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Abstract. This paper proposes the dynamics of tuberculosis (TB) transmission in Indonesia through a mathemat-

ical model. We determine the reproduction number and the equilibria. The parameters model is estimated based

on TB data in Indonesia. We obtain the reproduction number of the TB model is R0 = 10.9635. This shows that

eliminating TB in Indonesia requires more efforts. Thus, the optimal control strategy is performed to assess the

effect of interventions in reducing TB transmission. We use three controls term in the form of prevention and two

treatments. The simulation results indicate that the performance of three controls is the best strategy to reduce the

spreading of TB disease among all strategies.
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1. Introduction

Tuberculosis (TB) caused by the bacillus Mycobacterium tuberculosis is an airborne infec-

tious disease. These bacteria attack the lungs (pulmonary TB) but do not rule out the possibility

for the bacteria to attack other parts of the body (extrapulmonary TB) such as the brain, kidney,
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spine, and others [1]. In most TB cases, the bacteria attack and damage the lungs making it

difficult for pulmonary TB patients to breathe [2]. TB bacteria is transmitted through the air

when people with active TB are lung or coughing throat, sneezing, talking, or singing. There

are two possibilities for people infected with TB bacteria, namely latent TB infection and active

TB [3]. The latent TB cannot transmit the disease. About one-quarter of the world’s population

has latent TB [4].

TB is ranked second after HIV as one of the 10 deadliest diseases in the world. There are

eight countries that have a high number of TB cases: India, China, Indonesia, Philippines,

Pakistan, Nigeria, Bangladesh, and South Africa. In 2018, it is an estimated 10 million people

were suffering from TB and 1.5 million people died from this disease. More than 95% of deaths

caused by TB occur in developing countries [4]. The high rate of TB sufferers is influenced by

socioeconomic conditions in various groups of society such as poverty in developing countries.

At present, Indonesia is one of the countries with the third-largest number of TB sufferers in the

world after India and China. Moreover, the rate of TB transmissions in Indonesia is also high.

About 75% of people with TB are economically productive (15-50 years). In addition to being

economically detrimental, TB sufferers also experience other negative social impacts, such as

stigma and being ostracized by the community [4].

TB is a treatable and curable disease. Various efforts to cure TB continue to be carried out.

One of them is the implementation of the Directly Observed Treatment Short-Course (DOTS)

strategy. DOTS is a strategy by finding and healing patients whose prioritized in infectious

TB patients [3]. TB can also be prevented early by administering the BCG vaccine (Bacillus

Calmette-Guerin). The body’s defense power of individuals who have been given the BCG

vaccine will increase in such a way they can control and kill the bacteria that cause TB that

enters the body [5].

Mathematical models have played an essential role in understanding the dynamics of TB

transmission. Several mathematical models and strategies control for TB transmission have

been established in a number of literature to capture the dynamics of the disease in a more

effective method (see, for example, [6, 7, 8, 9, 10] and references therein). Liu and Zhang [6]

developed the TB model in the presence of vaccinated populations and populations undergoing
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treatment. Ullah, et al. [9] discussed the TB model that include a population of individuals

who recover after undergoing treatment. Khan, et al. [10] have studied a model dynamic of TB

transmission in Khyber Pakhtunkhwa, Pakistan. Several researchers have presented the optimal

control strategies to explore the effectiveness of the intervention [11, 12, 13, 14, 15, 16, 17,

18]. For example, the authors in [17] have extended the TB model of [6] by incorporating the

optimal control variable in the form of vaccination, treatment, and successful treatment efforts.

Fatmawati et al [18] proposed the discrete age-structured model of TB transmission by taking

into account the prevention, chemoprophylaxis, and treatment efforts as control variables.

In this present paper, we developed the dynamics of a TB transmission in [17] by using

the standard incidence rate and ignoring the vaccinated compartment. We take into account a

recovered compartment in the model and utilize the TB data in Indonesia from 2008 to 2017

to estimate the parameters of the model. We also investigate the effect of the optimal control

strategy in reducing latent, active TB, and treated individuals populations. The controls are

represented by TB prevention, treatment, and successful treatment efforts. The remaining of the

paper is structured as follows: the formulation of the TB model is presented in Section 2. The

basic properties and stability analysis are given in Sections 3 and 4. The parameter estimation

is devoted in Section 5. The formulation of the optimal control and the numerical simulation

are discussed in Sections 6 and 7. Some conclusions are summarized in Section 8.

2. Formulation of TB Model

We construct a TB spread model by taking into account a treated population. The population

is assumed to be closed and is split into five classes, which are the susceptible class (S ), the

latent TB class (E), the active TB class (I), the treated class (T ) and the recovered class (R). The

latent TB class consists of individuals infected by TB bacteria, but without an infectious status.

The active TB class consists of individuals with infectious status. The treated individuals are

also infectious. The susceptible population can get TB disease after interacting with infectious

TB or treated individual. We assume that newly infected individuals can move to directly to

infectious class, while the remaining enters the latent class. The TB spread model is as follows.
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dS
dt

= Λ−
βS (I + qT )

N
−µS ,

dL
dt

=
kβS (I + qT )

N
− (δ+µ) L +ρT,

dI
dt

=
(1− k)βS (I + qT )

N
+δL− (γ+µ+α) I,(1)

dT
dt

= γ I− (µ+ρ+ θ)T,

dR
dt

= θT −µR,

with 0 < ρ+ θ ≤ 1.

The parameters used in the model equation (1) are assumed constant and non-negative. Table

1 presents the interpretation of the parameters.

Table 1. Parameters interpretation of the model (1)

Parameter Interpretation
Λ recruitment rate
β transmission rate
q the reduction in the risk of transmission due to treatment
µ natural death rate
k proportion of slow progression
δ progression rate from L to I
ρ progression rate from T to L
γ progression rate from I to T
α death rate due to the disease
θ progression rate from T to R

3. Basic Properties

In this work, we establish the basic properties of the model (1). We will verify that all

variables of the model for all time are non-negative. It can also be explained as, the solution

of the TB model with non-negative initial conditions will remain non-negative for every time

t > 0.
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Lemma 1. For the initial data H(0) ≥ 0, where H(t) = (S (t),L(t), I(t),T (t),R(t)), the solutions

of the model (1) will be non-negative whenever they exist and

lim
t−→∞

N(t) ≤
Λ

µ
,

with N(t) = S (t) + L(t) + I(t) + T (t) + R(t).

Proof. Let t1 = sup{t > 0 : H(t) > 0 ∈ [0, t]}, then the first equation of the TB model (1) leads to

the following,

dS
dt

= Λ−ϑ(t)S −µS(2)

with ϑ(t) =
β (I+qT )

N .

The equation (2) can be expressed as follows,

S (t1) = S (0)exp
{
−

(
µt1 +

∫ t1

0
ϑ(z)dz

)}
+ exp

{
−

(
µt1 +

∫ t1

0
ϑ(z)dz

)}

×

∫ t1

0
Λexp

(
µy +

∫ y

0
ϑ(z)dz

)
dy > 0.

Likewise, we can exhibit for the rest of the variables in H, that is, H > 0, ∀t > 0. Furthermore,

summing all compartments in model (1) lead to the following:

dN
dt

= Λ−µN −αI.

Hence

lim
t−→∞

N(t) ≤
Λ

µ
.

�

The TB model (1) has a biologically feasible region given as Ω ⊂ R5
+ with

Ω =
{
(S (t),L(t), I(t),T (t),R(t)) ∈ R5

+ : N(t) ≤
Λ

µ

}
.

We have the following results for this feasible region.

Lemma 2. The region given by Ω ⊂ R5
+ is positively invariant for the TB model (1) with the

non-negative initial conditions in R5
+.

Proof. The summation of the compartment of the TB model (1), we have

dN
dt

= Λ−µN −αI ≤ Λ−µN.
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Clearly, dN(t)
dt ≤ 0, if N(t) ≥ Λ

µ . Thus, N(t) ≤ N(0)e−µt + Λ
µ

(
1− e−µt

)
. Hence, N(t) ≤ Λ

µh
if

N(0) ≤ Λ
µ . Also, if N(0) > Λ

µ , then N(t)→ Λ
µ as t→∞. Therefore, the region Ω is positively

invariant and attracts all the solutions in R5
+. �

4. Model Analysis

The TB model (1) has a disease free equilibrium (DFE), E0, given by

E0 =
(
S 0,0,0,0,0

)
=

(Λ

µ
,0,0,0,0

)
.

Next, we will determine the basic reproduction number (R0) which has the important role

in the disease modeling [19, 20]. The basic reproduction number R0 can be computed using

the next generation matrix on the TB model (1). Consider the infected compartments in TB

model (1) are L, I, and T . Using the approach in [21], the matrices F and V at DFE are given as

follows:

F =


0 kβ kβq

0 (1− k)β (1− k)βq

0 0 0

 , and V =


µ+δ 0 −ρ

−δ µ+α+γ 0

0 −γ µ+ρ+ θ

 .(3)

The basic reproduction number of the model (1) is obtained through the spectral radius of the

matrix R0 = ρ(FV−1), which is given by

R0 =
β[µ+ρ+ θ+γq][(1− k)µ+δ]

(µ+ρ+ θ)[(µ+δ)(µ+α) +µγ] +γδ(µ+ θ)
.

In the following theorem, we present stability of the DFE E0. We have the following result.

Theorem 1. The DFE E0 of the TB model (1) is locally asymptotically stable when R0 < 1.

Proof. The Jacobian matrix by evaluated the model (1) at the DFE E0 is given by

J(E0) =



−µ 0 −β −βq 0

0 −(µ+δ) kβ kβq +ρ 0

0 δ (1− k)β− (µ+α+γ) (1− k)βq 0

0 0 γ −(µ+ρ+ θ) 0

0 0 0 0 −µ


.

It can be seen from the above matrix J(E0), the eigenvalues are −µ and −µ that obviously

negative, while the remaining of the eigenvalues with negative reals parts can be determine
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through the Theorem 2 of [21].

Let JM = F −V , where F and V are matrices defined by (3).

Define s(M) = max(Re(λ) : λ is an eigenvalue of M), where s(M) is the simple eigenvalue of

matrix M having a positive eigenvector. Thus from [21], we have if R0 < 1, then s(M) < 0. �

Next, we present the existence of the endemic equilibrium. We will carry out the special case

of the TB model (1) with no disease-induced mortality (α= 0). Consider E1 = (S ∗,L∗, I∗,T ∗,R∗)

is the endemic equilibrium of the model where

S ∗ =
Λ2

µIQ +µΛ
,where Q = β

(m +γq)
m

and m = µ+ρ+ θ

L∗ =
IQkµm +γρI(IQ + m)

(µ+δ)(IQ +µ)m
, T ∗ =

γI
m
, R∗ =

θγI
m
.

Thus, substituting the above expression in the third equation of the model (1), we have

a1I∗2h + a2I∗h + a3 = 0,

where

a1 = −
θ2β(m +γq)[(1− k)µ+δ]

Ra
,

a2 = Q(Λ+µ)
(
m[µ(µ+δ) +µγ] +γδ(µ+ θ)

)
(Ka−1) ,

a3 = µΛ
(
m[µ(µ+δ) +µγ] +γδ(µ+ θ)

)
(Ra−1) ,

Ra =
β[m +γq][(1− k)µ+δ]

m[(µ+δ)µ+µγ] +γδ(µ+ θ)
,

Ka =
Qm

(
(1− k)(µ+δ)Λ+ kδµ

)
(Λ+µ)

(
m[(µ+δ)µ+µγ] +γδ(µ+ θ)

)
Here, a1 < 0 and a3 is positive when Ra > 1, and negative when Ra < 1. We establish the

following result:

Theorem 2. The TB model (1) has:

(1) if a3 > 0 and Ra > 1, then there exists a unique endemic equilibrium,

(2) if a2 > 0 and either a3 = 0 or a2
2−4a1a3 = 0, then we have a unique endemic equilibrium,
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(3) if Ra < 1, so a3 < 0, and a2 > 0 and their discriminant is positive then two endemic

equilibria exists.

(4) no endemic equilibria otherwise.

5. Parameter Estimation

The aim of this section is to estimate the unknown parameters of the TB model (1). We

utilize the cumulative TB case data per 100,000 population in Indonesia from 2008 to 2017.

The data refer to the Indonesia Ministry of Health Data and Information Center 2018 [22]. In

this study, we employ the least squares method to estimate the model parameters (1) except the

parameters µ and Λ are obtained from demographic conditions of Indonesian population. The

natural human mortality rate, µ, is obtained from the inverse of the average life expectancy of

the population in Indonesia in 2017. The average life expectancy of the Indonesian population

in 2017 is 71.06 years [23], so µ = 1/71.06 per year . For parameter Λ the level of human

recruitment is calculated as follows. Total population of Indonesia in 2017 is 263,991,400

[24], so that the total population of Indonesia per 100,000 people is 2639,914 ≈ 2640 people.

Therefore, Λ
µ = 2640, which is the total human population without disease per 100,000 people,

so Λ = 2640/71.06 per year. The rest of the model parameters (1) are estimated using the

least squares method with the algorithm referring to [25]. Based on the least squares method,

the estimation results of the parameters in model (1) are given in Table 2. The results of the

comparison of model solutions (1) and the data of TB sufferers per 100,000 population are given

in Figure 1. Using the parameter values from Table 2, we find R0 ≈ 10.9635.

6. Formulation of the Optimal Control

We examine the application of optimal control in model (1) to reduce the spread of TB. There

are three control variables applied to the model, namely prevention of TB (u1) for susceptible

population, treatment efforts (u2) for active TB populations and successful TB treatment effort

(u3) in the populations that receive treatment. The TB model with three control variables is

given as follows.
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Table 2. Fitted and estimated values of the parameters

Parameter value References
Λ 2640/71.06 Estimated
β 0.6506 Fitted
q 0.0038 Fitted
µ 1/71.06 Estimated
k 0.1280 Fitted
δ 0.0102 Fitted
ρ 0.0831 Fitted
γ 0.0586 Fitted
α 0.0142 Fitted
θ 0.4405 Fitted
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Figure 1. Model (1) fitting of the cumulative TB case data per 100,000 population.

dS
dt

= Λ−
β(1−u1)S (I + qT )

N
−µS ,

dL
dt

=
kβ (1−u1)S (I + qT )

N
− (δ+µ) L +ρu3T,

dI
dt

=
(1− k)β (1−u1)S (I + qT )

N
+δL− (γu2 +µ+α) I,(4)

dT
dt

= γu2 I− (µ+ (ρ+ θ)u3)T,

dR
dt

= u3θT −µR,
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The aim of the optimal control strategies is to minimize the following cost function.

J(u1,u2,u3) =

∫ t f

0
A1L + A2I + A3T +

c1

2
u2

1 +
c2

2
u2

2 +
c3

2
u2

3 dt,(5)

where A1,A2 and A3 state the weighting constant for latent TB, active TB, and treatment pop-

ulations respectively, whereas c1, c2, and c3 are weighting constants for the TB prevention,

treatment for active TB, and successful TB treatment effort respectively. The main aim is min-

imize the populations of latent TB, active TB and treatment class with a minimum cost for

prevention, treatment, and successful treatment. We take a quadratic form to quantify the con-

trol costs [26, 27, 28, 29]. The terms c1 u2
1,c2 u2

2 and c3 u2
3 represent the costs associated with

the TB prevention, TB treatment, and successful TB treatment controls, respectively.

Hence, we investigate the optimal controls u∗1, u∗2, and u∗3 such that

J(u∗1,u
∗
2,u
∗
3) = min︸︷︷︸

Γ

J(u1,u2,u3),(6)

where Γ = {(u1,u2,u3) |0 ≤ ui ≤ 1, i = 1,2,3}.

The conditions necessary for setting the optimal controls u∗1, u∗2, and u∗3 that satisfy condition

(6) with constraint model (4) will be established via Pontryagin’s Maximum Principle [30].

This principle changes equations (4), (5), and (6) into a problem of minimizing the Hamiltonian

function H, pointwise with respect to (u1,u2,u3), i.e.,

H = A1L + A2I + A3T +
c1

2
u2

1 +
c2

2
u2

2 +
c3

2
u2

3 +

5∑
i=1

λi fi,

where fi represents the right-hand side of the model (4). The adjoint variables λi for i = 1,2, . . . ,5

meet the following co-state system.

λ̇1 = −
∂H
∂S

= λ1µ+ (1−u1)

(
βI + qT

)
N

(
1−

S
N

)
(λ1−λ2k−λ3(1− k)),

λ̇2 = −
∂H
∂L

= −A1 +λ2(µ+δ)−λ3δ+
βS (1−u1)(I + qT )

N2

(
λ3(1− k) +λ2k−λ1

)
,

λ̇3 = −
∂H
∂I

= −A2 +
(
λ1−λ2k−λ3(1− k)

)βS
N

(
(1−u1)− (1−u1)(

I + qT
N

)
)
+ (λ3−λ4)γu2 +λ3(α+µ),

λ̇4 = −A3 +
(
λ1−λ2k−λ3(1− k)

)βS
N

(
q + (1−u1)

(I + qT )
N

)
−λ2ρu3 +λ4(ρu3 +µ) + (λ4−λ5)θu3,

λ̇5 = −
∂H
∂R

= βS (1−u1)
(I + qT )

N2

(
λ3(1− k) +λ2k−λ1

)
+λ5µ,

where the transversality conditions λi(t f ) = 0, i = 1,2, . . . ,5.

The algorithms required to get the optimal controls u =
(
u∗1,u

∗
2,u
∗
3

)
are as follows [31, 32].



TUBERCULOSIS MODEL WITH OPTIMAL CONTROL ANALYSIS 11

(1) Minimize the function H to the variable u. We have

u∗1 =


0, for u1 ≤ 0

((1−k)λ3−kλ2−λ1)βS I
c1N , for 0 < u1 < 1

1, for u1 ≥ 1

u∗2 =


0, for u2 ≤ 0

(λ3−λ4)γI
c2

, for 0 < u2 < 1

1, for u2 ≥ 1

u∗3 =


0, for u3 ≤ 0

(λ4−λ2)ρT+(λ4−λ5)θT
c3

, for 0 < u3 < 1

1, for u3 ≥ 1

(2) Solve the state equations ẋ(t) = ∂H
∂λ , where x = (S ,L, I,T,R), λ = (λ1,λ2, . . . ,λ5), using

the initial condition x0.

(3) Solve the co-state equations λ̇(t) = −∂H
∂x with terminal conditions λi(t f ) = 0, for i =

1,2,3, . . . ,5.

By applying the algorithm, the theorem of the optimum control
(
u∗1,u

∗
2,u
∗
3

)
is stated as fol-

lows.

Theorem 3. The optimal control (u∗1,u
∗
2,u
∗
3) that minimize J(u1,u2,u3) over Γ is

u∗1 = max
{

0,min
{

1,
((1− k)λ3− kλ2−λ1)βS I

c1N

}}
u∗2 = max

{
0,min

{
1,

(λ3−λ4)γI
c2

}}
u∗3 = max

{
0,min

{
1,

(λ4−λ2)ρT + (λ4−λ5)θT
c3

}}
where λi, i = 1,2,3, . . . ,5, are the solutions of co-state equations λ̇(t) = −∂H

∂x .

7. Numerical Results

We address the numerical solution of the control model (4) with and without control. We

utilize the fourth-order Runge-Kutta (RK4) algorithm to obtain the numerical solution of the

control model. The forward RK4 algorithm is employed to solve the state systems. Thus, the

backward RK4 algorithm is used to solve the co-state system [33].
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Parameters used for the simulations could be seen in Table 2, for which the basic reproduction

ratio R0 = 10.9635. We assume that the values of the weighting constant are A1 = A2 = A3 = 1,

c1 = 1.3,c2 = 1.8, and c3 = 2.3. Moreover, the initial condition is S (0) = 2398.09,L(0) = 0, I(0) =

131,T (0) = 0,R(0) = 111. We display a period of 10 years to simulate the optimal control.
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Figure 2. Susceptible population with and without control
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Figure 3. Latent population with and without control

To investigate the impact of the intervention strategy, we compare the results of the simulation

for the case with and without control. In Figure 2, we observe that the susceptible population in-

creases using the controls compared to the uncontrolled. As depict in Figure 3 and Figure 4, we
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Figure 4. Infectious population with and without control
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Figure 5. Treated population with and without control

can see that the individuals infected with TB in the latent phase and in the active phase decrease

significantly using the optimal control. The yield in Figure 5 predicts that the implementation

of the optimal control significantly reduces the number of the treated population.
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The profile of the optimal controls is set out in Figure 6. The simulation results in Figure 6

recommend that the implementation of the prevention (u∗1) should be at the maximum level for

the period of intervention, while the treatment control u∗2 should be maintained at the maximum

effort for 8 years before it decreases to zero. Meanwhile, the treatment u∗3 is given full effort

starting in the half of the first year to the 9th year and decreases to zero at the end of the

intervention.
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ious control strategies
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The comparison of the latent, infectious, and treated individuals for different strategy controls

is summarized in Figure 7. We display in Figure 7 that the number of the latent, infectious, and

treated individuals is lowest when three controls are applied.

8. Conclusion

In this study, we have presented the mathematical model of TB transmission in Indonesia.

The TB model was parameterized based on the cumulative TB case data per 100,000 popula-

tion in Indonesia from 2008 to 2017. The basic properties, the reproduction number (R0) and

the equilibria of the model are obtained. The DFE is locally asymptotically stable when repro-

duction number less than one. The endemic equilibrium of the model is carried out whenever

disease-induced mortality is set to zero. Based on the result of the estimated parameters, the

value of R0 is R0 = 10.9635. This yield indicates that TB disease is still persistent in Indonesia.

Thus, we implemented the optimal control strategies to verify the effect of prevention and two

treatments to reduce the TB transmission in Indonesia. The numerical simulation was set out

for various control strategies. The results show that the simultaneous application of the three

control variables has a very significant effect on controlling the spread of TB in the population,

especially in Indonesia.
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