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Abstract

In applications, we often meet the problem where more than one response variable is observed at several values of
predictor variables, and these responses are correlated with each other. The multiresponse nonparametric regression model
approach is appropriate to model the functions which represent relationship between response and predictor variables. This
relationship is drawn by the regression function. The principal problem of this model approach is estimating of the regression
function of this model. The spline estimator is one of the most popular estimators used for estimating it. In this paper we discuss
methods to obtain a smoothing spline estimator for estimating the regression function, to get a covariance matrix estimator, and
to choose an optimum smoothing parameter. In addition, we investigate the asymptotic properties of the smoothing spline

estimator.

Keywords: multiresponse nonparametric regression, covariance matrix, spline estimator, smoothing parameter,

asymptotic properties

1. Introduction

Statistical analysis often involves building mathe-
matical models which examine association between response
and predictor variables. Spline smoothing is a general class of
powerful and flexible modeling techniques. Research on
smoothing spline models has attracted a great deal of attention
in recent years, and the methodology has been widely used in
many areas. Smoothing spline estimator with its powerful and
flexible properties is one of the most popular estimators used
for estimating regression function of the nonparametric
regression model. Several types of spline estimator have been

#*Corresponding author
Email address: fatmawati@{st.unair.ac.id

considered by researchers to estimate the regression function.
Original spline was used to estimate the regression function
for smooth data by Kimeldorf and Wahba (1971}, Craven and
Wahba (1979), and Wahba (1990). M-type spline was
proposed by Cox (1983), and Cox and O’Sullivan (1996) to
overcome outliers in nonparametric regression. Construction
of confidence interval for original spline model has been
provided by Wahba (1983). A comparison between
generalized eross validation and generalized maximum
likelihood for choosing a smoothing parameter in the
generalized spline smoothing problem was presented by
Wahba (1985). Relaxed spline and quantile spline were
introduced by Oehlert (1992), and Koenker, Pin, and Portnoy
(1994), respectively. Smoothing spline for the case of
correlated errors was discussed by Wang (1998). Reproducing
kernel Hilbert spaces (RKHS) concept has been used by
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‘Wahba (2000) to build spline statistical model. Lee (2004)
combined smoothing spline estimates of different smoothness
to form a final improved estimate. Cardot, Crambes, Kneip,
and Sarda (2007) investigated the asymptotic property of
smoothing splines in functional linear regression with errors-
in-variables. Liu, Tong, and Wang (2007} have discussed
smoothing spline estimator for variance functions. Aydin
(2007) compared goodness of spline and kernel in estimating
nonparametric regression model for gross national product
data. Aydin, Memmedhi, and Omay (2013) have swudied the
determination of an optimum smoothing parameter for non-
parametric regression using smoothing spline. But, researchers
mentioned above just discussed spline estimators for esti-
mating regression function of single response nonparametric
regression models. It means that they have not discussed
spline estimators in the multiresponse nonparametric regres-
sion model.

In many real cases, we often find cases where more
than one response variable is observed at several values of
predictor variables, and there are correlations between the
response and each other. Multiresponse nonparametric
regression model provides potential methods to model the
functions that represent the relationship of these variables.
Some researchers have discussed estimating methods in the
multiresponse nonparametric models. Wegman (1981), Miller
and Wegman (1987), and Flessler (1991) provided spline
smoothing algorithms. Wahba (1992) used RKHS method to
develop the theory of general smoothing splines. Gooijer,
Gannoun, and Larramendy (1999), and Fernandez and
Opsomer (2005) proposed methods to estimate nonparametric
regression models with serially and spatially correlated errors,
respectively. Wang, Guo, and Brown (2000) used spline
smoothing for estimating biresponse nonparametric regression
madel with the same correlation of errors. Lestari, Budiantara,
Sunaryo, and Mashuri (2009), and Lestari, Budiantara,
Sunaryo, and Mashuri (2010) used spline to estimate the
multiresponse nonparametric regression model in cases of
equal correlation of errors and unequal correlation of errors,
respectively. Chamidah, Budiantara, Sunaryo, and Zain (2012)
applied the multiresponse nonparametric regression model to
design child growth chart. Lestari, Budiantara, Sunaryo, and
Mashuri (2012) have studied spline to estimate the hetero-
scedastic multiresponse nonparametric regression model.
Chamidah and Lestari (2016) discussed estimation of the
homoscedastic multiresponse nonparametric regression model
when the numbers of observations were unbalanced. Lestari,
Fatmawati, and Budiantara (2017) estimated smoothing spline
in the multiresponse nonparametric regression model by using
RKHS method. Lestari, Fatmawati, Budiantara, and Chamidah
(2018), and Lestari, Fatmawati, Budiantara, and Chamidah
(2019) estimated regression functions and smoothing para-
meters using spline and kernel estimators. Yet, all these
researchers assumed that the covariance matrix was known.
When it is unknown, it has to be estimated from the data and it
can affect the estimates of the smoothing parameters (Wang,
1998). Also, these researchers have not discussed the esti-
mation of optimum smoothing parameter in the multiresponse
nonparametric regression model when the variances of errors
are not the same. In addition, none of these researchers have
discussed the asymptotic properties of the spline estimator,

In nonparametric regression, we often consider
asymptotic properties of estimator based on certain goodness

criteria. In regression nonparametric analysis, investigating of
the asymptotic properties of an estimator is an important step
for obtaining convergence rate of regression function esti-
mator, There are some criteria which have often been used by
researches to determine goodness of spline estimator ap-
proach. Eubank (1988) proposed the mean square error
criterion, Speckman (1985), and Carter, Eagleson, and Silver
man (1994) have studied minimax criterion, while Cox (1983)
and Cox and O’Sullivan (1996) considered the mean square
error criterion for M-type spline approach. Eggermont,
Eubank, and LaRiccia (2010} have studied convergence rate
of spline estimator in the varying coefficient model. Li and
Zhang (2010) established strong consistency and asymptotic
normality of penalized spline in the varying-coefficient single-
index model. Wang (2012) constructed the M-type estimator
of regression function and has studied its asymptotic nor-
mality property. Ping and Lin (2013) discussed the asymptotic
properties of spline estimator in the partly linear model for
longitudinal data. Chen and Christensen (2015) have studied
both asymptotic properties and convergence rate of some
estimators in the nonparametric model. Although, these
researches have discussed some asymptotic properties of some
estimators, they discussed the asymptotic properties in single
response nonparametric regression models only. They have
not discussed the asymptotic properties in multiresponse
nonparametric regression models.

In this paper, we develop the biresponse non-
parametric regression model proposed by Wang et al. (2000)
to the more general model, ie., the multiresponse nonpara-
melric regression model. Note that we need the covariance
matrix to determine a weight matrix that will be used in the
optimization penalized weighted least-square (PWLS) to
obtain a smoothing spline estimator which depends on the
smoothing parameter to estimate regression function of the
maodel. Therefore, in this paper we discuss methods to obtain
the smoothing spline estimator, to get the covariance matrix
estimator, and to choose the optimum smoothing parameter.
We also investigate the asymptotic properties of smoothing
spline estimators of the multiresponse nonparametric regres-
sion model based on integrated mean square error (IMSE)
criterion,

2. Methods

Firstly, we consider data (y,;,7,;). k=12..p:

i=1.2,..m that follow the multiresponse nonparametric

regression model as follows:
Vii = Filti) + & ()

where . f,...f, are unknown regression functions assumed

to be smoothed and contained in Sobolev space W, [a, b, ]

&y are zero-mean independent random errors with variance
o';. . Based on (1), we can determine the covariance matrix of

errors. The estimated multiresponse nonparametric regression
madel based on smoothing spline estimator can be obtained
by carrying out optimization PWLS:
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Then, to get the solution of optimization PWLS in (2}, we use RKHS method. Secondly, we estimate the covariance
matrix of errors using maximum likelihood method, and estimate the optimum smoothing parameter based on the minimum value
of generalized cross-validation (GCV). Finally, we determine the asymptotic properties of the smoothing spline estimator of
regression function based on IMSE criterion.

3. Results and Discussion

Suppose that  y=(3,.y,,3,) + f=(f Lo f,) s E=(E08ng,) s A 1=(fLnt,) Where

Yo = O Yiaseen Y, ) Jo = ) it o1, N g =8 E By )

i=12,..m . Therefore, the model (1) can be written in the following matrix notation:

f =ttty ) k=12,p:

y=f+¢& (3
where F(g)=0(,and namely C(J]:(€)=[W(gl)]" .

3.1 Covariance matrix of random errors

The following theorem gives us how we determine the covariance matrix of random errors, Cov(g) =[W(:_f)]" ,in the

multiresponse nonparametric regression model.

Theorem 1. Suppose that the data set (y,.1,), k=12,..,p: i =1,2,..,n, follows the multiresponse nonparametric regression

model given in (1):
v =filt, ) +e,

If [W(g!}]" denotes the covariance matrix of errors, then
W(gHI" = diag(W (a7 ). W(g),... W, (2})

where matrix W, (g;) is given by:

2
O Oy 777 Oy

2

W (62) = T2 T2 7 Fpmy v k=12,,p-
o= . . .

Ty e 77 Ty

Proof. Cov(¢) = E (5~ E(@)(¢ - E(©))

- [}
= f;[(a“,...,aw__ s Eay s €y ""’ng,,} (&, seenr €y sEqp e nsEay seensE s Epy )
WII le o W| »

Wy Wy o W, =[W(q1)]'l 4)

sl o W,
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where diag(cy,,075,....00, ), k=1k=12,..p)
W, = :
diag(o,, , O a2+ jayn, ) k=1
Since oy, = p,0, 0, and Pu= P> , then we have: dmg( k1* “""‘U‘_"a ), k=lk=12,..,p) .
g 0, k=l “= 0 k£l

Therefore, we can write equation (4) as follows:

W(g"I" =diagW () Wy(a)), .. W, (g, )

where matrix W, (g;) is given by:

G&I U&II.Z] Gkil.ln]
W (a’j) 21 Gnl_ Juz.n!] k= 1,2,---,}'3'
V=R ST . - .
Giuu Ry G’kim 2 o'.:_.l?l
3.2 Estimation of regression function
Suppose that data set (y,.t,.). k=12,....p. i=1,2,...n, . follows the model given in (1). We can determine the

smoothing spline estimator for regression function of the model given in (1) by solving the following PWLS:

Mm {(Zﬂ) = WUy = )+t (3, = FIW (), — f)+

Jifze
Al_[ (f[”’(x])'a‘r+...+AJ,J'”" (2 (1) dr} s)
“
where 3 = (35 Vg seees Vi, )'o 2 = (Vo Vo neees Vo) s ¥ = (V5 Voo ¥ )5 L= i) o=
(le,fzz,___,fz"‘)’,___ f (fm’fp” fw )", and W, , represents the k’”-welghl. k=12..p which is obtained from

Theorem 1, and the smoothing parameter 4, (k =12,...,p) controls the trade-off between the goodness of fit and the smoothness

of the estimate. The model given in (1) can be expressed into a general smoothing spline regression model as follows:

Yo=L fi+&, k=12,.,p: i=12,...n

where function f, e Fe (Fi represents Hilbert space) is unknown and assumed to be smooth, and I, e Fris a bounded linear

functional.

Next, suppose that Hilbert space Fi can be decomposed into direct sum of two subspaces Gi and Hi as follows:

=G @ He

where Gk L Hk. Also, suppose that {G;.6 5400 Gy,, J and {3 s

Then, we can express every function f, € Fx (k=12,..

fi=g.+h

where g, € Gk and h e Hi. Since {611:G12 5 ’g*”u} is basis of space G, and {9 s 1,,

then for every function f, € Fix (k=12,...,p) follows:

.9‘_”* } are bases of spaces of Gk and Hk , respectively.

., pp) into the following expression:

.9&_,ll } is basis of space H ,
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11y .
fi=Y s+ YdS, =sib + 96 k=12,.,p: ¢y.dy €R (6)
=1

i=l
where ¢ = (G Gha s Ghn, ) G = (G CiasensCin ) S = (308, e, )5 and dy=(d,d,,..d,, )
Finally, since L;- is the bounded linear function in Fx , and fk € Fi ,thenwe have:
L fi=L (ge+h)=L (g)+L (h)=g, () + (1) = F()

In the following theorem, we give a method to obtain the estimated regression function by using RKHS method. i.e.. by carrying
out the PWLS given in (5).

Theorem 2. If the data set (yk‘,rh) s k=12,..,psi=12,.,n follows the multiresponse nonparametric regression model given
in{l)
V= filty ) +tey

then the estimated regression function of model (1) based on smoothing spline estimator is given by:
fi=AZ+Bd=H(Q)y
where H(A) = ALA'D W (o?) A" AD"'W(g?) + BD"'W(a*)x [I - AAAD'W(a)A) ' AD'W(a)]-

Proof. By considering model given in (1) and applying Riesz representation theorem (Wang, 2011), and because o [, is

bounded linear functional in Fi , then there is a representer &, Fi of L, which follows (Wang, 2011):

L fi =0 fid=fiy) . fieF
where (.,.) represents an inner product. Based on (6) and by considering the properties of inner product, we have:

Ju(t,) = (0, -9:;'3; +3d,) =(4, G )+ (0, 9d,) - ™
Next, based on (7), for k =1 we have:

[ =(8gie) + (. Fd) i=1.2,m:

Sothat, for { =1,2,3,...,n, we have:

where: ¢, =(¢,,,65,006,, )+ &y =(d,,.d,y nd,,)'

2

(5||'§||> (5||'§|1> (5||'§|arq> (‘Sn"?n) (§||'3|1> (5”,3“1)

B (Gassu) (Giasgin) v {G12sGp) B = B3 (Bn.dy) - (6..9,)
t : : : : 1 : : : :

B 50 (O 5 = {8, S0,) T TV R PH R CIWRE W)

In the similar process, we obtain: fz(xz)=A2§2+quz,.,., f,,(f,,)=ﬂ,,§,,+3,,‘!,,‘ Therefore, the regression

function f(r) can be expressed as:
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f(@) :[}jm)‘fztﬁ)v--w}j, U,,)) :[A1§| ‘A'lgl""‘Apgp)' + [‘Bl‘L 'quz""‘BpQP]'
= diag(A, Ay A )(C, CoynnC, ) + diag (B, By B, )(d, ods ., = Ac+ Bd . ®)

P i
In equation (8), A is a (N XM)-matrix, where N = Z'I&' M= imx cand € isa (M x1)-vector of parameters

k=1 k=1

r
that are expressed as ,1:4;“!‘;(5 A A{_)~ and ¢ = (‘E:s‘_:; ,_._,g;) . respectively. Also, B is (NXN)-matrix, and ¢ is a

A
(NX 1)-vector of parameters which are expressed as B:diag{Bl,B,,...,BP)'~ and 4 :(dl',d:.....d:, ]’ , respectively.
Therefore, we can write the multiresponse nonparametric regression model given in (1) or (3) as y=Ac+Bd+¢. To obtain

the estimation of regression function, f , we use RKHS method by solving the following optimization:

I 2 I 2
Min AW (ahe| b= Min [WiaH—-1)| |- ©)
Es B N s o

by
with constraint j l[f:””(r,\ )]zd}‘k <}y » 7 =0. The solution o (9) is equivalent to solution to the penalized weighted
ay

least-square (PWLS):
»

Min %N—I (I_Jf)'w(gz](f_f)"'zj‘ljj [f,\“"](lk)]ldlx} X (10)
i=1 *

el ey i
E=L2.p

where A, k=12,.,p are smoothing parameters that control between goodness of fit represented by
Ni'()v‘—_f)'wlg”)(;‘—_[) and smoothness of the estimate measured by A\_[T[ﬁwj(ﬂ)]zdﬂ +___+AP-[Ti'[f;‘"l(xp)]ld%. To

determine the solution to (10), we first decompose the penalty as follows:

_[?[ﬁ‘m] (, )]zdrl = Hpﬁuz = (Pf.Ph) = <g‘,§|"gr‘,§|>= ‘..ilr<'..gl "ED‘..{I = ‘.‘fl'Bl(.‘gl‘

Therefore, the penalty in (10) is iﬂ%_[:[fsm (t )V dt,} =d'ABd where ) =diag(Al, ....21, ). So. the
goodness of fit in (10) can be written as: -
N'(y=fYW(@*)y—f) = N"'(y—Ac—Bd)W(g")(y— Ac—Bd)
By combining the goodness of fit and penalty, we obtain optimization PWLS:
Min{Q(cd)}~ Min (N"(y=W(e*Xy=f)+ gi&‘{tlﬂ"”(-’k)]Zd;&}- (11
deR™ k=l.p

Optimization PWLS in (11) gives ¢=[A'D"'W(g™)A]'AD 'W(g?)y and q' =D ' W(aH[I - A(AD'W(gHA) !
A'D'W(g?)]y, where D=W(g”)B+NAI .Finally, we get the estimated regression function of model given in (1):

J:fA=[ifl&,fz‘d!,...,ﬁdp)r=A§+Bé‘=H(4)¥ (12)

where  H(1) = AIAD 'W(g*)A] ' AD 'W(g")+BD 'W(g*)x [l - A(LAD ' W(g")A) " AD ' W(g")]-
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3.3 Estimation of covariance matrix of random errors
Suppose that [W(GE)J" represents a estimated covariance matrix of random errors. To obtain the estimated covariance

matrix, we consider the data set (rm.,ym.]. k=12,..p: i=12,...n, follows the model in (3). Assume that y=(y vy,

»
is random sample obtained from N-variates normally distributed population (7 =an~ ) with mean f ., and covariance
=t -

[W(e™)]™" . Based on this distribution, we get likelihood function as follows:

2 = 1 1 , 2
L(f.W(g")l_):)=H = : CXP(-;Q’;—.f,-)[W(Q")](_)_’,-—.f,-)}
(W(g*)™ -

i=l (2)1_)?

z

7
Since N =3 n, and W(g”) =diag(W,(g;).Wa(@3).....W,(g,)) then we have:

k=1

> Q'U_.{U W, (Cfl2 }(Q‘U _.flj}} X

=1

b | —

L(f Wil y)= ﬁexp{_
27) [WighH1 '

| 1 - 1 )
— ew[—; PACHENPUAC >()_-2,-—_¢2,.)}

sty

22) % [Wa(@H1|

.
3 e

st
i

1 & 2 .
—HCXP{_§Z(EW _-[f'))"'vf'(g.;)(fw _‘{H )}
Q1) W, @) o

B

Next, estimated covariance matrix of random error can be obtained by carrying out the following optimization:

LU W(g")1 y)=| Mas ﬁexp{—%iq”—.5,.)’14’.(qf)(g'.,-—_;j,.)} x
en T Wi !

May M;exp{—lz‘,()‘”—.f;,-)'Wz(qf)()‘_a,-—.f;,-)}
Wt [ [ 240 =M
CE N ACHINE

(13)

Max| —M88888
R "

“'r".‘i‘ - ] 5
@) [W, @[

e

1 1 & 1
exp {—;ZQ'.--;—-{.--J )'*’v’.--(g.&)(z'.--;—.f.-,-)}

Determining of value L(f.W(g:) I y) in (13) is equivalent to determining of maximum value ol each component in

(13) (Johnson & Wichern, 1982). It means that the maximum value of each component in (13) can be determined by giving the
following equations:

w gy =bh WL ha)
n n
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PO A N1t 120
n n

where J‘;:\ ; (k=12,...,p) is regression function estimator given in (12). Therefore, the maximum likelihood estimator for

[W(a?)]is given by:
W(G)]=diag (W,(G7)].IW:(G2)].....[W, (@)D

(,1\ B )j A )Q'| _f_:| A ) (,1'2 _)fz.;.: )(,1': _)fz.;.: Y QI-" _)j-u'., )(Z‘_'.w B {.u.;.r )

n n n

=diag

Since J:f&_{__‘ - H (},& :é—f\ljf& . k=12....p thenfor k =1,2,..., p wehave:

=)= fin) U ~HAE i, ~Hi 6

n n

(-},"Ja 7{2‘4:,‘{” }(SM 75#,).”}' o (Inr_ B H(Ap ! é—;))-}:p-}:;: (In,__ B H(A.” ‘(:),—f: )

n n

Therefore, the maximum likelihood estimator for covariance matrix is given by:

W@ =diag|| 2L 0 L) | 07 Soa) 0 = o)

n n

=diag ((W,(G)] W (GDT W, (G -

where:
[, —H(4,:8 )y, ¥,[1, —H(4,:6)

Zedelin,

oo L —HOEDY YL~ H(2:6)] .
W (&) = —————== N UACHIE .

3.4 Estimation of optimum smoothing parameter

Selecting an optimum (suitable) smoothing parameter value A is crucial to good regression function fitting. There are a
number of ways to choose )1, including minimizing Mallows’s Cp , cross-validation (CV) score, generalized cross-validation
(GCV) score, and Akaike’s information criterion (AIC) (Li & Zhang, 2010). Ruppert and Carrol (1997) pointed out that
Mallows’s Cp and GCV were satisfactory for good regression function fitting based on spline estimator. Moreover, GCV

approximating CV is a computationally expedient criterion, so it is popular in spline literature.
In this section we establish the estimation of optimum smoothing parameter to good function regression fitting. For this

goal, we may express the estimated regression function given in (12) as follows:

FAO=H(4 4. hy307)y (14)

where qz = (UE,U;,...,UD'. The mean square error (MSE) of the smoothing spline estimator given in (14) is:
(y—F£@)W () y— f.()

3
Z' b
k=l
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U= H(A Ao A DYIW@UT = H(Ay Ao dy 13D
iﬂk
k=1

-

“[W(gl)]f[(f —H (& Ayren 0]

”
n
k=1

3

Next, we define the following quantity:

a

I - y
{Zm} HlW(qz)mu—H(A.ﬂq...n.x,,;qzug (15)
G(A Ay sl ;07 ) =~ ]
_ trace| 1, —H(A .2y, ..d %)
k=1

Therefore, based on (15), the optimum smoothing parameter, A, = (A +Aaopr) - Apapr )+ 18 Obtained by solving the
following optimization:

a’)= Min {G(}ﬂ.)ﬂ.....za,;gl)}

Gupx ()‘11}4"] ‘)"Z{u;n] AT 2’}?{(4?}]: A R . A R’

a

(i"k] H[W(qz)]3[(.’—H(/i.,.ft!...../lw;qz)])_‘
= Min - g

feRt ekt ek

trace| I, —H(A4., A, 4,

i
,
2 z

k=1

where norm "1,“ = ,‘1,13 i+ 1!; fora p-dimension vector v = (v, ,v,,...,vp)' .

3.5 Asymptotic properties of spline estimator

In this section, we investigate the assymptotic properties of spline estimator £ of the multiresponse nonparametric
regression model. Our goal is to investigate asymptotic properties of spline estimator fi and we will judge the quantity of spline

estimator f{ by weighted integrated mean square error (IMSE).
Firstly, we decompose IMSE(A) into two components as follows:
IMSE() =Ej:l(,{(i)—,f,-_({))W(ff)(,{(L)‘f,:({))]ffi =bias*(2)+Var(2)
where  pias? = [ EL(f(6)~ ECf, )W (@)(f (0= ECf,)ds - 0d Var(d) = [ EICE, (0~ ) W(&) B, 0~ @)z -

Next, to investigate the asymptotic property of bia_gz(,i,) , we [irst establish the solution of PWLS optimization in the folowing

Theorem.
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Theorem 3.1 7 (¢) is solution which minimize the following PWLS:

(gm)“(; ~g(OW (g )y —g({))+k2:ﬂwj‘:[gk“”’(q )) i,
then the solution which minimize the following PWLS:

(gn&.)“(f(g}— )W) f(D)-gt)+ Zz [[(sm @) dr is gio=E,o-
Proof. Theorem 2 has given the solution which minimize the following PWLS:
) (y- YW@y - g (D) + :Z’l‘ (e @) a, -

k=1

The solution is:

L@ ={AIAD'W(g)AT ' AD"'W(g*)+BD'W(g)[1- ACAD 'W(g*) A) AD W (g™)l}y

Next, by taking f(r) =y, then the value that minimize:

(ZHR )_l(J_C(,{)—é’(,{)}'w(gz)(f({]—é’({)}"'ZAR -[:’[gk(m](rk)]z dl,q can be writen as:
k=1

k=1

20 ={ALAD 'W(g) Al AD W(g*) + BD W(g*)[1 - AAD 'W(g) Ay 'AD W (1) = B, (0)-
Furthermore, we investigate the asymplotic property of hiasl(%) . For this goal, we first give the following assumption.

Assumption. (A0). For every Kk (k =12,...p) t, = 2';_1. i

2n
The asymptotic property of b;‘asl(é) can be established in Theorem 4 under assumption (AD).

=1,2,...n

Theorem 4. If assumption (A0) hold, then bias*(1) < O(A) as n—» o0
where O(/) represents “big ol” (Sen & Singer, 1993, and Wand & Jones, 1995).

Proof. Suppose g (1) is value which minimize:

J 0= s W@ [ -gwndr+ 3 A [le, P
Since assumption (A0) then, as 17— 0,
S (O OWENf0)- 500 = [ [O- 5D WO -0
Iimplies & (1) = Ef, (1) = &, (1) (16)

So.forevery ¢ e Wy'[a,b]. we have bias’(4) = E(f ()~ Ef (0)YW (@) f()~ Ef (1))dz
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4 A ) . A - STy
<[ ECF - B, YW@ O~ Ef, e+ Y 4 [ &7 aoar,
k=1

By considering Ef,- (1) = g,(¢) asgivenin (16), we obtain:

L2 b - " 2 - = B (m)
bias™ (1)< L E({(E)_Ea tN'Wig ){I(E)_Ea{{))di"'zix‘[' G )t -
=1

Thus, for every geW,"[a.b]. we have the following relationship:

bias*(2) sj” E(f(0)-g@)W(a*)Nf(1)-g0)dt+D 4, j:gl"”(r& )t - (an

Since (17) hold for every g e W;"[a,b] ,then by taking g(r)= f(r) we get:

r )
br’asl({i‘,) < Zﬂxr[gi’"]“&)]ld‘a - 0({1'-)‘ as Jp—»o0.
e
Next, to determine the asymptotic property of Var(1) we first define:

(I){f(-_ ‘h‘?”):l"(f;.+}”h)+i’1&"x(ﬂ.+}’h)" y€R,ad heW,"[a,b]
. /. — .
where _ Ly, " 26 and = [ g™ dr .
R(9)=(Xn) " (v )W)y~ g(0) d J,(9) = [ [ef" ()P ek,
=l

Forany f,g € W,"[a.b],we have

” [ b .
D(f,g.7) = n) " (y=FO-rgWW@ Xy—F()-rg@)+ YA (A" @) +7el @)y dr

By carrying out dl[J(f,g,y}/dy:[) and =0, it will give:

P

) - FOW(EHg0 =Y A4 17 1) @i,
k=1

a
k=1

Suppose @, ., ....,¢, are basis of natural splines and f) = iﬁ'?"(‘) . then according to Eubank (1988), it will give:

=1

2 W(@)glt)(y, = D B, (1) =nA(=1)"2m=1)!D g(t) D" Bd, - (18)
i=l = j=I

i=0 f: 1
Since (18) is hold for every g € W;"Ia,bl , then equation (23) is equivalent to determine ﬁj which helds:
n
¥, = 2. (MACD"2m-DIW, " (¢*)d, + @, )f, + i=12...n. (19
=

We can express (19) in the following matrix notation:
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y=mA=D"Cm=-DW (g ) K+ )

where K = {d]__r_}. i,j=12,...,n,and .;g:{@j(rj_)}. i,j=1,2,...,n. So,we obtain:
y= AW (g )FB'FW ' (g)p+p)p - Where B=F'VF.

If we multiply equation (20) from the leaft side with g" , then we will have:
¢'y=(nleW (g )FBFW (g )p+@'p)f -

So, we get the estimator {} of g as follows:
B, = diag((1+n20,)",....0+n20,)" o'y -

Thus, we can express the estimator f (1) as follows:

"

L=ewp, =3

=1

—  p've.(r
]+M/1.‘9_f ?; ‘-'@"(")

The asymptotic properties of Ver(A) can be established in Theorem 5 under assumption (A0).

Theorem 5. If assumption (A0) hold, then for k =1,2,..,p. Var(4,) < O( ] , a8 j—>00.

L
nA

Proof. For k =1,2,..., p , the equation (21) gives:

- = 1 "
)= — o f
£, I_E:l T+, @;y@;(1)

lsicn

It implies: Va"(ﬁ“(i))i(Maf{W_l(qz)}Jozi(] ‘Pf;l(f; :
= (+ni 0y

So, we have: e N ';Dfl(i) i 2 : .
Var(4,) s(Mm{tgw(q )}}r Z Wi,y 1OV @)L

Speckman (1985), and Eubank(1988) have given the following approximation:

n =f:"iw.{g1)rp}(:,_) = Jb@f{i)W(gl)d{ and Var(/l&)S(Mat{wj."(gl)}]alu'l ]
=l ¢

l=izn

Furthermore, Eubank (1988) has given:

5 . n ]
Var(4,) S(M W, (g '}}) 'y ——
“ “ 1zi<n ? o S+ A @)™

By integral approximation, we obtain:

=a +’]1}",-)I

(20)

(21)

as n—»o0.
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Var(ms(Mar{nr'(ql)}} e

;m,l,a

l=i<n

o K(m‘o—)=O—_-(Ma({1,{/]_—l(o_z)}}jh#‘
T L=izn - i (]+I'm)'

(1+I1'")1 -

K(m,o) - !

g ]
Twr
"

ﬂ/i% 2m

Finally, based on Theorem 4 and Theorem 3, we obtain the asymptotic property of spline estimator based on IMSE

criterion as follows:

IMSE(4)= bi(a\‘z(/j.)—b— Var(A)= 0(4) +0(s)

t

where 1 1 1
1 1 1

Im Im m
ni; ni; nip

il
]

3.6 Numerical example

In this section we give a numerical example of
estimation of the multiresponse nonparametric regression
maodel based on smoothing spline method where performance
of this method depends on the selection of smoothing
parameters. For this example, we generate data for n=100,
correlations p,, =06, p,=07. p,,=08, and variances

al=2. o;=3. o; =4. The underlying multiresponse
nonparametric regression model is:
vy =5+3sin(2atl)+e,, i=1,2,.n

Y, =3+3sin(2mil) + &y, i=12,.nb 2

Yy = 1+3siu(22rx;'].)+sw i=1,2,.n

In this example, we conduct simulation to compare three
different smoothing parameters (A4}, ie., A=1e—09 (small
lambda), A=2.27¢—07 (optimum lambda), and A =105
(great lambda). A plot of GCV versus lambda (A4 ) that gives
minimum GCV value at lambda, =22T7e—071s

U DL
given in Figure 1.

Next, a plot of the estimated regression function of
the model in (23) for optimum lambda.. 4 =22T7e—-07.

oprimsin
is given in Figure 2. A plot of the estimated regression
function of the model in (23) for small lambda, 1 =1-09,1s
given in Figure 3. Also, a plot of the estimated regression
function of the model in (23) for great lambda, A =1e—05.
is given in Figure 4. Figures 2, 3, and 4 show that
selection smoothing parameters, i.e., optimum lambda
(A =2.27¢—07), small lambda ( 1 =1e—09), and great

—
lambda ( A =1¢ —05) give a good regression function fitting, a
too rough regression function fitting, and a too smooth
regression function fitting, respectively.

In the following Table 1, we give the comparison of
three different smoothing parameters ( A) in estimating the
regression  function of the multiresponse nonparametric
regression model.

GCV
379085 379090
1

3.79080
1

T T T T
2.20e07 2.25e07 230e07 2.35e-07

379075
1

Lamda

Plot of GCV versus lambda ( A ) that gives minimum GCV
value at lambda, A =227e=07.

0 i

Figure |

Table 1 shows that the optimum smoothing para-

meter ( =227¢—07) gives the most minimum GCV

—
value compared with both small smoothing parameter
(A=1¢—09) and great smoothing parameter (A=1e—05).
It means that the selection of optimum smoothing parameter
gives the best regression function fitting of the multiresponse
nonparametric regression model.

Table 1. Results of estimation for three different smoothing para-
meters.
Smoothing Minimum o -
parameters GOV values Results of estimation
A=le—09 5.687333 A too rought regression
(small lambda) function fitting.
A=22T7e-07 379075 A good regression function
(optimum lambda) firting .
A=1e-05 5470145 A too smooth regression
(great lambda) function fitting.
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Figure 2. Plots of estimation of the first response (above), the second response (central), and the third response (below) of model (23) for
pptimum lambda. =227e— .
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Figure 3. Plots of estimation of the first response (above), the second response (central), and the third response (below) of model (23) for small

lambda, 1 =1e—09.

4. Conclusion regression function of the multiresponse nonparametric

regression model based on smoothing spline estimator, we use

By assuming that the distribution of response
variable is known, we can get the estimation of covariance
matrix by using maximum likelihood method. The optimum
smoothing parameter (1) is obtained by minimizing the
generalized cross validation (GCV). Optimum lambda (A)
gives a good regression function fitting. In estimating of the

all observation points as knots. Smoothing spline estimate of
the functions f arises as a solution to the minimization

problem, ie., find 7 that minimizes the penalized weighted

least-square (PWLS). The result shows that smoothing spline
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Figure 4. Plots of estimation of the first response (above), the second response (central), and the third response (below) of model (23) for great

lambda, 4=1e—-05.

estimator, f{_ . 1s an estimator which is linear in observations,
and by taking expectation, E{.f:;) ,itis a bias estimator for f .

We can investigate the asymptotic properties of spline
estimator (ﬁ_ } of regression functon ( f) by decomposing

IMSE(A) into two components, ie., bms!(z}) and Var(2)
and the result has been given in (22).
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