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Quadratic programming with interval variables is developed from quadratic programming with interval coefficients to obtain
optimum solution in interval form, both the optimum point and optimum value. In this paper, a two-level programming approach
is used to solve quadratic programming with interval variables. Procedure of two-level programming is transforming the quadratic
programming model with interval variables into a pair of classical quadratic programming models, namely, the best optimum and
worst optimum problems. The procedure to solve the best and worst optimum problems is also constructed to obtain optimum
solution in interval form.

1. Introduction

Classic quadratic programming requires the assumption that
the coefficient value is certainly known. But in the real world,
coefficient values often cannot be certainly determined. The
uncertain coefficient value can be estimated using intervals
based on the theory of interval analysis which is developed
by Moore [1]. It is also called interval quadratic program-
ming. The special characteristic of the interval quadratic
programming is the coefficients and variables of the objective
functions and constraints are in interval form. Classical
quadratic programming which is developed by transforming
the coefficients in objective functions and constraints into
interval form is called quadratic programming with interval
coefficients. If the coefficients and variables in the objective
function and constraints are both of interval form, it is called
quadratic programming with interval variables.

Researches on quadratic programmingwith interval coef-
ficients have been discussed by Liu and Wang [2], Li and
Tiang [3], and Syaripuddin et al. [4]. All of the researches
were inspired by linear programming with the interval coef-
ficients which have been discussed earlier by Shaocheng [5],
Chinneck and Ramadan [6], and Kuchta [7]. The research on

quadratic programming with interval variables was inspired
by linear programming with interval variables which have
been discussed by Suprajitno and Mohd [8]. Research on
quadratic programming with interval coefficients has also
been extended to the nonlinear interval programming which
is discussed by Jiang et al. [9], Wu [10, 11], and Bhurjee and
Panda [12].

Two-level programming is a mathematical procedure
which used to transform the interval programming model
into a pair of classic programming models with special
characteristics, namely, the best optimum and the worst
optimum problems. Reference [6] used two-level program-
ming on the solving of linear programming with the interval
coefficients, whereas [2, 3] used two-level programming
on the solving of quadratic programming with interval
coefficients. References [2, 3, 6] were able to construct the
interval solution at the optimum value only, which was done
by combining the optimum value from the best optimum
with the worst optimum problem so the interval form
was obtained. Nevertheless, the optimum point cannot be
constructed in interval form. Reference [8] presented proce-
dures to obtain optimum solution in interval form for both
optimum point and optimum value. Reference [8] defined
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the coefficients and variables in the linear programming
in the interval form and constructed a solution by using
a two-level programming approach with some additional
procedures for obtaining an interval solution. Reference
[9] suggested a method to solve nonlinear interval pro-
gramming by transforming the uncertain objective functions
and constraints into two deterministic objective functions
and constraints. Two deterministic objective functions and
constraints are formulated into an optimization problemwith
a single objective function through a linear combination
method and the penalty function method. Based on the
solving nonlinear interval programming method and the
interval analysis method, Jiang et al. [13] suggested a method
to solve uncertain structural programmingmeanwhile Zhang
et al. [14] suggested a method to solve uncertainty modelling
and time-dependent reliability analysis for time-dependent
structures.

This paper discusses the solution of quadratic program-
ming with interval variables using a two-level programming
approach that focuses on how to obtain the optimum solution
in interval form, for both optimum point and optimum
value. There are three steps to obtain an optimum solution
in the interval form. First step is defining the coefficients
and variables on interval quadratic programming model as
interval form. The second step is transforming a quadratic
programming with interval variables model into a pair of
classical quadratic programming models. The last step is
constructing the procedure of interval solution in the classic
quadratic programming model by adding new constraints to
the model which has unbounded solution in order to restrict
the feasible area. The aim of adding new constraints is to
determine whether the model has unbounded solution or
bounded solution.

This paper is constructed by seven sections. Section 2
discusses interval arithmetic operations. Section 3 presents
the general form of quadratic programming with interval
coefficients. Section 4 presents the general form of quadratic
programming with interval variables. Section 5 discusses the
procedure to transform a quadratic programming model
with interval variables into a pair of classical quadratic
programming models and also presents the interval solution
algorithm of the classical quadratic programming model.
Section 6 discusses an example to illustrate how to apply
concepts to solved quadratic programming with interval
variables and Section 7 presents some conclusions.

2. Interval Arithmetic

The basic definition and properties of interval number and
interval arithmetic can be seen at Moore [1], Alefeld and
Herzberg [15], and Hansen [16].

Definition 1. A closed real interval 𝑥 = [𝑥𝐼, 𝑥𝑆], denoted by𝑥, is a real interval number which can be defined completely
by

𝑥 = [𝑥𝐼, 𝑥𝑆] = {𝑥 ∈ R | 𝑥𝐼 ≤ 𝑥 ≤ 𝑥𝑆; 𝑥𝐼, 𝑥𝑆 ∈ R} (1)

where 𝑥𝐼 and 𝑥𝑆 are called infimum and supremum, respec-
tively.

Definition 2. A real interval number 𝑥 = [𝑥𝐼, 𝑥𝑆] is called
degenerate, if 𝑥𝐼 = 𝑥𝑆.
Definition 3. If 𝑥 = [𝑥𝐼, 𝑥𝑆] and 𝑦 = [𝑦𝐼, 𝑦𝑆], the following
rules are valid.

(1) 𝑥 + 𝑦 = [𝑥𝐼 + 𝑦𝐼, 𝑥𝑆 + 𝑦𝑆] (addition).
(2) 𝑥 − 𝑦 = [𝑥𝐼, 𝑥𝑆] − [𝑦𝐼, 𝑦𝑆] = [𝑥𝐼, 𝑥𝑆] + [−𝑦𝑆, −𝑦𝐼] =[𝑥𝐼 − 𝑦𝑆, 𝑥𝑆 − 𝑦𝐼] (subtraction).
(3) 𝑥 ⋅ 𝑦 = [min{𝑥𝐼𝑦𝐼, 𝑥𝐼𝑦𝑆, 𝑥𝑆𝑦𝐼, 𝑥𝑆𝑦𝑆}, max{𝑥𝐼𝑦𝐼, 𝑥𝐼𝑦𝑆,𝑥𝑆𝑦𝐼, 𝑥𝑆𝑦𝑆}] (multiplication).
(4) 𝑥/𝑦 = 𝑥(1/𝑦) = [𝑥𝐼, 𝑥𝑆][1/𝑦𝑆, 1/𝑦𝐼], 0 ∉ 𝑦 (division).

Definition 4. Given two intervals 𝑥 = [𝑥𝐼, 𝑥𝑆] and 𝑦 = [𝑦𝐼,𝑦𝑆], the value 𝑚(𝑥) = (𝑥𝐼 + 𝑥𝑆)/2 is mid-point and 𝑤(𝑥) =(𝑥𝑆 − 𝑥𝐼)/2 is half-width.
Some ideas of comparison of two intervals can be seen in

Alefeld and Herzberger [15], Chanas and Kuctha [17], Klatte
et al. [18], Sengupta et al. [19], and Kuctha [7]. Here we will
only propose one approach, discussed in Maleki et al. [20] as
follows.

Definition 5. Given two intervals 𝑥 = [𝑥𝐼, 𝑥𝑆] and 𝑦 = [𝑦𝐼,𝑦𝑆], then 𝑥 ≤ 𝑦 if and only if 𝑥𝐼 + 𝑥𝑆 ≤ 𝑦𝐼 + 𝑦𝑆.
In order to make the validity of Definition 5, the state-

ment 𝑥 ≤ 𝑦 if and only if 𝑥𝐼 + 𝑥𝑆 ≤ 𝑦𝐼 + 𝑦𝑆 is valid when one
of the following conditions are satisfied.

(i) 𝑥𝑆 ≤ 𝑦𝐼.
(ii) 𝑥𝐼 ≤ 𝑦𝐼 ≤ 𝑥𝑆 ≤ 𝑦𝑆.

3. Quadratic Programming with
Interval Coefficient

The general form of linear programming with interval coeffi-
cients is defined as follows:

Maximize 𝑧
= 𝑛∑
𝑗=1

[𝑐𝑗𝐼,𝑐𝑗𝑆] 𝑥𝑗
+ 12
𝑛∑
𝑗=1

𝑛∑
𝑘=1

[𝑞𝑗𝑘𝐼,𝑞𝑗𝑘𝑆] 𝑥𝑗𝑥𝑘
(2a)

subject to
𝑛∑
𝑗=1

[𝑎𝑖𝑗𝐼, 𝑎𝑖𝑗𝑆] 𝑥𝑗 ≤ [𝑏𝑖𝐼, 𝑏𝑖𝑆] ,
𝑖 = 1, 2, . . . , 𝑚

(2b)

𝑥𝑗 ≥ 0, 𝑗 = 1, 2 . . . , 𝑛 (2c)

with 𝑥𝑗 ∈ R, [𝑐𝑗𝐼, 𝑐𝑗𝑆],[𝑞𝑖𝑗𝐼, 𝑞𝑖𝑗𝑆], [𝑏𝑖𝐼, 𝑏𝑖𝑆], [𝑎𝑖𝑗𝐼, 𝑎𝑖𝑗𝑆] ∈ 𝐼(R),∑𝑛𝑗=1∑𝑛𝑘=1[𝑞𝑗𝑘𝐼,𝑞𝑗𝑘𝑆]𝑥𝑗𝑥𝑘 is negative semidefinite, and 𝐼(R)
are the set of all interval numbers inR.
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The models of (2a)-(2c) were introduced by [3]. The
special characteristic of this model is that any coefficient of
the objective function and constraints are interval. Reference
[3] used two-level programming approach to solve quadratic
programming by using the interval coefficients. So we define
solution of (2a)-(2c) as follows. The optimal solution in the
form of intervals on the solution of the quadratic program-
ming with interval coefficient can only be constructed at the
optimum value only, while the optimum point cannot be
constructed in the form of intervals.

4. Quadratic Programming with
Interval Variable

The general form of linear programming with interval vari-
ables is defined as follows:

Maximize 𝑧
= 𝑛∑
𝑗=1

[𝑐𝑗𝐼, 𝑐𝑗𝑆] [𝑥𝑗𝐼, 𝑥𝑗𝑆]

+ 12
𝑛∑
𝑗=1

𝑛∑
𝑘=1

[𝑞𝑗𝑘𝐼,𝑞𝑗𝑘𝑆] [𝑥𝑗𝐼, 𝑥𝑗𝑆] [𝑥𝑘𝐼, 𝑥𝑘𝑆]
(3a)

subject to
𝑛∑
𝑗=1

[𝑎𝑖𝑗𝐼, 𝑎𝑖𝑗𝑆] [𝑥𝑗𝐼, 𝑥𝑗𝑆] ≤ [𝑏𝑖𝐼, 𝑏𝑖𝑆] ,
𝑖 = 1, 2, . . . , 𝑚

(3b)

[𝑥𝑗𝐼, 𝑥𝑗𝑆] ≥ 0, 𝑗 = 1, 2 . . . , 𝑛 (3c)

with [𝑥𝑗𝐼, 𝑥𝑗𝑆], [𝑐𝑗𝐼, 𝑐𝑗𝑆], [𝑞𝑖𝑗𝐼, 𝑞𝑖𝑗𝑆], [𝑏𝑖𝐼, 𝑏𝑖𝑆], [𝑎𝑖𝑗𝐼, 𝑎𝑖𝑗𝑆] ∈𝐼(R), 𝐼(R) are the set of all interval numbers in R, and∑𝑛𝑗=1∑𝑛𝑘=1[𝑞𝑗𝑘𝐼,𝑞𝑗𝑘𝑆][𝑥𝑗𝐼, 𝑥𝑗𝑆][𝑥𝑘𝐼, 𝑥𝑘𝑆] is negative semidefi-
nite.

Constraint [𝑥𝑗𝐼, 𝑥𝑗𝑆] ≥ 0, 𝑗 = 1, 2 . . . , 𝑛, in (3c) is
called a nonnegative constraint.The properties of the interval
multiplication associated with the nonnegative constraint are
discussed as follows:

(1) Let 𝑐 = [𝑐𝐼, 𝑐𝑆] be interval coefficient and let 𝑥𝑗 =[𝑥𝐼, 𝑥𝑆], 𝑥𝐼 > 0, be positive interval variable (𝑥𝐼 > 0),
then there are three possible equations that relate to
the value of the coefficient:

(i) if 𝑐𝐼 > 0, then 𝑐 𝑥 = [𝑐𝐼, 𝑐𝑆][𝑥𝐼, 𝑥𝑆] = [𝑐𝐼𝑥𝐼, 𝑐𝑆𝑥𝑆],
(ii) if 𝑐𝑆 < 0, then 𝑐 𝑥 = [𝑐𝐼, 𝑐𝑆][𝑥𝐼, 𝑥𝑆] = [𝑐𝐼𝑥𝑆, 𝑐𝑆𝑥𝐼],
(iii) if 𝑐𝐼 < 0 < 𝑐𝑆, then 𝑐 𝑥 = [𝑐𝐼, 𝑐𝑆][𝑥𝐼, 𝑥𝑆] = [𝑐𝐼𝑥𝑆,𝑐𝑆𝑥𝑆].
Thus, if 𝑥𝐼 > 0, then

[𝑐𝐼, 𝑐𝑆] [𝑥𝐼, 𝑥𝑆] = [min {𝑐𝐼𝑥𝐼, 𝑐𝐼𝑥𝑆} ,max {𝑐𝑆𝑥𝐼, 𝑐𝑆𝑥𝑆}] (4)

(2) Let 𝑞 = [𝑞𝐼, 𝑞𝑆] be interval coefficient and let 𝑥𝑗 =[𝑥𝑗𝐼, 𝑥𝑗𝑆], 𝑥𝑘 = [𝑥𝑘𝐼, 𝑥𝑘𝑆] with 𝑥𝑗𝐼 > 0, 𝑥𝑘𝐼 > 0 be
two positive interval variables, then there are three
possible equations that relate to the coefficient value:

(i) if 𝑞𝐼 > 0, then 𝑞𝑥𝑗𝑥𝑘 = [𝑞𝐼, 𝑞𝑆][𝑥𝑗𝐼, 𝑥𝑗𝑆][𝑥𝑘𝐼,𝑥𝑘𝑆] = [𝑞𝐼𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑆𝑥𝑗𝑆𝑥𝑘𝑆],
(ii) if 𝑞𝑆 < 0, then 𝑞𝑥𝑗𝑥𝑘 = [𝑞𝐼, 𝑞𝑆][𝑥𝑗𝐼, 𝑥𝑗𝑆][𝑥𝑘𝐼,𝑥𝑘𝑆] = [𝑞𝐼𝑥𝑗𝑆𝑥𝑘𝑆, 𝑞𝑆𝑥𝑗𝐼𝑥𝑗𝐼],
(iii) if 𝑞𝐼 < 0 < 𝑞𝑆, then 𝑞𝑥𝑗𝑥𝑘 = [𝑞𝐼, 𝑞𝑆][𝑥𝑗𝐼,𝑥𝑗𝑆][𝑥𝑘𝐼, 𝑥𝑘𝑆] = [𝑞𝐼𝑥𝑗𝑆𝑥𝑘𝑆, 𝑞𝑆𝑥𝑗𝑆𝑥𝑘𝑆].
Thus, if 𝑥𝑗𝐼 > 0, 𝑥𝑘𝐼 > 0, then

[𝑞𝐼, 𝑞𝑆] [𝑥𝑗𝐼, 𝑥𝑗𝑆] [𝑥𝑘𝐼, 𝑥𝑘𝑆]
= [min {𝑞𝐼𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝐼𝑥𝑗𝑆𝑥𝑘𝑆} ,
max {𝑞𝑆𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑆𝑥𝑗𝑆𝑥𝑘𝑆}]

(5)

In (3a)-(3c), the coefficients and variables of the objective
function and constraints in the quadratic programming
model are defined as interval form. This model is developed
from themodels in (2a)-(2c). Quadratic programmingmodel
with interval variables is defined to obtain the optimum
solution in the interval form, for both optimum value and
optimum point. The problems described in (3a)-(3c) are
solved by using a two-level programming approach with
respect to the properties of the interval multiplication of
nonnegative constraints.

The following definition is used to determine the optimal
interval solution. The idea of definition is derived from
Maleki et al. [20].

Definition 6. Any set of 𝑥𝑗 which satisfies the set of con-
straints (3b) is called a feasible solution for the problem in
(3a)-(3c). Let 𝑄 be the set of all feasible solutions of the
problem.We shall say that𝑥∗ ∈ 𝑄 is an optimal point solution
if 𝑧(𝑥∗) ≥ 𝑧(𝑥) for all 𝑥 ∈ 𝑄, and 𝑧(𝑥∗) is an optimal value
solution for the problem.

5. Two-Level Programming

Two-level programming is a mathematical procedure which
is used to transform a two-level interval programmingmodel
into a pair of one-level classic programming model. In this
section, we will discuss the theorem which will be used to
transform the quadratic programming model with interval
variables into a pair of classical quadratic programming
models.

In quadratic programming for maximizing with interval
variables, the best optimum problem has properties as the
best version of the objective function and the maximum
feasible area on the constraint function, whereas the worst
optimum problem has properties as the worst version of
the objective function and the minimum feasible area on
the constraint function. The discussion of how to obtain the
maximum and minimum feasible area on the constraints
of quadratic programming with interval variables which
contains inequality less than or equal to (≤) can be seen in
the following theorem.

Theorem 7. If interval inequality of the constraints∑𝑛𝑗=1[𝑎𝑗𝐼, 𝑎𝑗𝑆][𝑥𝑗𝐼, 𝑥𝑗𝑆] ≤ [𝑏𝐼, 𝑏𝑆] with [𝑥𝑗𝐼, 𝑥𝑗𝑆] ≥ 0,
then ∑𝑛𝑗=1min(𝑎𝑗𝐼𝑥𝑗𝐼, 𝑎𝑗𝐼𝑥𝑗𝑆) ≤ 𝑏𝑆 is the maximum feasible
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area and ∑𝑛𝑗=1max(𝑎𝑗𝑆𝑥𝑗𝐼, 𝑎𝑗𝑆𝑥𝑗𝑆) ≤ 𝑏𝐼 is the minimum
feasible area.

Proof. Let ∑𝑛𝑗=1 𝑎𝑗𝑥𝑗 ≤ 𝑏 be any inequality of the interval
inequality ∑𝑛𝑗=1[𝑎𝑗𝐼, 𝑎𝑗𝑆][𝑥𝑗𝐼, 𝑥𝑗𝑆] ≤ [𝑏𝐼, 𝑏𝑆] with 𝑎𝑗 ∈ [𝑎𝑗𝐼,𝑎𝑗𝑆], 𝑏𝑗 ∈ [𝑏𝐼, 𝑏𝑆], 𝑥𝑗 ∈ [𝑥𝑗𝐼, 𝑥𝑗𝑆]. Based on (4), for any
particular solution 𝑥𝑗 ≥ 0, 𝑥𝑗 ∈ [𝑥𝑗𝐼, 𝑥𝑗𝑆], we have

𝑛∑
𝑗=1

𝑎𝑗𝑥𝑗 ≤ 𝑛∑
𝑗=1

𝑎𝑗𝑆𝑥𝑗 ≤ 𝑛∑
𝑗=1

maks (𝑎𝑗𝑆𝑥𝑗𝐼, 𝑎𝑗𝑆𝑥𝑗𝑆) (6)

Therefore if∑𝑛𝑗=1max(𝑎𝑗𝑆𝑥𝑗𝐼, 𝑎𝑗𝑆𝑥𝑗𝑆) ≤ 𝑏𝐼 at an interval vector
x = (x1, x2, ⋅ ⋅ ⋅ , x𝑛)T, then we have

𝑛∑
𝑗=1

𝑎𝑗𝑥𝑗 ≤ 𝑛∑
𝑗=1

𝑎𝑗𝑆𝑥𝑗 ≤ 𝑛∑
𝑗=1

max (𝑎𝑗𝑆𝑥𝑗𝐼, 𝑎𝑗𝑆𝑥𝑗𝑆) ≤ 𝑏𝐼
≤ 𝑏𝑆

(7)

So xmust satisfy all possible versions of the interval inequal-
ities simultaneously. Thus,

𝑛∑
𝑗=1

max (𝑎𝑗𝑆𝑥𝑗𝐼, 𝑎𝑗𝑆𝑥𝑗𝑆)
≤ 𝑏𝐼 is the minimum feasible area.

(8)

Furthermore, based on (4), for any particular solution 𝑥𝑗 ≥ 0,𝑥𝑗 ∈ [𝑥𝑗𝐼, 𝑥𝑗𝑆], we also have
𝑛∑
𝑗=1

min (𝑎𝑗𝐼𝑥𝑗𝐼, 𝑎𝑗𝐼𝑥𝑗𝑆) ≤ 𝑛∑
𝑗=1

𝑎𝑗𝐼𝑥𝑗 ≤ 𝑛∑
𝑗=1

𝑎𝑗𝑥𝑗 ≤ 𝑏 ≤ 𝑏𝑆 (9)

Therefore, any particular solution which satisfies interval
inequality will also satisfy

𝑛∑
𝑗=1

min (𝑎𝑗𝐼𝑥𝑗𝐼, 𝑎𝑗𝐼𝑥𝑗𝑆) ≤ 𝑏𝑆 (10)

Thus,
𝑛∑
𝑗=1

min (𝑎𝑗𝐼𝑥𝑗𝐼, 𝑎𝑗𝐼𝑥𝑗𝑆)
≤ 𝑏𝑆 is the maximum feasible area.

(11)

A discussion of how to get the best and worst version of
the objectives function at the quadratic programming with
interval variables can be seen in the following theorem.

Theorem8. If 𝑧=∑𝑛𝑗=1[𝑐𝑗𝐼, 𝑐𝑗𝑆][𝑥𝑗𝐼, 𝑥𝑗𝑆]+(1/2)∑𝑛𝑗=1∑𝑛𝑘=1[𝑞𝑗𝑘𝐼,𝑞𝑗𝑘𝑆][𝑥𝑗𝐼, 𝑥𝑗𝑆][𝑥𝑘𝐼, 𝑥𝑘𝑆] is the objective function with

[𝑥𝑗𝐼, 𝑥𝑗𝑆] ≥ 0, then ∑𝑛𝑗=1min{𝑐𝑗𝐼𝑥𝑗𝐼, 𝑐𝑗𝐼𝑥𝑗𝑆} + (1/2)∑𝑛𝑗=1∑𝑛𝑘=1min{𝑞𝑗𝑘𝐼𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑗𝑘𝐼𝑥𝑗𝑆𝑥𝑘𝑆} ≤ ∑𝑛𝑗=1max{𝑐𝑗𝑆𝑥𝑗𝐼,𝑐𝑗𝑆𝑥𝑗𝑆} + (1/2)∑𝑛𝑗=1∑𝑛𝑘=1max{𝑞𝑗𝑘𝑆𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑗𝑘𝑆𝑥𝑗𝑆𝑥𝑘𝑆}.
Proof. We have [𝑥𝑗𝐼, 𝑥𝑗𝑆] ≥ 0 and [𝑥𝑘𝐼, 𝑥𝑘𝑆] ≥ 0, 𝑗, 𝑘 =1, 2, . . . , 𝑛. Based on (4) and (5), we get

𝑛∑
𝑗=1

[𝑐𝑗𝐼,𝑐𝑗𝑆] [𝑥𝑗𝐼, 𝑥𝑗𝑆]

= 𝑛∑
𝑗=1

[min {𝑐𝑗𝐼𝑥𝑗𝐼, 𝑐𝑗𝐼𝑥𝑗𝑆} ,max {𝑐𝑗𝑆𝑥𝑗𝐼, 𝑐𝑗𝑆𝑥𝑗𝑆}]
(12)

and

12
𝑛∑
𝑗=1

𝑛∑
𝑘=1

[𝑞𝑗𝑘𝐼, 𝑞𝑗𝑘𝑆] [𝑥𝑗𝐼, 𝑥𝑗𝑆] [𝑥𝑘𝐼, 𝑥𝑘𝑆] = 12
⋅ 𝑛∑
𝑗=1

[ 𝑛∑
𝑘=1

min {𝑞𝑗𝑘𝐼𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑗𝑘𝐼𝑥𝑗𝑆𝑥𝑘𝑆} ,
𝑛∑
𝑘=1

max {𝑞𝑗𝑘𝑆𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑗𝑘𝐼𝑥𝑗𝑆𝑥𝑘𝑆}]

= 12 [
[
𝑛∑
𝑗=1

𝑛∑
𝑘=1

min {𝑞𝑗𝑘𝐼𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑗𝑘𝐼𝑥𝑗𝑆𝑥𝑘𝑆} ,
𝑛∑
𝑗=1

𝑛∑
𝑘=1

max {𝑞𝑗𝑘𝑆𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑗𝑘𝐼𝑥𝑗𝑆𝑥𝑘𝑆}]]

(13)

Clearly we obtain the following expression:

𝑛∑
𝑗=1

min {𝑐𝑗𝐼𝑥𝑗𝐼, 𝑐𝑗𝐼𝑥𝑗𝑆}

+ 12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

min {𝑞𝑖𝑗𝐼𝑥𝑖𝐼𝑥𝑗𝐼, 𝑞𝑖𝑗𝐼𝑥𝑖𝑆𝑥𝑗𝑆}

≤ 𝑛∑
𝑗=1

max {𝑐𝑗𝑆𝑥𝑗𝐼, 𝑐𝑗𝑆𝑥𝑗𝑆}

+ 12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

max {𝑞𝑖𝑗𝑆𝑥𝑖𝐼𝑥𝑗𝐼, 𝑞𝑖𝑗𝑆𝑥𝑖𝑆𝑥𝑗𝑆}

(14)

Based on Theorems 7 and 8, we obtain a pair of one-
level classical quadratic programming model with special
characteristics, as follows.

(a) The best optimum:

Maximize 𝑧𝑆 = 𝑛∑
𝑗=1

max {𝑐𝑗𝑆𝑥𝑗𝐼, 𝑐𝑗𝑆𝑥𝑗𝑆} + 12
𝑛∑
𝑗=1

𝑛∑
𝑘=1

max {𝑞𝑗𝑘𝑆𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑗𝑘𝑆𝑥𝑗𝑆𝑥𝑘𝑆} (15a)
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subject to
𝑛∑
𝑗=1

min (𝑎𝑖𝑗𝐼𝑥𝑗𝐼, 𝑎𝑖𝑗𝐼𝑥𝑗𝑆) ≤ 𝑏𝑖𝑆, 𝑖 = 1, 2, . . . , 𝑚 (15b)

𝑥𝑗𝑆 − 𝑥𝑗𝐼 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛 (15c)

(b) The worst optimum:

Maximize 𝑧𝐼 = 𝑛∑
𝑗=1

min {𝑐𝑗𝐼𝑥𝑗𝐼, 𝑐𝑗𝐼𝑥𝑗𝑆} + 12
𝑛∑
𝑗=1

𝑛∑
𝑘=1

min {𝑞𝑗𝑘𝐼𝑥𝑗𝐼𝑥𝑘𝐼, 𝑞𝑗𝑘𝐼𝑥𝑗𝑆𝑥𝑘𝑆} (16a)

subject to
𝑛∑
𝑗=1

max (𝑎𝑖𝑗𝑆𝑥𝑗𝐼, 𝑎𝑖𝑗𝑆𝑥𝑗𝑆) ≤ 𝑏𝑖𝐼, 𝑖 = 1, 2, . . . , 𝑚 (16b)

𝑥𝑗𝑆 − 𝑥𝑗𝐼 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛 (16c)

The optimum solution in the form of intervals is obtained
by constructing the interval solution procedure in the classi-
cal quadratic programming model. If there is an unbounded
solution in one of the classic quadratic programming models
or in both models, then we add a new constraint to its
pair model in order to restrict the feasible region. The
purpose of this procedure is to ascertain whether a solution
is unbounded or bounded. The interval solutions procedure
is discussed in the following algorithm.

Algorithm 9.
Step 1. Transform quadratic programming with interval vari-
ables model into a classical quadratic programming model.

(a) Determine the maximum andminimum feasible area
in the constraint function

(b) Determine the best and the worst version of the
objective function

(c) Construct two classical quadratic programmingmod-
els from (a) and (b)
Model-1: The best optimum problem

Objective function: the best version of the
objective function
Constraint: the maximum feasible area

Model-2: The worst optimum problem

Objective function: the worst version of the
objective function
Constraint: the minimum feasible region

Step 2. Determine the solution for Model-1 and Model-2.

Step 3. Check the solution.
(a) If Model-1 and Model-2 have no feasible region, then

stop. The models have no solution

(b) If Model-1 and Model-2 are unbounded, a solution
has been reached, continue to Step 4. If they are finite,
then choose a model that has an unbounded solution.
Next, replace the constraint with the new constraint
from the combination of the constraints of Model-1
and Model-2, so we have the new model

Step 4. Create an interval solution.
The optimum solution of quadratic programming with

the interval variables is obtained by creating the interval
solution as follows.

(a) Set the supremum value from interval solution of the
best optimum problem

(b) Set the infimum value from interval solution of the
worst optimum problem

If the solution is an interval form, then stop. If it is not an
interval form, then give the infimum value to the noninterval
solution so that we have interval degenerate.

6. Numerical Example

Consider the following example of quadratic programming
with interval coefficients in [3].

Minimize 𝑧
= [−10, −6] 𝑥1 + [2, 3] 𝑥2

+ [−1, 1] 𝑥1𝑥2 + [4, 10] 𝑥21
+ [10, 20] 𝑥22

(17a)

subject to [1, 2] 𝑥1 + 3𝑥2 ≤ [1, 10] (17b)

[−2, 8] 𝑥1 + [4, 6] 𝑥2 ≤ [4, 6] (17c)

𝑥1, 𝑥2 ≥ 0 (17d)
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According to [3], the optimum value solution of the
model on (17a)-(17d) is 𝑧 = [𝑧𝐼, 𝑧𝑆] = [−6.25, −0.9] with the
best optimum problem being 𝑧𝑆 = −0.9, 𝑥1 = 0.3, 𝑥2 = 0 and
the worst optimum problem being 𝑧𝐼 = −6.25, 𝑥1 = 1, 25,𝑥2 = 0. Furthermore, [12] solves (17a)-(17c) by introducing a
new approach. In this approach, the interval programming
model is defined into a programming model of parameter
function. It was obtained that the optimum point is 𝑥1 = 0.5,𝑥2 = 0 and optimum value is 𝑧 = [−4, −0.5].

In this paper, the quadratic programming model with
interval variables is only defined for maximization prob-
lem, so any minimization problem will be converted into
maximization problem. The simple procedure to convert a
minimization problem intomaximization problem is bymul-
tiplying the objective function of the minimization problem
by -1, and vice versa.

The model in (17a)-(17d) is assumed to be a quadratic
programming with interval variables and converted to maxi-
mization problems as presented as follows.

Maximize 𝑧
= [6, 10] 𝑥1 + [−3, −2] 𝑥2

+ [−1, 1] 𝑥1𝑥2 + [−10, −4] 𝑥21
+ [−20, −10] 𝑥22

(18a)

subject to [1, 2] 𝑥1 + 3𝑥2 ≤ [1, 10] (18b)

[−2, 8] 𝑥1 + [4, 6] 𝑥2 ≤ [4, 6] (18c)

𝑥1, 𝑥2 ≥ 0 (18d)

Based on Algorithm 9, we find the solution of (18a)-(18d) as
follows.

Step 1. Create two classical quadratic programming models,
namely, the best and worst optimum problem.

The Best Optimum Problem

Model-1

Maximize 𝑧𝑆
= 10𝑥1𝑆 − 2𝑥2𝐼 − 4x1I2 + x1Sx2S − 10x2I2

subject to 𝑥1𝐼 + 3x2I ≤ 10
− 2𝑥1𝑆 + 4x2I ≤ 6
𝑥1𝑆 − x1I ≥ 0
𝑥2𝑆 − x2I ≥ 0
𝑥1𝐼, 𝑥1𝑆, 𝑥2𝐼, 𝑥2𝑆 ≥ 0

(19)

TheWorst Optimum Problem

Model-2

Maximize 𝑧𝐼

= 6𝑥1𝐼 − 3𝑥2𝑆 − 10x1S2 − x1Sx2S

− 20x2S2
subject to 2𝑥1𝑆 + 3x2S ≤ 1

8𝑥1𝑆 + 6x2S ≤ 4
𝑥1𝑆 − x1I ≥ 0
𝑥2𝑆 − x2I ≥ 0
𝑥1𝐼, 𝑥1𝑆, 𝑥2𝐼, 𝑥2𝑆 ≥ 0

(20)

Step 2. The solution of Model-1 and Model-2 is as follows.
In this case, it is found that Model-1 has an unbounded

solution and Model-2 has a finite solution.

Step 3. Create a new model on the model that has an
unbounded solution.

The Best Optimum Problem

New Model-1

Maximize 𝑧𝑆
= 10𝑥1𝑆 − 2𝑥2𝐼 − 4x1I2 + x1Sx2S

− 10x2I2
Subject to 𝑥1𝐼 + 3x2I ≤ 10

− 2𝑥1𝑆 + 4x2I ≤ 6
2𝑥1𝑆 + 3x2S ≤ 1
8𝑥1𝑆 + 6x2S ≤ 4
𝑥1𝑆 − x1I ≥ 0
𝑥2𝑆 − x2I ≥ 0
𝑥1𝐼, 𝑥1𝑆, 𝑥2𝐼, 𝑥2𝑆 ≥ 0

(21)

TheWorst Optimum Problem

Model-2

Maximize 𝑧𝐼
= 6𝑥1𝐼 − 3𝑥2𝑆 − 10x1S2 − x1Sx2S

− 20x2S2
Subject to 2𝑥1𝑆 + 3x2S ≤ 1

8𝑥1𝑆 + 6x2S ≤ 4
𝑥1𝑆 − x1I ≥ 0
𝑥2𝑆 − x2I ≥ 0
𝑥1𝐼, 𝑥1𝑆, 𝑥2𝐼, 𝑥2𝑆 ≥ 0

(22)
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Solution of the new Model-1 is [𝑥1𝐼, 𝑥1𝑆] = [0, 0.5], [𝑥2𝐼,𝑥2𝑆] = [0, 0] and solution of Model-2 is [𝑥1𝐼, 𝑥1𝑆] =[0.3, 0.3] [𝑥2𝐼, 𝑥2𝑆] = [0, 0].
Step 4. The interval solution is obtained by setting the
supremum and infimum values of the previous solution,
which are

(i) 𝑥1𝑆 = 0.5, 𝑥2𝑆 = 0,
(ii) 𝑥1𝐼 = 0.3, 𝑥2𝐼 = 0.

From (i) and (ii) we get the solution of quadratic program-
ming with interval variables as follows:

(i) Theoptimumpoints are𝑥1 = [0.3, 0.5] and𝑥2 = [0, 0]
which satisfy Definition 5.

(ii) The optimum value is 𝑧 = [−0.7, 4.67] or equivalent
to −𝑧 = [−4.64, 0.7] on minimized problem.

The optimum point and optimum value are covering
the solution in [12] while optimum value is an intersection
solution in [3].

7. Conclusion

This paper presents a two-level programming approach
for solving quadratic programming with interval variables.
The two-level programming procedure is transforming the
quadratic programming model with interval variables into
a pair of classical quadratic programming models. Interval
solution procedure on a pair of classical quadratic program-
ming models is presented by using Algorithm 9. The defi-
nition of coefficients and interval variables in the quadratic
programming model has a particular benefit, so its optimum
solution is in the interval form for both the optimum point
and the optimum value.
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