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Abstract

The functions, namely regression functions, which describe the relationship of more than one
response variable observed at several values of the predictor variables in which there are
correlations between responses can be estimated by using both smoothing spline and truncated
spline estimators in multi-response non-parametric regression model that is as development of a
uni-response non-parametric regression model. In this paper, we discuss estimating regression
function of the multi-response non-parametric regression model by using both smoothing spline
and truncated spline estimators with application to the association between blood pressures
affected by body mass index. Results show that by comparing their mean squared error values,
smoothing spline estimators give a better estimate of results than truncated spline estimators. It
means that for a prediction need, smoothing spline estimators are better than truncated spline
estimators.

Keywords: Blood Pressure, Body Mass Index, Multi-response Non-parametric Regression,

Smoothing Spline, Truncated Spline.
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1. Introduction

According to IOTF-WHO (2000), the risk of negative health consequences is correlated
with increasing body mass index (BMI), and a BMI more than or equal to 23 kg/m* was categorised
as overweight or obese. Since levels of overweight can be measured by BMI (body mass index),
then an increase in BMI can also cause an increase in blood pressure (systolic and diastolic). An
increase of BMI in someone who was less than 60 years old can cause an increase of systolic and
diastolic blood pressure as shown by Brown et al. (2000). Next, Droyvold et al. (2005) and Lestari
et al. (2019c) pointed out that increasing and decreasing systolic and diastolic blood pressure were
significantly caused by increasing and decreasing of BMI for all sex and all ages. Further, Tesfaye
et al. (2007) stated that BMI significantly influenced systolic and diastolic blood pressures of
Ethiopian, Vietnamese, and Indonesian people. Also, Kumar et al. (2008) pointed out that BMI
affects systolic and diastolic blood pressures of females and males. In addition, Nanaware et al.
(2011) have shown that there was a positive correlation between BMI and both systolic and
diastolic blood pressure of children aged between 8-16 years old. Then, Roka et al. (2015) pointed
out that a high BMI, being overweight or obese can cause an increase of blood pressure (systolic
and diastolic).

Statistical analysis often involves building mathematical models which examines the
relationship between response and predictor variables. Spline is a general class of powerful and
flexible modeling techniques. Research on spline models has attracted a great deal of attention in
recent years, and the methodology has been widely used in many areas. Spline estimator with its
powerful and flexible properties is one of the most popular estimators used for estimating
regression function of the non-parametric regression model. There are many researchers who have
considered spline estimator for estimating regression function of the non-parametric regression
model. Researchers in Kimeldorf & Wahba (1971), Craven & Wahba (1979), and Wahba (1990)

used original spline estimators to estimate regression function of smooth data. M-type splines to
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overcome outliers in non-parametric regression were proposed by on (1983), and Cox &
O’Sullivan (1996). Confidence intervals for original spline models by using the Bayesian approach
has been constructed by Wahba (1983). Also, Wahba (1985) compared between generalised cross
validation (GCV) and generalised maximum likelihood (GML) for choosing the smoothing
parameter in the generalised spline smoothing problem. Relaxed spline and quantile spline have
been introduced by Oehlert (1992) & Koenker et al. (1994). Next, Wang (1998) discussed
smoothing spline models with correlated random errors. Some techniques for spline statistical
model building by using reproducing kernel Hilbert spaces (RKKHS) have been introduced by
Wahba (2000). A method that combines smoothing spline estimates of different smoothness to
form a final improved estimate was proposed by Lee (2004). Further, Cardot et al. (2007) gave the
asymptotic property of smoothing splines estimators in functional linear regression with errors-in-
variables. Smoothing spline estimation of variance functions has been studied by Liu e a/. (2007).
Also, Aydin (2007) showed goodness of spline estimator rather than kernel estimator in estimating
non-parametric regression model for gross national product data. Next, Aydin et al. (2013) have
studied the determination of an optimal smoothing parameter for non-parametric regression using
smoothing spline. All these researchers studied spline estimators in the case of single response
non-parametric regression models only.

In the real cases, we are frequently faced the problem in which two or more dependent
variables are observed at several values of the independent variables, and there are correlations
between the responses. Multi-response non-parametric regression models provide powerful tools
to model the functions which represent the association of these variables. There are many
researchers who have considered non-parametric models for multi-response data. Spline
smoothing for estimating non-parametric functions from bivariate data with the same correlation
of errors has been studied by Wang et al. (2000). Next, Fernandez and Opsomer (2005) proposed

methods of estimating the non-parametric regression model with spatially correlated errors. Also,
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Lestari et al. (2009) and Lestari et al. (2010) have studied spline estimators in multi-response non-
parametric regression models with equal correlation of errors and unequal correlation of errors,
respectively. Then, Chamidah et al. (2012) used multi-response non-parametric regression model
approach to design a child’s growth chart. A mathematical statistics method for estimating the
regression curve of the multi-response non-parametric regression model in case of
heteroscedasticity of variance was proposed by Lestari et al. (2012). In addition, Chamidah &
Lestari (2016) discussed estimating the regression curve of the homoscedastic multi-response non-
parametric regression in which the number of observations were unbalanced. Smoothing spline
estimators for estimating the multi-response non-parametric regression model by using RKKHS has
been proposed by Lestari et al. (2017b) and Lestari et al. (2018). Further, Lestari et al. (2017a),
Lestari et al. (2018b) and Lestari et al. (2019a) discussed construction of covariance matrix in case
of homoscedasticity of variances of errors, and estimating of both covariance matrix and optimal
smoothing parameter. But, these researchers have not discussed estimating of the smoothing
parameter in the multi-response non-parametric regression model when the variances of errors are
not the same for cross-section data. In addition, Lestari et al. (2019b) have discussed estimating of
smoothing parameter in multi-response non-parametric regression model when the variances of
errors are not the same for cross-section data but these researchers have not discussed application
of the multi-response non-parametric regression model on the real case data. Therefore, in this
paper, we discuss methods to estimate regression function of the multi-response non-parametric
regression model that apply to real case data, i.e. data of blood pressures and BMI. Thus, the goals
of this research are estimating a model of blood pressures affected by BMI by using both
smoothing spline and truncated spline estimators, and comparing between smoothing spline and
truncated spline estimators in estimating the blood pressures based on their mean squared errors

values.
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2. Methods for Estimating Blood Pressures Models

Firstly, for estimating blood pressures models by using smoothing spline, we consider a
multi-response non-parametric regression model given by Lestari et al. (2019b) as follows:

V=L e k=12,...p;i=12,.,n, where Var(e,) =0'fj (1)
Next, by putting k=1,2 and i=1,2,...,n, we apply model (1) to the data of blood pressures
affected by BMI such that we have a blood pressures model as follows:

ve=Sit) e k=L2;i=12,..,n 2
where Var(aﬁ)zoi., v, and y,, are response variables that represent the first response (ie.,
systolic blood pressure), and the second response (i.e., diastolic blood pressure), respectively,

L), k=1,2 are unknown regression functions which represent the function of predictor

- - - - “1, 2
variables (i.e., BMI). Also, we construct a covariance matrix of errors, namely Cov(g) =W (g”)

. Next, by using reproducing kernel Hilbert space (RKHS), we take solutions to penaliszed

weighted least square (PWLS) optimiszation:

{(Jf )Wy XAl A7 6] d’*} o

Min
=W [ay by ] =W [y | el *

for determining the estimation of regression function in model (2) that depends on selecting the

optimal smoothing parameter (’?’vpr)' It can be obtained by taking solution of generaliszed cross

validation G(4,,57) optimiszation:

APPSO B 1

opt 2 = ]" 2 (4)
& [n"]mxce (I-H(4, ))]

Secondly, for estimating blood pressures models by using truncated spline, we test

correlation systolic and diastolic blood pressure. Next, we determine optimal smoothing

parameters (A

pr)» Optimal knot, and optimal order of truncated spline. Then, we determine
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estimated blood pressures model by applying truncated spline as well as given by Wahba (1990) as

follows:

r=l1 n

S()=Yar+ 3B (1-k) 5)

i=0 i=1
where (r—1) is the order of spline, k,k,,....k (a <k <k, <..<k, <b)are knots of spline,

t€la,b], a; and f3; are real valued constants, and

v [.‘—k.]l_l, Jor =‘2k,-
(!‘ Ai]_ _{ Ui Jor t<k, ©

3. Results and Discussion

3.1. Estimating Blood Pressures Using Smoothing Spline Estimator
We consider model (2) and suppose that y=(1,,¥,)", f=(/.1,) s £=(g,&) , and
t=(t.5) where y, = (Vs Vg Vi) s Si =l Sy (Ga)seoes (65 64 = (801581250 80)'

b= (s linsenty,), k=1,25i=1,2,...,n. Therefore, we can write equation (2) in matrix notation

as follows:

y=f+¢ 0
where E(£)=0, and Cov(¢) = W' (a?) = diag(W,(a]),W,(a3)). Estimating functions f in
(7) by using smoothing spline estimators appears as a solution to the penaliszed weighted least-

square (PWLS) minimiszation problem, ie., determine }} that can make the following PWLS

;-fﬂfiﬁr{(zn* )0 = LYW= )+ (0= L)Y Wa (@), = f)+

AL des [ (2 @) ®
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for pre-specified value 4 =(4,,4,)". Note that, in equation (8), the first term represents the sum
squares of errors and it penaliszes the lack of fit. While, the second term which is weighted by 4
represents the roughness penalty and it imposes a penalty on roughness. It means that the

curvature of f is penaliszed by it. In equation (11), 4, (k=L12) is called as the smoothing

parameter. The solution will be variedy from interpolation to a linear model, if A, varies from 0
to +o0. So that, if 4, — +00, the roughness penalty will dominate in (8), and the smoothing spline
estimate will be forced to be a constant. If A4, — 0, the roughness penalty will disappear in (8),

and the spline estimate will interpolate the data. Thus, the trade-off between the goodness of fit

given by [an]_l[:l:‘l—ﬁ]'Wl[ql]({fl—£]+(£1— 1]'W}[ql]()’1—f1] and smoothness of the estimate

o=, ~ ~ '~

given by A“Jb (fliz‘(:))zdg +j,_)r" (£2 (1)) dt is controlled by the smoothing parameter A, (k=1,2).

The solution for minimiszation of the problem in (8) is a smoothing spline estimator where its
function basis is a “natural cubic spline” with t],fg,...,t”k (k=1,2) as its knots. Based on this

concept, a particular structured spline interpolation that depends on selection of the smoothing

parameter A4, (k=1,2) value becomes an appropriate approach of the funcdons f; (k=1,2) in
model (2). Let [:(5,[3)’ where [k =, 1, £,(8,)) s k=1,2, be the vector of
values of function f; (k=1,2) at the knot points 7}, 1,,....7, (k=1,2).1f we express the model

of paired data set into a general smoothing spline regression model, we will get the following

expression:

Ye=L fi+é i=L2.n5 k=12 )
where f, € 6 (3, represents Hilbert space) is an unknown smooth function, and L, € Jt, is

a bounded linear functional.
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Next, suppose that .%k can be decomposed into two subspaces Ug and Wi as follows:
¥ = U, U

where U is orthogonal to W, k=1,2. Suppose that {u,,,u } and {@,,® @,

(R R R 1> Dpasoees Oy }
are bases of spaces U and W] , respectively. Then, we can express every function f, € # (
k =1,2) into the following expression:

Je=8git+h
where g, €U, and h, € W) . Since {u,,,u;,,...,u, | is basis of space W and {@,,®,,,...,®,, }

is basis of space U] , then for every f, e #, (k =1,2) follows:

my, .

J :Zd!qr""‘:!g,r'—l—zchmkr‘ =udi + o k=125 d; €j ;¢ € (10)

=1 =
where U, :(um,u“,...,umk ), d, :(d“,d“,...,dmk)’, o, :(m‘_],m“,...,mmk ), and
¢, = (€11, Cha9mmms Cha, ). Furthermore, since L,M is a function which is bounded and linear in %, ,
and f, € #, , k =1,2 then we have:

L fi=L, (& +h) =g ) +h () = fi(t,). (11)
Based on (11), and by applying the Riesz representation theorem Wang (2011), and because of
LIA_J € #, is bounded linear functional, then according to [36] there is a representer &, € J€, of
L, which follows:

L fi=(Eu )= 1), fie%, (12)
where (-,-) denotes an inner product. Based on (6) and by applying the properties of the inner

product, we get:
Selty)= (éhvl.‘f:.-dk +@;5\-> ={u> 1.‘:.-4;.-)"' (S (E’;'EJ.) : (13)

Next, by applying equation (13), for k=1 we have:
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j;('f]r) = <§]r""'.‘:],4]) +<§]H@;EJ) NES 1, 2.,...,)?1;

and for i =1,2,3,..n, we have:

{(;(11 )= (L6, £(), - f;(Iln, ) =Kd +Zg¢, (14)

where:
_<§m“u <.u'-”12) <§|1=~“1m._>

K = (élg-‘““) (Cuas ) ("z'lu“’"-) . d,=d,,d,,..d, ),
_(ém_ 7”11) <§m._ 7”12) o <§ln._ '-'Hlm._)
_(gu'!wll) (éll’wD) (gn'smlu,)

5, - (élE"lwll> (Si2 a.wu} <§IE".wlu, ,and ¢, =(¢,1,Cpz5mems Ciy, )
_(ém, ,ﬂ'}“) (éLJ;I’QIE) (glul amm,

Similarly, we obtain: f,(t,) =K.d, +X,c,. Therefore, the regression function f(f) can be
expressed as:
FO=(E) ) =K d, K.d,) +(Ec, Eac,)

=diag(K,,K,)(d,, d, ),+diag(21 »5,)(¢, 6 ), =Kd +Xc. (15)

In equation (15), K isa (NxM)-matrix and ¢ is a vector of parameters with dimension (Mx 1)

2 2
(where N = an =2n, M= ka =2m ) that are expressed as:
k=l

=
K =diag(K,,K,), and d =(d|,d;) , respectively.
Also, X is a (NxN)-matrix, and ¢ is a (Nx1)-vector of parameters which are expressed as:
S =diag(%.%,),and ¢=(c],¢})’, respectively.
Therefore, we can write a model in (9) as follows:
y= Kd+Xc+¢.
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We use the RKHS method to obtain the estimation of f| by solving the following optimiszation:
}: Mm{ } (10)
Oy

by 1t 2 -
[ @Vdy <y, L 7,20, k=12, (17)

Wi(a* )y~ /)

Min
fred
k=12

With the constraint:

To solve the optimisation (16) with constraint (17) is equivalent to solve the optimisation PWLS:

Min { N (= YWE =N+ 4 J‘” LA™ (¢, )P dt, } ; (18)
k=l *

=Wy a, b
Ly o]

where A4, k=1,2 are smoothing parameters that control trade-off between goodness of fit

represented by N7'(y— f)W(g?)(y-f) and the roughness penalty measured by

b b
31'[: FAN( )]zdﬁ +/12L [fz{m)(tz)]zdiz. To get the solution to (18), we first decompose the
roughness penalty as follows:

A m 2 2 ! ’ ' ’ "
[ @)y =|PAF = P12y =(wie. i) = dl@a@)e = ¢
It implies:
B ) 2 I br () 2 '
A‘]_L LA @) dy = A¢iEg, , and Z'zL (A7 ()] dt, = A4,¢5E,¢, (19)
Based on (19), we have the penalty:

>4 LA P de = ¢ A 20)
1. -1 H*

where A =diag(Al

4oL, ). We can express the goodness of fit in (18) as follows:

N (y=f)YW(@)(y—f) =N"(y—Kd—Zc)W(c")(y —Kd —Ec) .

If we combine the goodness of fitand the roughness penalty, we will have optimisation PWLS:
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Min{(y-Kd - ) W(g*)(y—Kd - E¢) + INAZc| = Min{Q(c,d)} (21)
EER'" s - gERz" -
deR*™ e

To get the solution to (21), firstly we must take the partially differential of Q(¢,d) and then their
results are to be equal to zeros as follows:
00(¢,d)]oc=0 < ¢=M"W(g")(y—-Kd). (22)
00(c.d)[0d =0 & d=[KM'W(g)K]'K'M'W(g?)y. (23)
Next, if we substitute (23) into (22), we obtain:
¢=M"W(g")[1-KEKM 'W(@)K) KM 'W(g")]y. 24)

Finally, based on (15), (23) and (24), we get the estimated regression function based on the

smoothing spline estimator which can be expressed as follows:

, W) .
| fzz({z) -

where

H(1)=K[K'M'W(g K] '"K'M'W(g*)+EZM " W(g”) x[I -K(KM'W(g")K) 'KM'W(z)],
and ‘f)_ (£) is smoothing spline with a natural cubic spline as a basis function with knots at
L,t,.t, (k=12), for a fixed smoothing parameter 4>0. H(4) is a positive-definite
(symmetrical) smoother matrix that depends on smoothing parameter 4 and the knot points

bLyly,y.nt, (K=1,2). Yet, it does not depend on y. Further discussion about this estimator can
2 . o

be obtained on Watson (1964), Hardle (1991), Ochlert (1992), Eubank (1999), and Schimek (2000).
Related to application of multi-response non-parametric regression on the real data, in this

research we use secondary data obtained from the District General Hospital of Trenggalek city,

East Java Province, Indonesia. Data consists of systolic and diastolic blood pressures, and BMI of

99 patients who took medical care in that hospital in 2018. Data is provided in Table 1.
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Table 1. Systolic and Diastolic Blood Pressures, and Body Mass Index (BMI) of 99 Patients
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2 100 70 22.6 6 112 T8 249 9 160 100 279
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2 140 90 226 6 130 75 25.0 9 141 100 285
8 1 4
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9 2 5
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0 3 [
3 108 68 230 O 128 92 253 9 160 90 29.6
1 4 7
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2 3 s}
3 110 70 23.1 O 160 90 255 9 190 100 30.5
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Source: District General Hospital of Trenggalek city, East Java Province, Indonesia, Year 2018.
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Figure 1. Plots of systolic blood pressure versus BMI (a) and plots of diastolic blood pressure

versus BMI (b)

Next, we use the estimated regression function in (25) to estimate systolic and diastolic blood
pressures affected by BML Firstly, we make scatter plots for systolic and diastolic blood pressure
versus BMI as given in Fig. 1. The figure is used to look whether the non-parametric regression
approach is appropriate to analyse the data. Plots given in Fig. 1 show that plots of systolic blood
pressure versus BMI, and plot of diastolic blood pressure versus BMI do not follow paterns of

certain regression functions as well as owned by parametric regression. Therefore, to estimate the
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regression functions which draw association paterns between blood pressures (systolic and
diastolic) and BMI for this data, we use non-parametric regression model approach. Also, we did
hypothesis testing to test correlations between responses by using the following hypothesis:

H, : There is no correlation between systolic and diastolic blood pressures

Hi : There is correlation between systolic and diastolic blood pressures.
Based on this testing, we get a p-value < 0.05. It means that there is correlation between systolic
and diastolic blood pressures, i.e., correlation value equals to (.786. Therefore, to estimate the
regression functions which draw association paterns between blood pressures (systolic and

diastolic) and BMI for this data set, we use multi-response non-parametric regression model

approaches.

Table 2. Estimated Results of Systolic and Diastolic Blood Pressure, Optimal Smoothing

Parameters, Minimum GCV Value, dan MSE Value

! j}]r j)2r t j”]r j’z; ! j”]r },}21

1 118.4454 76.96665 34 1252724 8244138 67 129.2187 87.14209
2 1189152 77.36970 35 1252724 8244138 68 129.4103 87.35517
3 119.0338 77.47020 36 1254170 82.60042 69 130.0692 87.99828
4 119.1531 77.57053 37 1255656 8276186 70 130.0692 87.99828
5 1195096 77.87094 38 1255656 8276186 71 130.3240 88.21327

6 119.6258 77.97103 39 125.7184 8292567 72 130.5978 88.42841
7 119.7392 78.07117 40 125.8739 83.09193 73 130.5978 88.42841
8 1199566 78.27174 41 1258739 83.09193 74 130.5978 88.42841
9 120.20686 78.57368 42 1258739 83.09193 75 130.8909 88.64300
10 1204779 78.77624 43 126.0306 8326075 76 131.2065 88.85890
11 120.6955 7898047 44 126.1877 8343215 77 131.5482 89.07420
12 121.0481 79.29169 45 126.1877 8343215 78 131.9195 89.28934
13 121.0481 79.29169 46 1263435 83.60019 79 132.3230 89.50434
14 1213090 79.50330 47 1263435 83.60619 80 133.7430 90.14840
15 1214512 79.61041 48 126.0494 8396239 81 133.7430 90.14840
16 121.6027 79.71840 49 126.8005 84.14457 82 134.8767 90.57689
17 121.6027 79.71840 50 126.8005 84.14457 83 134.8767 90.57689
18 121.9354 79.93743 51 1269512 84.32943 84 135.5007 90.79085
19 121.9354 79.93743 52 1269512 8432943 85 135.5007 90.79085
20 122.1147 80.04877 53 127.1027 8451685 86 136.1628 91.00456
21 123.2762 80.75327 54 1272559 84.70666 87 136.1628 91.00456
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22 123.2762 80.75327 55 127.2559 8470666 88 136.8636 91.21796
23 123.6553 81.00646 56 1274116 84.89868 89 136.8636 91.21796
24 123.6553 81.00646 57 127.5694 85.09286 90 137.6023 91.43099
25 123.8399 81.13699 58 1275694 85.09286 91 137.6023 91.43099
26 124.1991 81.40620 59 127.7280 85.28917 92 139.1887 91.85573
27 1243715 81.54509 60 127.8862 85.48762 93 139.1887 91.85573
28 1243715 81.54509 61 128.0442 85.68819 94 144.8514 93.11266
29 1243715 81.54509 62 1282023 85.89083 95 145.9310 93.31879
30 124.6951 81.83195 63 1283621 86.09537 96  153.1253 94.53487
31 1249894 8213099 64 1285250 86.30169 97  158.4223 95.33041
32 1249894 82.13099 65 128.6916 86.50963 98 168.1741 96.70919
33 125.1308 82.28484 66 1288621 86.71911 99 171.0127 97.10159
Optimal Smoothing Parameters :

Loy = (Priopir> Aaopry)” = (0.000682558,0.023 18668
Minimum GCV (generalised cross-validation) : 168.3557
MSE (mean squared error) : 155.1437

Further, we determine estimation values based on smoothing spline estimator for systolic
blood pressure (¥,) and for diastolic blood pressure ( 7,) based on minimum GCV value. The
results of estimations are given in Table 2. Table 2 provides estimation values of systolic blood

pressure (J),), estimation values of diastolic blood pressure (3,,), optimal smoothing parameter
values, ie., 4, =0.000682558 and /T.g{opr} =0.02318668, minimum GCV (generaliszed cross-

validation) value of 168.3557, and MSE (mean square error) values of 155.1437. Then, plots of
estimated systolic blood pressure versus BMI and estimated diastolic blood pressure versus BMI

are given in Fig. 2.
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Figure 2. Plot of estimated systolic blood pressure versus BMI (a) and plot of estimated

diastolic blood pressure versus BMI (b)

3.2. Estimating Blood Pressures Using Truncated Spline Estimator

Based on data in Table 1 and by creating open source software R code, we determine

optimal knots for systolic and diastolic, optimal smoothing parameter (4, ), and minimum GCV

value for order one, order two, and order three splines. The results are given in Table 3. Table 3

shows that the most minimum GCV value (i.e. 0.8548374) is reached by order one spline with

optimal knots of 19 and 28.5 for systolic blood pressure and 19 for diastolic blood pressure, and

optimal smoothing parameter (}“‘wr) of 0.005. It means that the blood pressures can be estimated

by order one spline with knots 19 and 28.5 for systolic blood pressure and order one spline with

knots 19 for diastolic blood pressure. By applying (5) and (6) we obtain truncated splines for

estimating systolic blood pressure ( 7,) and diastolic blood pressure (7, ) as follows:

1192




S
International Journal of Innovation, Creativity and Change. www .ijicc.net
Volume 5, Issue 3, 2019 Special Edition: Science, Applied Science, Teaching and Education

6.179029¢ for <19
¥,=9 79.266138+2.007127t  for 19<t<28.5
~-419.043537+19.055582¢ for 1=28.5

. 4.003418¢ for t<19
F2= 43.813905+1.697423t for 19<t<28.5

where f represents BMI value. Also, we obtain MSE (mean square error) of 155.6501, and plots
of estimated systolic blood pressure ( 7, ) and estimated diastolic blood pressure ( J, ) as given in

Fig. 3. Finally, because of MSE (smoothing spline) = 155.1437 < 155.6501 = MSE (truncated
spline) then for analyszing this data the use of multiresponsemult-response nonparametricnon-
parametric regression based on smoothing spline estimator is better than that based on truncated

spline estimator.

Table 3. Order Splines, Optimal Knots, Optimal Smoothing Parameters, and Minimum GCV

Values
Spline Optimal Knots Optimal Smoothing Minimum
Order Systolic Diastolic Parameter GCV
1 19, 28.5 19 0.005 0.8548374
2 28.5 19 0.013 0.8882841
3 19; 28.5 28.5 54 0.9034587

HASTOLE iy
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Figure 3. Plots of estimated systolic (a) and diastolic (b) blood pressures versus BMI

4. Conclusion

Based on (25), we conclude that the estimated blood pressure model we obtained is a linear
function in observation. It depends on the optimal smoothing parameter, for smoothing spline
approach, and depends on optimal knot, optimal order of spline and optimal smoothing parameter,
for truncated spline approach. In addition, since MSE values for smoothing spline approaches is
less than that for the truncated spline approach, then smoothing spline estimators is better for

estimating blood pressure models than truncated spline estimators.
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