiIy = paPalaSa+ka(l —ra)Ly + gle — (ya +p+ da)ls,

where « represents the fractional order and 0 < @ < 1. The initial values for the model variables in
fractional order model (4.1) are given by,

Sc(0) = 8Sco, Le(0) = Leg. 1e(0) = Ieg, § 4(0) = § 40, La(0) = Lap, and I4(0) = L.

4.1. Non-negative solutions

This section deals with the positivity of the model solution in the Caputo derivative. We assume
that the initial condition of the model (4.1) is non-negative. Let us consider

O ={x=(Sc.Lede.SaLa 1) € RS =S¢, L. Ie. S a. La. Iy 2 0}

Here, recalling the important concept given in [43] to prove our result.

Lemma 4.1. (see [43]) Suppose that f(1) € Cla, b] and L\D;’f(r) € Cla,b], for 0 < a < 1, then we have

_ ;C ¥ o
S = fla) + @) Dy f(é)(t —a)

witha <& <t, ¥t € (a,b].
Corollary 4.2. Consider that f(1) € Cla, b] and L‘D;’f(r) e Cla,b), for 0 < o < 1. Then if

(1) CD¥f(t) = 0,V1 € (a, b), then f(t) is non-decreasing.

AIMS Mathematics Volume 5, Issue 4, 2813-2842.
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(2) CDYf(1) < 0,1 € (a, b), then f(7) is non-increasing.
Now, we state the main theorem.

Theorem 4.3. A unique solution exists for x(f) = (S ¢, Ley Lo, S 4, Ly 13)T of the model (4.1) and the
solution will be in Q,. Additionally, the solution is non-negative.

Proof. Using Theorem 3.1. and Remark 3.2. of [44], it is easily to prove the solution existence and
also the uniqueness of the solution of the model (4.1) for all 7 > 0. Next, we will prove the positivity
of the solution of the model (4.1). In order to do, we have to prove for every hyperplane bounding the
nonnegative orthant, of the field points of the vector Q. It follows from the model given by (4.1), we
have

DS lse=0 A=0,

“DLelie-o = Be(l= poluSc +ycle 2 0,
“DMe -0 = BepelsSc +ke(l = re)Le > 0.

“DIS4ls,-0 = 85S¢ >0,

DLy lico = (1= pa)BaluSa+8Le + yals 2 0,
CD?IA =0 = ka(l—rLy +gle = 0.

By using Corollary 1, the model solution remains in £2,. O

Thus, it follows from the results described above the feasible given by €, is positively invariant for
model (4.1).

4.2. Model fixed points

We present here the possible fixed points of the fractional model given by (4.1) and then, we obtain
at these possible equilibrium points the stability analysis of the model. For the given model (4.1), there
exists two possible equilibrium points that is; the disease free and the endemic equilibrium. We can
obtain these equisetum points by setting the time rate of change equal to zero of the model (4.1) and is
given by:

c
DiSc lse=0 =
C
DL |0 =
c
DU =0 =
c
DS 4 ls,=0 =
C
D?LA IL_.1=O =
.
Dl =0 =

c oo o o0

We have the following expression,

A—=BelsSc—(g+wSc = 0,

I
=]

Be(l = pe)laS e +yele —ke(l — re)Le — (g + 1)Le

AIMS Mathematics Volume 5, Issue 4, 2813-2842.
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PepclaSce +ke(l —re)Le —yele — (g +p+de)le = 0,
gSc—BaluSa—puSs = 0,
(1= pa)BalaS s+ gLe + yaly — ka(1 —ry)Ly —puly = 0,

PaBalaS o+ ka(l —ry)Ly + gl — (ya +tu+dy)l, = 0. (4.2)

At the disease free equilibrium, denoted by Ey;, we have from (4.2),

A A
.0,0,—52_0,0)

g+ Mg+ )

The endemic equilibrium of the model (4.1) is given by E», = (S, Ly, I, S, L}, I}) where

IO ATTA?

Eo1=(

A
SE‘ = g
IAJGC + g+ u
L Bl = po)iS e +veln
¢ H+g+ke(l—re)
I )8(_“[3(_“1:152 + k(_“(l — f'(_“)LE.
¢ Yo+ g+ p+dc
S*
Si = g
JSAIA + U
It = (I = pa)Baly S, + gL +yaly
A ka(l=ry) +pt
N ka(l — ra)Ly + gl
I, =

Ya +p+dy *ﬁAPAS:;.

The endemic equilibrium E»; exists if y4 + 4 +da > BapaS.

In order to find the basic reproduction number Ry, we consider the method in [45] and the matrices
are given by

000 Py P, —yo O 0
S R B R @
00 0 P, 0 -g -P P
The basic reproduction number is the spectral radius of p(FV~') and is given by
Ry =R + Ry + Ry + Ry, (4.4)

where

PPy (gPy + P2P12)
(P4P7 — Pgrs) (P2 Py — Psyc)’

(Rl =

AIMS Mathematics Volume 5, Issue 4, 2813-2842.
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PyPy(gPip + P3P13)

R = ,
? T (P4P;— Pry) (PP — Psyc)
R Pyyc(gPip — PsPy3)
3 k]
(P4P7 — Pera) (P2P3 — Psye)
Ry = PyPs (gPy — Pi3yc)
4 El
(PsP7 — Pera) (P2P3 — Psyc)
where
Py = g+, Py=kc(l—rc)+g+p, Py=vyc+dc+g+p,
Py = kA(l—f’A)'i',U, Ps=ke(l —rc), Poe=ka(l —ra),
Py = ya+da+p Py =PcSE Po=pe(l—pe)SY Pio=PepeSe.

Py = BaSY, Pa=pa(1—pa)SY, Pi3s=papaS,,

where S and S represent the disease-free equilibrium (DFE).

(4.5)

(4.6)

Next, we show the stability of the system at the disease-free case, we follow the following theorem.

Theorem 4.4. For any py, p» € Z, such that gcd(py, p2) = 1. Let o = (i—:) and consider M = p», then
the DFE of the system (4.1) is locally asymptotically stable (LAS) if|afg(ﬁ)| > 2=, for all roots A of

M
the characteristic Eq. (4.7) of the matrix Jg,,.

det(diag[ "' A7 A" A AP A" ] = Jp,) = 0.

Proof. At the disease free equilibrium Ej, the Jacobian matrix is given by

0 0 0 0 —Pg
=P ye 0 0 Py
Ps —-P; 0 0 Py

J(Eq) = o —u o -p,

0
g 0 0 =Py Pty
0 g 0 Py P3P

com ooy

We obtain the characteristics equation associated to J(Eq,), given by
(AP + i)AP + i+ @A + b AP+ by + by A7 + by] = 0.
The arguments of the roots of the equation A”* + y =0, A** + u + g = 0 are as follow:
argM) = =+ k> o % here k=0,1--,(p1 - 1).
p P M

In Eq. (4.9), the roots are negative, i.e., —, —(u + g), while the rest are computed from

Q) = [ 4 by AP + by A™ + by A™ + by,

4.7

(4.8)

(4.9

(4.10)

(4.11)

AIMS Mathematics Volume 5, Issue 4, 2813-2842.
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where

by = ya+di+ka(l —rA)—ﬁApASﬁ +yc+de+ke(l—re)
+2g + 4y,

by = (ye+de+g+p)(ya+da+ka(l —ra)+2p) —ﬁApASﬁPzPJ.

+(ka (1 —ra) + ) (ke (1 = re) + g+ 1) + (da + ) (ka (1 = rg) + o) + prya

+ PPy — Baka (1 — pa) (1 frA)Sﬁ

+((dc +g+ kel —ro)+ g+ ) +vel(g +,u))

(1 - BapaS§ (ye +dc + g+ p) + gBcpeSy )
(de+g+p) ke (1 —re)+ g+ 1) +yc(g + 1)

b; = (Py+ P _Pla)(dc(kc(l —re) g+ +(g+u)(ye +ke (1 —f’f_“)"'g"'#))
(Py+ Py)(dy (ks (1= ) + ) + ks (1= 14) (1= BaS %) + 1 (va = BapaS S+ 11) )
—gBeS ¢ka (1 = ra) + pe(g + 2) + ke (1 = r¢) ),

by = CiCy(1-Ro), (4.12)

where Cy = (dy (kg (1 = 14) + 0 + p(yq + kg (1= ry) + 1)),
Cy=(de ke (1 —re)+ g+ )+ (g + ) (ye +he (L= re) + g + ).

The function Q(1) will give eigenvalues with negative real part if »; > 0 for i = 1,2,3,4 and
bbybsy > biby + b3. All b; > 0 when R, < 1 and the conditions b b,by > b?b, + b3 ensure the stability
of the disease free case when R, < 1. If Ry < 1, then the necessary condition fulfil for all the roots of
characteristics equation i.e., larg(1)| > - Thus the DFE is LAS for R, < 1. O

The following subsection explore the numerical simulation of the Caputo model.

4.3. Numerical simulation for Caputo model

The aim of this section is to discuss a numerical simulation of the model (4.1). The simulation
is done with several fractional order values to determine population dynamics in the model. The
numerical results of the Caputo derivative are obtained by the Predictor-Corrector method [46,47].
Parameters values used in these simulations are set out in Table 2. We take the initial condition S ~(0) =
1500, Le(0) = 135,1c(0) = 75,5 4(0) = 1000, L4(0) = 103 and 74(0) = 60. Here, we use 50 years for
the time horizon. The simulations are conducted with different values of the order of the fractional
derivative @ = 1,09,0.8,0.7,0.6 and 0.5. We have the simulation results of the TB model (4.1) in
Figure 2. In this case the value of Ry is Ry = 91.5021 > 1, which indicates the disease will persist in
the population. We can observe in Figure 2 that as the values of « decrease, the individuals infected
with TB decreases whereas the population of susceptible individuals increases.
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Figure 2. Numerical results for Caputo model.

AIMS Mathematics Volume 5, Issue 4, 2813-2842.




2825

Next, we will see the effect of chemoprophylaxis and treatment on the active TB populations in
both children and adults. The numerical simulation is deployed by varying the effectiveness of
chemoprophylaxis (r¢, r4) and treatment (ye,y4). In Figures 3, 4, we display the dynamic of the
active TB populations for different values of the efficacy of chemoprophylaxis and treatment. For
« = 0.9, it is shown that the population of the active TB both children and adults have decreased when
the efficacy of chemoprophylaxis and treatment have increased. Conversely, when the efficacy of
chemoprophylaxis and treatment falls, the population of the active TB both children and adults will
rise. The likewise behavior is seen for & = 0.7. This shows that chemoprophylaxis and treatment were
given to patients with latent stage and active TB respectively can reduce the number of TB infection
populations of both children and adults.

=09 =09

rC;IA:CI.‘IE

L L 50 L L
10 20 a0 40 50 0 10 20 a0 40 50

50
a

Time (Years) Timea (Years)
() (b)
=09 =07
450 T 260 T

50
a

. . . . &0 . . . .
10 20 30 40 50 a 10 20 30 40 50
Time (Years) Time (Years)

(c) (d)

Figure 3. Numerical results for Caputo model with various r¢ and ry.
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200,

550

)

] 10 20 30 40 50 [+] 10 20 30

Time (Years) Time (Years)

(c) (d)

Figure 4. Numerical results for Caputo model with various y¢ and 4.

Table 2. Parameter values for simulations.

Parameter Value Ref. Parameter Value Ref.

A 1000 Assumed Be 0.01 [48]
Ba 0.02 [48] H 0.0143 [49]

g ﬁ [50] Yo 0.5 Assumed
Ya 05 Assumed Pe 0.4 Assumed
Pa 0.3 Assumed ke 0.005 [49]
ky 0.005 [49] re 0.5 Assumed
rA 0.5 Assumed de 0.0575 [51]
dy 0.05751 [51] d 0.05751 [51]

P 03 Assumed Ji) 0.02 [48]

Y 05 Assumed k 0.005 [49]

r 0.5 Assumed
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Next, we express the model of TB in Atangana-Baleanu derivative where their kernel is non-singular
and non-local which best describes the dynamics of real world problem.

5. TB model in the Atangana-Baleanu sense
The newly derivative called the Atangana-Baleanu derivative where their kernel is non-local and

non singular is considered here to apply on our model presented in (3.1). We follow the definition
described above and have the following representation:

ABCpes A=BclsSc—(g+wSe,

0"DiLe = el =pAlaSc+yele —ke(1 = re)Le = (g +ple,

oD = BepelaSc +ke(l = re)Le = yele = (g + p+do)le, .1
VEDISy = gSc—PalaSa—puSa.

ABCDYLy = (1 pa)BalaSa+ gLle +yala — ka(1 — ra)La — uLy,

CPDLy = paBalaSa +ka(l = r)Ly + gle = (ya + g+ d)ly,

with some appropriate initial conditions. For the TB fractional model in Atangana-Baleanu form is
studied further to obtain their existence and uniqueness. We have the following:

5.1. The existence and uniqueness of the solution

Here, we display the uniqueness and existence results associated to the AB model (5.1). In order to
show the results for the model we follow the results of the fixed-point theory. We first write the (5.1)
in the form shown below,

{ ABCDru(t) = G(t,u(1)) 52)

w=uy, O0<t<T < oco.

In system (5.2), u(t) = (S¢, Le, I, S 4, La, 14) is simply a vector having the state variable and G is
therefore a continuous vector function given as

G AN=BelySc—(@+WSc

G, Be(1 = pe)yS ¢ +yele — k(1 — ro)Le — (g + p)Le
G = G; _ BepclaSc + ke(l —re)le — yele — (g + p+ de)l e

Gy 85c —BalsSa—pS4

Gs (1= p)BaaSa+gLe+yaly —ka(l —rq)Ly —ply

Ge PaBalaSa+ ka(l —ra)La + gle — (ya + p+ da)ly

and up(t) = (Sc(0), Le(0), I:(0), S 4(0), La(0), 14(0)) representing the state variables initial conditions
in vector form. The above function namely, G satisfies the condition of Lipschitz continuity and can
be described as below:

IG (2, u3 (1) = G(t, up(D)|| < Mlluy (1) = ux (D). (5.3)

The following result is provided in order to show the model existence and their solution as well as
uniqueness for the model (5.1).
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Theorem 5.1. (Existence and uniqueness) The model given by (5.2) has the unique solution provided
that the following condition satisfy,

Aoa) e @ ey (5.4)
ABC(a)  ABC@I(a) ™

Proof. To prove the above statement, we need to use the fractional integral associated to the Atangana-
Baleanu model given by (2.4). The application of this integral on (5.2), leads to the following non-
linear voltera integral equation:

_ (1 ) _ =1
u(t) = u ABC( )G(r M(I))JrAiBC( ¢ )f(r &) G(g, ule))de. (5.5)

We assure that J = (0, T) and take into consideration the operator ¢ : C (J, R“’) — C (J, R“’) defined by

_ (1 - (l’) 4 _ or—1
¢ lu()] = up + AiBC((r)G(F’ u(t)) + AiBC(af)l"(af) j(:(." )" Gle, u(e))de. (5.6)

Equation (5.5) turns to
u(t) = ¢ [u(h)]. (5.7

The supremum norm on J, || || is [[u(D)|l; = sup,., llu(®)]l, u(r) € C.
Obviously, C (.I, R“’) along the norm || . ||; present a Banach space. Additionally, we can demonstrate
simply the following inequality

I f D1, 8) ute)del] < TID, )l o) (5.8)
Ry O
with u(f) € C (.], R“’), D(t,&) € C (.F,R).
In a way that

[ID(t, £)l|; = sup|D(t, £)|.

teed

Applying the definition of ¢ stated in (5.7), we derive

@) w
ABC( )G(-“s u (1) — G(t, us (1) + ABC()T@)

b r(f— &) (G(e, u(e)) — Gle, ua(e))) del|.

llé [us ()] = @ [ua(D] I, < H

Furthermore, using the principles of triangular inequality and Lipschitz condition stated in (5.3) couple
with the results in (5.8) we get the following after some algebraic simplification.

(1-a) a o
+ Tl'llil\
ABC(w@) ABC (o))

[lop [t ()] — b [1a(D)] |I; < ( [y (£) = w2 ()]

Thus, we eventually have

ll¢ (a1 (D] = & [2(D] [l < Blluar (1) = w2(D)]ls
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where

(1 —a) a
M+ MT,,,.
ABC(a) ABC(a)I(&)

B=

Therefore, the operator ¢ will become a contraction if condition (5.4) holds on C (J, Rf’). As aresult of
Banach fixed point theorem, system (5.2) possesses a unique solution. O

5.2. Numerical scheme for the Atangana - Baleanu model

This section derive the numerical scheme of the TB model in the ABC form which given by Eq. (5.1)
using the method in [52] by using Adams-Bashforth method. By using the same procedure in [52], we
write (5.1) to the following

(?BCD‘,YSC = G(LSe Loy Iy Sa, Ly, 1)

2DILe = Ga(t,Sc.LeIe,Sa La ),

8BCDYIe = Ga(t,Sc,LeyIesSa, La, 1), (5.9)
3DISy = Gu(t,Sc.Le,Ic,Sa,La, Iy,

0Dy = Gs(t.Sc.LeyIe,Sa,La, ),

ABCDL = Ge(t,S e Les ey Sp Loy Iy).

By utilizing the fundamental theorem of fractional calculus, we convert (5.9) to fractional

I —
Sc()=S¢0) = ;BC((:;‘))GI("-;SC) mj(-’—f‘)" 'Gi(&, 8 ¢)de,
_ (1 - “’) ) _ r—1 .
Le(H) = Le(0) = AiBC(ﬂ‘)GZ(I,LL) + AiBC(ﬂ’)F(G’) j{; (t—&)" " Gale, Le)ds,
1 _ !
Ie(t) = Ic(0) = I;BC((:)GgUJC) + m f (t— &) ' Ga(e, Ic)de, (5.10)
_ (1 - (l’) o -1
Sat)—8400) = ABC((I)G4("-JSA) AiBC( r)F(a) f(r £)"7Gyle, S w)de,
a . (IT-w ) -l
La(t) — L4(0) = ABC(“)Gi("-sLL) AiBC(ar)F(a) f( £)"7 Gs(&, La)de,
_ (- el
() — 1,(0) = A—BC(H)Gf,(fJA) + A—BC(G’)F(O’) j;“ £)" Gele, 1y)de.

Att=t,q,.n=0,12,.. wehave

Cem - (d-@ RN o B AP i
SC("H+1) SL(O) - ABC((]’)Gl(n”SL)—i—ABC(O’)F(G’)}ZO‘[,: ('rn+l 8) Gl(d‘:,S{_)dE,
(1-a

Le(te) — Le(0)

ﬂ n r‘l'+l
G ri-sL" T E—— o — = ”_IG-; o Lo d,_,
ABC(a) 2 L)+ABC(G)F(H)FZO~[ Uns1 — &) Gals, Le)ds
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o . - e ]
If_"("rvrl) 1{_(0) - ABC( )G"("ruff_) + ABC(G‘)F((]‘) J:ZO‘[’: (":Hl 3) G3(81 If_)d{':., (511)
— _ (1 - (l’) 4] i s _ o—1
Saltw) =Sa0) = ~pmsGaltn S0+ qpere ; f (turr — £)"'Ga(e, S p)de,
_ _ (1 - (l‘) C ‘3 eyl
LA(FJ'!+1) LA(O) - ABC((I’)GS ("m LA) + ABC((]’)F((I’) Z ‘f,: ('tn+1 8) GS(S'J LA)dS-:

n

_ U-o o« - P
Ta(ty41) — 14(0) ABC((r)Gﬁ(n,JAH ABC(H)F(Q);‘[ (the1 — )" Gele, Ly)de.

The integral in Eq. (5.11) is approximated through the two-point interpolation polynomial. Hence,
we have the iterative scheme for the TB model (5.1). After some calculations, we finally obtain the

approximation solution as

1 —

Scltw) = Sc0)+ fi BC(”) (1S )
h'G ( o
ABC((r)Z( r(a+2) (( +1-N'n—-j+2+a)
= ) 2+ 20) — I g et a1+ @)
, . o P , , , ,
B (1-a)

L‘C("}Hl) - L‘C(O)+ ABC(“)GE("JHLC)

(n+1=-N'n—-j+2+a)

o (h"Gg(r-, Le)
+ABC((r) = [Na +2)
WG (11, Le)

Tary (@+1-D)" === j+1 +ar))),

—(n—=)'n—j+2+2a) -

(I-a)

Ie(ti) = 1c(0) + mcw(-’mfc)
a h "Gty o) . I
ABC((r) ( Tarz @F1-)@-j+2+a)
PN . HrG:‘(rJ._l’[C) a+1 I ]
—(n—j (”—.I+2+20’))—W(( n+ 1= —(n—jn-j+1+a)l,
B (1 —a)
SA("}!+1) - SA(0)+ABC(“)G4("JUSA)

a o (hGa(;, 8 4) . _
+ABC(ar) ;}4( C(a+2) ((m+1-N'n—j+2+a)
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HrG4(r_j—laSA)

—(n=)"(n-j+2+2) - (n+1=)"* (- )'n—j+1+a).

T(a+2)
(1-a)
La(ty) = La(0)+ mcs(hw L)
@ < [(hGs(t;, Ly) L
T ABC(@) JZ{( fa+y @tl-)e=-j+2+a)
—(n—j)'n—-j+2+2a) - JIAEM((M +1-p™ - ) n—j+1 +ﬂ’)))
: ' T(a+2) : ' : ’
~ (1-a)
Lity) = L(0)+ mGﬁ(-’m 1)
a = (hGe(t, 1) - .
T ABC(a) Z( Ta+y @Hl=)e=j+2tae

j=0
W' Ge(tiy, Iy)

. 20 S B T
e +2) ((n+1=) (n=j)'n—-j+1+a)].

—(n—=)%n—j+2+2a) -
Next, we present the simulation result of the TB model (5.1) using the numerical scheme.

5.3. Numerical simulation of Atangana-Baleanu model

This section provides the simulation results of Atangana-Baleanu model (5.1) using the iterative
scheme obtained in (5.12). The parameter values listed in Table 2 are for obtaining the numerical
results 2. The simulation results are shown in Figure 5 by considering different values of
@ =1,0.9,0.8,0.7 and 0.6. In Figure 5, we can see that by decreasing the values of «, the population
of infected compartments decreases, while the susceptible population increase.

In Figures 6 and 7, we present the effect of the efficacy of chemoprophylaxis (r¢ and ry) and
treatment (y¢, ¥4) on the TB transmission for different values of «. From Figure 6, it can be seen that
as the chemoprophylaxis strategy increase, the infected TB in both children and adults population
decrease. From Figure 7, it is shown that as the treatment strategy increase, the infected TB in both
children and adults population decrease significantly.
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6. Comparison of operators

This present section demonstrates the comparison of the Caputo and Atangana-Baleanu operators
graphically. The parameter values used in these simulations are given in Table 2. In order to have a
comparison of these two operators we considered many values of @ = 1,0.7,0.5,0.3 and the results
were displayed Figures 8—11. It can be seen in Figures 8-11 that there exists a significant difference
in the dynamical behavior of the TB infected population when the values of o« decrease within both
fractional operators. From these figures, we see that Atangana-Baleanu derivative give faster decreases
in the results compare to the Caputo derivative when the fractional order parameter decrease for the
reduction of TB infection. This comparison section demonstrate the effectiveness of the Atangana-
Baleanu derivative over the Caputo derivative.
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7. Conclusion

The findings reported here shed new light on the fractional-order model with Caputo and
Atangana-Baleanu derivative to investigate the spread of TB with children and adults population.
Briet mathematical results for the TB model are investigated. The basic reproduction number of the
Caputo model and its equilibrium are obtained and presented the results. Each model is studied
independently in the fractional operators of Caputo and Atangana-Baleanu. We then performed the
numerical simulations of the Caputo model type for different values of the fractional-order using the
predictor-corrector method. Then, we apply the fractional Atangana-Baleanu operator to the model
and analyzed and obtained the associated results. We proved the uniqueness and existence of the
Atangana-Baleanu model. The numerical simulation of the Atangana-Baleanu model was conducted
using the Adams—Bashforth scheme. We further presented the graphical results of Atangana-Baleanu
model for various fractional order parameters. A comparison of the proposed operators graphically
presented. These graphical results for comparison show that the Atangana-Baleanu results are more
appropriate for the better decrease in infection while the Caputo is less. We conclude from graphical
results that increasing chemoprophylaxis and treatment rates then the TB infective both children and
adult cases can be reduced. The graphical results show that a decrease in fractional order parameter
causes a significant decrease in the infective TB population. Therefore, the present work is a novel
analysis on the TB dynamics and will be more useful for the readers and public health authorities. In
future work the TB age fractional model can be considered in the light of fractional impulse model
and the results can be compared with non-impulse TB model, stated in [53-55]. This is important
because the impulse effect is attracting the receiving considerable attention and eliciting widespread
interest in epidemiological models.
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