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Abstract 

The functions, namely regression functions, which describe the relationship of more than one 

response variable observed at several values of the predictor variables in which there are 

correlations between responses can be estimated by using both smoothing spline and truncated 

spline estimators in multi-response non-parametric regression model that is as development of a 

uni-response non-parametric regression model. In this paper, we discuss estimating regression 

function of the multi-response non-parametric regression model by using both smoothing spline 

and truncated spline estimators with application to the association between blood pressures 

affected by body mass index. Results show that by comparing their mean squared error values, 

smoothing spline estimators give a better estimate of results than truncated spline estimators. It 

means that for a prediction need, smoothing spline estimators are better than truncated spline 

estimators. 
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1. Introduction 

According to IOTF-WHO (2000), the risk of negative health consequences is correlated 

with increasing body mass index (BMI), and a BMI more than or equal to 23 kg/m2 was categorised 

as overweight or obese. Since levels of overweight can be measured by BMI (body mass index), 

then an increase in BMI can also cause an increase in blood pressure (systolic and diastolic). An 

increase of BMI in someone who was less than 60 years old can cause an increase of systolic and 

diastolic blood pressure as shown by Brown et al. (2000). Next, Droyvold et al. (2005) and Lestari 

et al. (2019c) pointed out that increasing and decreasing systolic and diastolic blood pressure were 

significantly caused by increasing and decreasing of BMI for all sex and all ages. Further, Tesfaye 

et al. (2007) stated that BMI significantly influenced systolic and diastolic blood pressures of 

Ethiopian, Vietnamese, and Indonesian people. Also, Kumar et al. (2008) pointed out that BMI 

affects systolic and diastolic blood pressures of females and males. In addition, Nanaware et al. 

(2011) have shown that there was a positive correlation between BMI and both systolic and 

diastolic blood pressure of children aged between 8-16 years old. Then, Roka et al. (2015) pointed 

out that a high BMI, being overweight or obese can cause an increase of blood pressure (systolic 

and diastolic).  

Statistical analysis often involves building mathematical models which examines the 

relationship between response and predictor variables. Spline is a general class of powerful and 

flexible modeling techniques. Research on spline models has attracted a great deal of attention in 

recent years, and the methodology has been widely used in many areas. Spline estimator with its 

powerful and flexible properties is one of the most popular estimators used for estimating 

regression function of the non-parametric regression model. There are many researchers who have 

considered spline estimator for estimating regression function of the non-parametric regression 

model. Researchers in Kimeldorf & Wahba (1971), Craven & Wahba (1979), and Wahba (1990) 

used original spline estimators to estimate regression function of smooth data. M-type splines to 
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overcome outliers in non-parametric regression were proposed by Cox (1983), and Cox & 

O’Sullivan (1996). Confidence intervals for original spline models by using the Bayesian approach 

has been constructed by Wahba (1983). Also, Wahba (1985) compared between generalised cross 

validation (GCV) and generalised maximum likelihood (GML) for choosing the smoothing 

parameter in the generalised spline smoothing problem. Relaxed spline and quantile spline have 

been introduced by Oehlert (1992) & Koenker et al. (1994). Next, Wang (1998) discussed 

smoothing spline models with correlated random errors. Some techniques for spline statistical 

model building by using reproducing kernel Hilbert spaces (RKHS) have been introduced by 

Wahba (2000). A method that combines smoothing spline estimates of different smoothness to 

form a final improved estimate was proposed by Lee (2004). Further, Cardot et al. (2007) gave the 

asymptotic property of smoothing splines estimators in functional linear regression with errors-in-

variables. Smoothing spline estimation of variance functions has been studied by Liu et al. (2007). 

Also, Aydin (2007) showed goodness of spline estimator rather than kernel estimator in estimating 

non-parametric regression model for gross national product data. Next, Aydin et al. (2013) have 

studied the determination of an optimal smoothing parameter for non-parametric regression using 

smoothing spline. All these researchers studied spline estimators in the case of single response 

non-parametric regression models only.     

In the real cases, we are frequently faced the problem in which two or more dependent 

variables are observed at several values of the independent variables, and there are correlations 

between the responses. Multi-response non-parametric regression models provide powerful tools 

to model the functions which represent the association of these variables. There are many 

researchers who have considered non-parametric models for multi-response data. Spline 

smoothing for estimating non-parametric functions from bivariate data with the same correlation 

of errors has been studied by Wang et al. (2000). Next, Fernandez and Opsomer (2005) proposed 

methods of estimating the non-parametric regression model with spatially correlated errors. Also, 
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Lestari et al. (2009) and Lestari et al. (2010) have studied spline estimators in multi-response non-

parametric regression models with equal correlation of errors and unequal correlation of errors, 

respectively. Then, Chamidah et al. (2012) used multi-response non-parametric regression model 

approach to design a child’s growth chart. A mathematical statistics method for estimating the 

regression curve of the multi-response non-parametric regression model in case of 

heteroscedasticity of variance was proposed by Lestari et al. (2012). In addition, Chamidah & 

Lestari (2016) discussed estimating the regression curve of the homoscedastic multi-response non-

parametric regression in which the number of observations were unbalanced. Smoothing spline 

estimators for estimating the multi-response non-parametric regression model by using RKHS has 

been proposed by Lestari et al. (2017b) and Lestari et al. (2018). Further, Lestari et al. (2017a), 

Lestari et al. (2018b) and Lestari et al. (2019a) discussed construction of covariance matrix in case 

of homoscedasticity of variances of errors, and estimating of both covariance matrix and optimal 

smoothing parameter. But, these researchers have not discussed estimating of the smoothing 

parameter in the multi-response non-parametric regression model when the variances of errors are 

not the same for cross-section data. In addition, Lestari et al. (2019b) have discussed estimating of 

smoothing parameter in multi-response non-parametric regression model when the variances of 

errors are not the same for cross-section data but these researchers have not discussed application 

of the multi-response non-parametric regression model on the real case data. Therefore, in this 

paper, we discuss methods to estimate regression function of the multi-response non-parametric 

regression model that apply to real case data, i.e. data of blood pressures and BMI. Thus, the goals 

of this research are estimating a model of blood pressures affected by BMI by using both 

smoothing spline and truncated spline estimators, and comparing between smoothing spline and 

truncated spline estimators in estimating the blood pressures based on their mean squared errors 

values.  
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2. Methods for Estimating Blood Pressures Models 

Firstly, for estimating blood pressures models by using smoothing spline, we consider a 

multi-response non-parametric regression model given by Lestari et al. (2019b) as follows:  

( )ki k ki kiy f t ε= + ; 1,2,...,k p= ; 1,2,..., ki n= , where 2( )ki kiVar ε σ=                           (1) 

Next, by putting 1,2k =  and 1,2,...,i n= , we apply model (1) to the data of blood pressures 

affected by BMI such that we have a blood pressures model as follows:  

( )ki k ki kiy f t ε= + ; 1,2k = ; 1,2,...,i n=                                                                      (2) 

where 2( )ki kiVar ε σ= , 1iy  and 2iy  are response variables that represent the first response (i.e., 

systolic blood pressure), and the second response (i.e., diastolic blood pressure), respectively, 

( )k kif t , 1,2k =  are unknown regression functions which represent the function of predictor 

variables (i.e., BMI). Also, we construct a covariance matrix of errors, namely 1 2( ) ( )Cov ε σ−= W
 

. Next, by using reproducing kernel Hilbert space (RKHS), we take solutions to penaliszed 

weighted least square (PWLS) optimiszation: 

            
[ ] [ ]

( ) ( ) ( ) ( )
1 2 1 1 2 2 2 2

2 22

, , , 1
( ) k

m m
k

b m
k k k kaf W a b f W a b k

Min y f W y f f t dtσ λ
∈ ∈ =

 ′  − − +   
∑ ∫   

                              (3) 

for determining the estimation of regression function in model (2) that depends on selecting the 

optimal smoothing parameter ( optλ ). It can be obtained by taking solution of generaliszed cross 

validation 2( , )kG λ σ


optimiszation: 

     ( ){ }
( )

21
2

21

[ ( )]
,

( )k k

k
opt k

k

n I H y
Min G Min

n trace I Hλ λ

λ
λ λ σ

λ

−

−

 − = =  
 −   




, 1, 2k =                         (4) 

Secondly, for estimating blood pressures models by using truncated spline, we test 

correlation systolic and diastolic blood pressure. Next, we determine optimal smoothing 

parameters ( optλ ), optimal knot, and optimal order of truncated spline. Then, we determine 
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estimated blood pressures model by applying truncated spline as well as given by Wahba (1990) as 

follows: 

                   ( ) ( )
1 1

0 1

r n ri
i j j

i j
S t t t kα β

− −

+
= =

= + −∑ ∑                                                                                (5) 

where ( 1r − ) is the order of spline, 1 2 1 2, ,..., ( ... )n nk k k a k k k b< < < < < are knots of spline, 

[ , ]t a b∈ , iα  and jβ  are real valued constants, and   

       ( ) ( ) 1
1 ,

0,

r
r jj

j
j

t kfort kt k
t kfor

−
−

+

 ≥−− =  <

                                                                           (6)                               

 

3. Results and Discussion 

3.1. Estimating Blood Pressures Using Smoothing Spline Estimator  

We consider model (2) and suppose that 1 2( , )y y y ′=
  

, 1 2( , )f f f ′=
  

, 1 2( , )ε ε ε ′=
  

, and  

1 2( , )t t t ′=
  

 where 1 2( , ,..., )k k k kny y y y ′=


, 1 2( ( ), ( ),..., ( ))k k k k k k knf f t f t f t ′=


, 1 2( , ,..., )k k k knε ε ε ε ′=


, 1 2( , ,..., )k k k knt t t t ′=


, 1,2k = ; 1,2,...,i n= . Therefore, we can write equation (2) in matrix notation 

as follows: 

  y f ε= +
 

            (7)                                                                                                          

where ( ) 0E ε =
 

, and 1 2( ) ( )Cov ε σ−= W
 

2 2
1 1 2 2diag( ( ), ( ))σ σ= W W
 

.  Estimating functions f
  

in 

(7) by using smoothing spline estimators appears as a solution to the penaliszed weighted least-

square (PWLS) minimiszation problem, i.e., determine f̂


 that can make the following PWLS 

minimum:  

         
        1 2 2

2
1 2 2

1 1 1 1 1 2 2 2 2 2
, 1

{( ) ( ) ( )( ) ( ) ( )( )
m k

f f W k
Min n y f y f y f y fσ σ−

∈ =

′ ′− − + − − +∑ W W
          

                     

1 2

1 2

(2) 2 (2) 2
1 1 2 2( ( )) ( ( )) }

b b

a a
f t dt f t dtλ λ+∫ ∫                             (8)                                           
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for pre-specified value 1 2( , )λ λ λ ′=


. Note that, in equation (8), the first term represents the sum 

squares of errors and it penaliszes the lack of fit. While, the second term which is weighted by λ


 

represents the roughness penalty and it imposes a penalty on roughness. It means that the 

curvature of f


 is penaliszed by it. In equation (11), kλ  ( 1, 2)k =  is called as the smoothing 

parameter. The solution will be variedy from interpolation to a linear model, if kλ  varies from 0 

to +∞ . So that, if kλ → +∞ , the roughness penalty will dominate in (8), and the smoothing spline 

estimate will be forced to be a constant.  If 0kλ → , the roughness penalty will disappear in (8), 

and the spline estimate will interpolate the data. Thus,  the trade-off between the goodness of fit 

given by 
2

1 2 2
1 1 1 1 1 2 2 2 2 2

1
( ) ( ) ( )( ) ( ) ( )( )k

k
n y f y f y f y fσ σ−

=

′ ′− − + − −∑ W W
        

 and smoothness of the estimate 

given by  1 2

1 2

(2) 2 (2) 2
1 1 2 2( ( )) ( ( ))

b b

a a
f t dt f t dtλ λ+∫ ∫  is controlled by the smoothing parameter kλ ( 1, 2)k = . 

The solution for minimiszation of the problem in (8) is a smoothing spline estimator where its 

function basis is a “natural cubic spline” with 1 2, ,...,
knt t t ( 1, 2)k =  as its knots. Based on this 

concept, a particular structured spline interpolation that depends on selection of the smoothing 

parameter kλ  ( 1, 2)k =  value becomes an appropriate approach of the functions kf ( 1, 2)k =  in 

model (2). Let 1 2( , )f f f ′=
  

 where 1 2( ( ), ( ),..., ( ))k k k k k k knf f t f t f t ′=


, 1,2k = , be the vector of 

values of function kf ( 1, 2)k =  at the knot points 1 2, ,...,
knt t t ( 1, 2)k = . If we express the model 

of paired data set into a general smoothing spline regression model, we will get the following 

expression: 

kiktki fLy
k

ε+= ;  1,2,..., ki n= ; 1, 2k =                                                          (9)                                                  

where k kf ∈H  ( kH  represents Hilbert space) is an unknown smooth function, and 
kt kL ∈H   is 

a bounded linear functional.  
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Next, suppose that kH can be decomposed into two subspaces Uk  and  Wk  as follows: 

  k k k= ⊕H U W   

where kU  is orthogonal to kW , 1,2k = . Suppose that 1 2{ , ,..., }
kk k kmu u u  and 1 2{ , ,..., }

kk k knω ω ω  

are bases of spaces kU  and kW  , respectively. Then, we can express every function k kf ∈H  (

1,2k = ) into the following expression: 

    k k kf g h= +  

where k kg ∈U   and k kh ∈W  . Since 1 2{ , ,..., }
kk k kmu u u  is basis of space kU  and 1 2{ , ,..., }

kk k knω ω ω  

is basis of space  kW  , then for every k kf ∈H  ( 1, 2k = ) follows:  

      
1 1

k km n

k kj kj ki ki
j i

f d u c ω
= =

= +∑ ∑ k k k ku d cω′ ′= +
   

; 1, 2k = ; kjd ∈ ¡ ; kic ∈ ¡                       (10) 

where 1 2( , ,..., )
kk k k kmu u u u ′=


, 1 2( , ,..., )

kk k k kmd d d d ′=


, 1 2( , ,..., )
kk k k knω ω ω ω ′=


, and 

1 2( , ,..., )
kk k k knc c c c ′=


.  Furthermore, since 

kitL  is a function which is bounded and linear in  kH  , 

and k kf ∈H  , 1,2k =  then we have: 

                    ( )
ki kit k t k kL f L g h= + ( ) ( )k ki k kig t h t= + )( kik tf= .                                               (11) 

Based on (11), and by applying the Riesz representation theorem Wang (2011), and because of 

kit kL ∈H  is bounded linear functional, then according to [36] there is a representer ki kξ ∈H  of 

kitL which follows:  

                   , ( )
kit k ki k k kiL f f f tξ= 〈 〉 = , k kf ∈H                                                                      (12)                                                                      

where 〈⋅ , ⋅〉  denotes an inner product. Based on (6) and by applying the properties of the inner 

product, we get: 

                ( ) ,k ki ki k k k kf t u d cξ ω′ ′= 〈 + 〉
   

, ,ki k k ki k ku d cξ ξ ω′ ′= 〈 〉 + 〈 〉
   

.                                             (13)                                      

Next, by applying equation (13), for 1=k  we have: 
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           1 1 1 1 1 1 1 1( ) , ,i i if t u d cξ ξ ω′ ′= 〈 〉 + 〈 〉
   

, 11, 2,...,i n= ; 

and for 11, 2,3,...,i n=  we have: 

                    
11 1 1 11 1 12 1 1 1 1 1 1( ) ( ( ), ( ),..., ( ))nf t f t f t f t K d c′= = + Σ

 
,                                              (14)                                               

where: 

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1
1

1 11 1 12 1 1

, , ,

, , ,

, , ,

m

m

n n n m

u u u

u u u
K

u u u

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

〈 〉 〈 〉 〈 〉 
 
〈 〉 〈 〉 〈 〉 =  
 
〈 〉 〈 〉 〈 〉  





   



, 
11 11 12 1( , ,..., )md d d d ′=


,  

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1
1

1 11 1 12 1 1

, , ,

, , ,

, , ,

n

n

n n n n

ξ ω ξ ω ξ ω

ξ ω ξ ω ξ ω

ξ ω ξ ω ξ ω

〈 〉 〈 〉 〈 〉 
 
〈 〉 〈 〉 〈 〉 Σ =  
 
〈 〉 〈 〉 〈 〉  





   



, and 
11 11 12 1( , ,..., )nc c c c ′=


. 

Similarly, we obtain: 2 2 2 2 2 2( )f t d c= +K Σ
 

. Therefore, the regression function ( )f t


 can be 

expressed as: 

                       1 1 2 1 1 2 2 1 1 2 2( ) ( ( ), ( )) ( , ) ( , )f t f t f t d d c c′ ′ ′= = +K K Σ Σ
     

 

                              1 2 1 2 1 2 1 2diag( , )( , ) diag( , )( , )d d c c d c′ ′= + = +K K Σ Σ K Σ
     

.                        (15) 

                

In equation (15), K  is a (N M)× -matrix and d


 is a vector of parameters with dimension ( 1)×M  

(where 
2

1
N 2k

k
n n

=

= =∑ , 
2

1
2k

k
m m

=

= =∑M ) that are expressed as:  

         1 2( ,K )diag=K K ,  and  1 2( , )d d d′ ′ ′=
  

, respectively. 

Also,Σ  is a (N N)× -matrix, and c


 is a (N 1)× -vector of parameters which are expressed as: 

              1 2( , )diagΣ = Σ Σ , and  1 2( , )c c c′ ′ ′=
  

, respectively.  

Therefore, we can write a model in (9) as follows: 

              y d c ε= + +K Σ
  

. 
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We use the RKHS method to obtain the estimation of f


, by solving the following optimiszation:  

                  
2 21 1

2 22 2

1,2 1,2

( ) ( )( )
k k k kf f

k k

Min Min y fσ ε σ
∈ ∈
= =

      = −   
      

W W
    H H

,                                                        (16)                                                

With the constraint: 

                 ∫ <k

k

b

a kkk
m

k dttf γ2)( )]([  , 0≥kγ  ,   1, 2k = .                                                          (17)                                                                    

To solve the optimisation (16) with constraint (17) is equivalent to solve the optimisation PWLS:  

                
2

2
1 2 ( ) 2

[ , ] 11,2

N ( ) ( )( ) [ ( )]k

m
kk k k

b m
k k k kaf W a b kk

Min y f y f f t dtσ λ−

∈ ==

 ′− − + 
 

∑ ∫W
   

,                                      (18)                                 

where kλ , 1,2k =  are smoothing parameters that control trade-off between goodness of fit 

represented by 1 2N ( ) ( )( )y f y fσ− ′− −W
   

 and the roughness penalty measured by  

1 2

1 2

( ) 2 ( ) 2
1 1 1 1 2 2 2 2[ ( )] [ ( )]

b bm m

a a
f t dt f t dtλ λ+∫ ∫ . To get the solution to (18), we first decompose the 

roughness penalty as follows: 

          〉〈==∫ 11
2

11
2

1
)(

1 ,)]([1
1

PfPfPfdttf
b

a

m
1 1 1 1 1 1 1 1, ( )c c c cω ω ωω′ ′ ′ ′= =
       

1 1 1c c′= Σ
 

 

It implies:  

             1

1

( ) 2
1 1 1 1 1 1 1 1[ ( )]

b m

a
f t dt c cλ λ ′= Σ∫  

,  and  2

2

( ) 2
2 2 2 2 2 2 2 2[ ( )]

b m

a
f t dt c cλ λ ′= Σ∫  

                     (19)                                                                              

Based on (19), we have the penalty: 

              
2

( ) 2

1
[ ( )] }k

k

b m
k k k ka

k
f t dt c cλ λ

=

′= Σ∑ ∫  
                                                                            (20)                                                                              

where 
1 21 2( , )n ndiag λ λΛ = I I . We can express the goodness of fit in (18) as follows: 

         1 2 1 2N ( ) ( )( ) N ( ) ( )( )y f y f y d c y d cσ σ− −′ ′− − = − − − −W K Σ W K Σ
          

 . 

If we combine the goodness of fit and the roughness penalty, we will have optimisation PWLS: 
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                { } { }
2 2

2 2

2( ) ( )( ) N ( , )
n n

m m
c R c R
d R d R

Min y d c y d c c c Min Q c dσ
∈ ∈
∈ ∈

′ ′− − − − + Λ =K Σ W K Σ Σ
 
 

         
                  (21) 

To get the solution to (21), firstly we must take the partially differential of ( , )Q c d
 

 and then their 

results are to be equal to zeros as follows: 

               ( , ) 0Q c d c∂ ∂ =
   

 ⇔ -1 2ˆ ( )( )c y dσ= −M W K
  

.                                                        (22) 

              ( , ) 0Q c d d∂ ∂ =
   

 ⇔  -1 2 1 -1 2ˆ [ ( ) ] ( )d yσ σ−′ ′= K M W K K M W
   

.                                 (23)                                             

Next, if we substitute (23) into (22), we obtain: 

                 1 2 1 2 1 1 2ˆ ( )[ ( ( ) ) ( )]c yσ σ σ− − − −′ ′= −M W I K K M W K K M W
    

.                               (24)                                             

Finally, based on (15), (23) and (24), we get the estimated regression function based on the 

smoothing spline estimator which can be expressed as follows:  

                     1

2

1, 1

2, 2

ˆ ( )ˆ ˆ ˆ( )  ( )
ˆ ( )

f t
f t d c y

f t

λ

λ

λ

λ
 
 = = + =
 
 

K Σ H
    



                                                                  (25) 

where   

2 1 2 2 2 1 2

~
( ) [ ( ) ] ( ) ( ) [ ( ( ) ) ( )]λ σ σ σ σ σ− −′ ′ ′ ′= + × −-1 -1 -1 -1 -1H K KM W K KM W ΣM W I K KM W K KM W

    
, 

and ˆ ( )f tλ


 is smoothing spline with a natural cubic spline as a basis function with knots at 

1 2, ,...,
knt t t ( 1, 2)k = , for a fixed smoothing parameter 0λ >

 
. ( )λH


 is a positive-definite 

(symmetrical) smoother matrix that depends on smoothing parameterλ


 and the knot points 

1 2, ,...,
knt t t ( 1, 2)k = . Yet, it does not depend on y


. Further discussion about this estimator can 

be obtained on Watson (1964), Hardle (1991), Oehlert (1992), Eubank (1999), and Schimek (2000).  

         Related to application of multi-response non-parametric regression on the real data, in this 

research we use secondary data obtained from the District General Hospital of Trenggalek city, 

East Java Province, Indonesia. Data consists of systolic and diastolic blood pressures, and BMI of 

99 patients who took medical care in that hospital in 2018. Data is provided in Table 1. 
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Table 1. Systolic and Diastolic Blood Pressures, and Body Mass Index (BMI) of 99 Patients 

P 
a 
t 
i 
e 
n 
t 

Systolic 
(mmHg

) 
 

( 1y ) 

Diastoli
c 

(mmHg
) 
 

( 2y ) 
 

BMI 
(kg/m2

) 
 

( t ) 

P 
a 
t 
i 
e 
n 
t 
 

Systolic 
(mmHg

) 
 

( 1y ) 

Diastoli
c 

(mmHg
) 
 

( 2y ) 
 

BMI 
(kg/m2

) 
 

( t ) 

P 
a 
t 
i 
e 
n 
t 

Systolic 
(mmHg

) 
 

( 1y ) 

Diastoli
c 

(mmHg
) 
 

( 2y ) 
 

BMI 
(kg/m2

) 
 

( t ) 

1 110 70 18.4 3
4 

126 96 23.2 6
7 

130 90 25.7 

2 120 78 18.8 3
5 

120 80 23.2 6
8 

115 80 25.8 

3 130 90 18.9 3
6 

110 75 23.3 6
9 

150 104 26.1 

4 115 75 19.0 3
7 

160 110 23.4 7
0 

122 94 26.1 

5 120 80 19.3 3
8 

120 88 23.4 7
1 

125 88 26.2 

6 110 70 19.4 3
9 

114 76 23.5 7
2 

140 95 26.3 

7 148 90 19.5 4
0 

120 70 23.6 7
3 

190 112 26.3 

8 140 90 19.7 4
1 

120 74 23.6 7
4 

130 80 26.3 

9 120 80 20.0 4
2 

130 90 23.6 7
5 

130 88 26.4 

1
0 

135 90 20.2 4
3 

120 90 23.7 7
6 

138 94 26.5 

1
1 

108 70 20.4 4
4 

132 90 23.8 7
7 

120 90 26.6 

1
2 

122 78 20.7 4
5 

138 82 23.8 7
8 

115 80 26.7 

1
3 

115 70 20.7 4
6 

140 90 23.9 7
9 

130 90 26.8 

1
4 

114 80 20.9 4
7 

130 80 23.9 8
0 

114 80 27.1 

1
5 

140 90 21.0 4
8 

110 75 24.1 8
1 

120 86 27.1 

1
6 

110 75 21.1 4
9 

115 65 24.2 8
2 

124 80 27.3 

1
7 

118 88 21.1 5
0 

122 82 24.2 8
3 

130 90 27.3 

1
8 

110 70 21.3 5
1 

110 80 24.3 8
4 

130 80 27.4 

1
9 

120 80 21.3 5
2 

120 80 24.3 8
5 

155 104 27.4 

2
0 

130 90 21.4 5
3 

130 80 24.4 8
6 

125 90 27.5 

2
1 

110 60 22.0 5
4 

125 90 24.5 8
7 

120 85 27.5 

2
2 

125 80 22.0 5
5 

130 94 24.5 8
8 

112 90 27.6 

2
3 

120 80 22.2 5
6 

130 88 24.6 8
9 

136 82 27.6 

2
4 

138 90 22.2 5
7 

112 80 24.7 9
0 

190 110 27.7 

2
5 

110 80 22.3 5
8 

150 100 24.7 9
1 

120 80 27.7 

2
6 

120 82 22.5 5
9 

156 90 24.8 9
2 

125 90 27.9 
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2
7 

100 70 22.6 6
0 

112 78 24.9 9
3 

160 100 27.9 

2
8 

140 90 22.6 6
1 

130 75 25.0 9
4 

141 100 28.5 

2
9 

120 70 22.6 6
2 

120 85 25.1 9
5 

130 90 28.6 

3
0 

154 80 22.8 6
3 

120 82 25.2 9
6 

168 105 29.2 

3
1 

108 68 23.0 6
4 

128 92 25.3 9
7 

160 90 29.6 

3
2 

134 90 23.0 6
5 

120 80 25.4 9
8 

170 100 30.3 

3
3 

110 70 23.1 6
6 

160 90 25.5 9
9 

190 100 30.5 

Source: District General Hospital of Trenggalek city, East Java Province, Indonesia, Year 2018. 

 

 

Figure 1.  Plots of systolic blood pressure versus BMI (a) and plots of diastolic blood pressure 

versus BMI (b) 

 

         Next, we use the estimated regression function in (25) to estimate systolic and diastolic blood 

pressures affected by BMI. Firstly, we make scatter plots for systolic and diastolic blood pressure 

versus BMI as given in Fig. 1. The figure is used to look whether the non-parametric regression 

approach is appropriate to analyse the data. Plots given in Fig. 1 show that plots of systolic blood 

pressure versus BMI, and plot of diastolic blood pressure versus BMI do not follow paterns of 

certain regression functions as well as owned by parametric regression. Therefore, to estimate the 
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regression functions which draw association paterns between blood pressures (systolic and 

diastolic) and BMI for this data, we use non-parametric regression model approach. Also, we did 

hypothesis testing to test correlations between responses by using the following hypothesis: 

H0  :  There is no correlation between systolic and diastolic blood pressures 

H1  :  There is correlation between systolic and diastolic blood pressures. 

Based on this testing, we get a p-value < 0.05. It means that there is correlation between systolic 

and diastolic blood pressures, i.e., correlation value  equals to 0.786. Therefore,  to estimate the 

regression functions which draw association paterns between blood pressures (systolic and 

diastolic) and BMI for this data set, we use multi-response non-parametric regression model 

approaches. 

 

Table 2. Estimated Results of Systolic and Diastolic Blood Pressure, Optimal Smoothing 

Parameters, Minimum GCV Value, dan MSE Value 

i 
1ˆ iy  2ˆ iy  i 

1ˆ iy  2ˆ iy  i 
1ˆ iy  2ˆ iy  

1 118.4454 76.96665 34 125.2724 82.44138 67 129.2187 87.14209 
2 118.9152 77.36970 35 125.2724 82.44138 68 129.4103 87.35517 
3 119.0338 77.47020 36 125.4170 82.60042 69 130.0692 87.99828 
4 119.1531 77.57053 37 125.5656 82.76186 70 130.0692 87.99828 
5 119.5096 77.87094 38 125.5656 82.76186 71 130.3240 88.21327 
6 119.6258 77.97103 39 125.7184 82.92567 72 130.5978 88.42841 
7 119.7392 78.07117 40 125.8739 83.09193 73 130.5978 88.42841 
8 119.9566 78.27174 41 125.8739 83.09193 74 130.5978 88.42841 
9 120.2686 78.57368 42 125.8739 83.09193 75 130.8909 88.64366 
10 120.4779 78.77624 43 126.0306 83.26075 76 131.2065 88.85896 
11 120.6955 78.98047 44 126.1877 83.43215 77 131.5482 89.07420 
12 121.0481 79.29169 45 126.1877 83.43215 78 131.9195 89.28934 
13 121.0481 79.29169 46 126.3435 83.60619 79 132.3230 89.50434 
14 121.3090 79.50330 47 126.3435 83.60619 80 133.7430 90.14840 
15 121.4512 79.61041 48 126.6494 83.96239 81 133.7430 90.14840 
16 121.6027 79.71840 49 126.8005 84.14457 82 134.8767 90.57689 
17 121.6027 79.71840 50 126.8005 84.14457 83 134.8767 90.57689 
18 121.9354 79.93743 51 126.9512 84.32943 84 135.5007 90.79085 
19 121.9354 79.93743 52 126.9512 84.32943 85 135.5007 90.79085 
20 122.1147 80.04877 53 127.1027 84.51685 86 136.1628 91.00456 
21 123.2762 80.75327 54 127.2559 84.70666 87 136.1628 91.00456 
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22 123.2762 80.75327 55 127.2559 84.70666 88 136.8636 91.21796 
23 123.6553 81.00646 56 127.4116 84.89868 89 136.8636 91.21796 
24 123.6553 81.00646 57 127.5694 85.09286 90 137.6023 91.43099 
25 123.8399 81.13699 58 127.5694 85.09286 91 137.6023 91.43099 
26 124.1991 81.40620 59 127.7280 85.28917 92 139.1887 91.85573 
27 124.3715 81.54509 60 127.8862 85.48762 93 139.1887 91.85573 
28 124.3715 81.54509 61 128.0442 85.68819 94 144.8514 93.11266 
29 124.3715 81.54509 62 128.2023 85.89083 95 145.9310 93.31879 
30 124.6951 81.83195 63 128.3621 86.09537 96 153.1253 94.53487 
31 124.9894 82.13099 64 128.5250 86.30169 97 158.4223 95.33041 
32 124.9894 82.13099 65 128.6916 86.50963 98 168.1741 96.70919 
33 125.1308 82.28484 66 128.8621 86.71911 99 171.0127 97.10159 
Optimal Smoothing  Parameters :   
                                          ( ) 1( ) 2( )( , ) (0.000682558,0.02318668)opt opt optλ λ λ ′ ′= =


 

Minimum GCV (generalised cross-validation)    :        168.3557 
MSE (mean squared error)                                   :        155.1437   

 

          Further, we determine estimation values based on smoothing spline estimator for systolic 

blood pressure ( 1ŷ ) and for  diastolic blood pressure ( 2ŷ ) based on minimum GCV value.  The 

results of estimations are given in Table 2. Table 2 provides estimation values of systolic blood 

pressure ( 1ˆ iy ),  estimation values of diastolic blood pressure ( 2ˆ iy ), optimal smoothing parameter 

values, i.e., 1( ) 0.000682558optλ =  and  2( ) 0.02318668optλ = , minimum GCV (generaliszed cross-

validation) value of 168.3557, and  MSE (mean square error) values of 155.1437. Then, plots of 

estimated systolic blood pressure versus BMI and estimated diastolic blood pressure versus BMI 

are given in Fig. 2.  
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Figure 2.  Plot of estimated systolic blood pressure versus BMI (a) and plot of estimated 

diastolic blood pressure versus BMI (b) 

 

3.2. Estimating Blood Pressures Using Truncated Spline Estimator  

Based on data in Table 1 and by creating open source software R code, we determine 

optimal knots for systolic and diastolic, optimal smoothing parameter ( optλ ), and minimum GCV 

value for order one, order two, and order three splines. The results are given in Table 3. Table 3 

shows that the most minimum GCV value (i.e. 0.8548374) is reached by order one spline with 

optimal knots of 19 and 28.5 for systolic blood pressure and 19 for diastolic blood pressure, and 

optimal smoothing parameter ( optλ ) of 0.005. It means that the blood pressures can be estimated 

by order one spline with knots 19 and 28.5 for systolic blood pressure and order one spline with 

knots 19 for diastolic blood pressure. By applying (5) and (6) we obtain truncated splines for 

estimating systolic blood pressure ( 1ŷ ) and diastolic blood pressure ( 2ŷ ) as follows: 
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1

6.179029 for 19
ˆ 79.266138 2.007127 for 19 28.5

419.043537 19.055582 for 28.5

t t
y t t

t t

<
= + ≤ <
− + ≥

 

             2

4.003418 for 19
ˆ

43.813905 1.697423 for 19 28.5
t t

y
t t

<
=  + ≤ <

                  

where t  represents BMI value. Also, we obtain MSE (mean square error) of 155.6501, and plots 

of estimated systolic blood pressure ( 1ŷ ) and estimated diastolic blood pressure ( 2ŷ ) as given in 

Fig. 3. Finally, because of MSE (smoothing spline) = 155.1437 < 155.6501 = MSE (truncated 

spline) then for analyszing this data the use of multiresponsemulti-response nonparametricnon-

parametric regression based on smoothing spline estimator is better than that based on truncated 

spline estimator. 

 

Table 3. Order Splines, Optimal Knots, Optimal Smoothing Parameters, and Minimum GCV 

Values 

Spline 
Order 

Optimal Knots Optimal Smoothing 
Parameter 

Minimum 
GCV Systolic Diastolic 

1 19 ;  28.5 19 0.005 0.8548374 
2 28.5 19 0.013 0.8882841 
3 19 ;  28.5 28.5 54 0.9034587 
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Figure 3.  Plots of estimated systolic (a) and diastolic (b) blood pressures versus BMI 

 

4. Conclusion 

Based on (25), we conclude that the estimated blood pressure model we obtained is a linear 

function in observation. It depends on the optimal smoothing parameter, for smoothing spline 

approach, and depends on optimal knot, optimal order of spline and optimal smoothing parameter, 

for truncated spline approach. In addition, since MSE values for smoothing spline approaches is 

less than that for the truncated spline approach, then smoothing spline estimators is better for 

estimating blood pressure models than truncated spline estimators.  
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	where  is orthogonal to , . Suppose that  and  are bases of spaces  and  , respectively. Then, we can express every function  () into the following expression:
	where   and  . Since  is basis of space  and  is basis of space   , then for every  () follows:
	; ; ;                       (10)
	where , , , and .  Furthermore, since  is a function which is bounded and linear in   , and  ,  then we have:
	.                                               (11)
	Based on (11), and by applying the Riesz representation theorem Wang (2011), and because of  is bounded linear functional, then according to [36] there is a representer  of which follows:
	,                                                                      (12)
	where , denotes an inner product. Based on (6) and by applying the properties of the inner product, we get:
	.                                             (13)
	Next, by applying equation (13), for  we have:
	, ;
	and for  we have:
	,                                              (14)
	where:
	, ,
	, and .
	Similarly, we obtain: . Therefore, the regression function  can be expressed as:
	.                        (15)
	In equation (15),  is a -matrix and  is a vector of parameters with dimension (where , ) that are expressed as:
	,  and  , respectively.
	Also, is a -matrix, and  is a -vector of parameters which are expressed as:
	, and  , respectively.
	Therefore, we can write a model in (9) as follows:
	.
	We use the RKHS method to obtain the estimation of , by solving the following optimiszation:
	,                                                        (16)
	With the constraint:
	,  ,   .                                                          (17)
	To solve the optimisation (16) with constraint (17) is equivalent to solve the optimisation PWLS:
	,                                      (18)
	where ,  are smoothing parameters that control trade-off between goodness of fit represented by  and the roughness penalty measured by  . To get the solution to (18), we first decompose the roughness penalty as follows:
	It implies:
	,  and                       (19)
	Based on (19), we have the penalty:
	(20)
	where . We can express the goodness of fit in (18) as follows:
	.
	If we combine the goodness of fit and the roughness penalty, we will have optimisation PWLS:
	(21)
	To get the solution to (21), firstly we must take the partially differential of  and then their results are to be equal to zeros as follows:
	.                                                        (22)
	.                                 (23)
	Next, if we substitute (23) into (22), we obtain:
	.                               (24)
	Finally, based on (15), (23) and (24), we get the estimated regression function based on the smoothing spline estimator which can be expressed as follows:
	(25)
	where
	,

