
ISSN 1 746-7233, England, UK 
World Journal of Modelling and Simulation 

Vol. 14 (2018) No. 2, pp. 90-99 

 

 

Fatmawati, Ahmadin 

 

 

 

 



World Journal of Modelling and Simulation
Published by print and online quarterly

ISSN: 1746-7233, England, UK World Academic Press, World Academic Union

Home Authors Guide Subscription Online Journal Link

Home

Welcome to WJMS, The World Journal of Modelling and Simulation

World Journal of Modelling and Simulation (WJMS) mainly publishes original
research and applied papers on modelling and simulation, including the
theory, method and application of mathematical, computer, mechanical and
physical modelling, which cover nature science, social science and
engineering application, especially, chemistry and biology, electronic and
mechanical engineering, IT, construction, medicine, humanities, economy,
business, management, sport, control and system engineering, industry and
agriculture, etc.

Bibliographic
ISSN: 1746-7233, Quarterly
Published by World Academic Press, World Academic Union, England, UK
Edited by International Committee of Modelling and Simulation, WAU

Publication Ethics
The publication ethics standards of World Journal of Modelling and
Simulation (WJMS) include the following several aspects.
1. Plagiarism WJMS is committed to publishing only original work, that is,
the work that has neither been published elsewhere, nor is under review elsewhere. Papers submitted to WJMS that are
identified to have been plagiarized from a paper by other authors will suffer the sanctions of plagiarism.
2. Duplication Submission Papers submitted to WJMS that are identified to have been published elsewhere, or to be
under review elsewhere, will suffer the sanctions of duplicate submission/publication. If authors submit a new paper
based on their own previously published work, or work that is currently under review, they should cite their previous
work and indicate how their new paper provides novel contributions/findings that are different from their previously work.
3. Data Fabrication or Falsification Papers submitted to WJMS that are identified to have either fabricated or
falsified computational results, will suffer the sanctions of data fabrication and falsification.
4. Redundant Submissions Papers submitted to WJMS that are identified to have the inappropriate division of
research results into several submitted manuscripts, will suffer the sanctions of redundant submissions.
5. Citation Manipulations Papers submitted to WJMS that are identified to involve citations whose primary purposes
are to increase the number of citations to a given author’s work, or to papers published in a particular journal, will suffer
the sanctions of citation manipulation.
6. Sanctions Papers submitted to WJMS that are found to violate any one of the above described items, the authors
in the infringing paper will suffer the following sanctions:
(1) Rejection of the infringing paper.
(2) Prohibition against all of the authors in the infringing paper for any new submissions to WJMS. This prohibition will
be imposed for at least two years.
(3) Prohibition against all of the authors in the infringing paper from serving on the Editorial Board of WJMS. This
prohibition will be imposed always.
(4) In the cases that the violations are found to be particularly serious, the publisher World Academic Union reserves
the right to impose additional sanctions beyond to items (1), (2) and (3) specified above.

Editorial Board ( contact email: editor@WJMS.org.uk )
Click here for detail with photo

Executive-Editor in Chief
Prof. Jiuping Xu
Ph.D. of Applied Mathematics and Ph.D. of Physical Chemistry
School of Business and Administration
Sichuan University
Chengdu 610064
P.R. China

Co-Editor in chief
Prof. Raúl Manásevich
Ph.D. of Sciences of Engineering
Department of Mathematical Engineering, and Centre for Mathematical Modeling, University of Chile
Chile

Prof. Jan Awarejcewicz
Ph.D. of Applied Mechanics
Department of Automatics and Biomechanics
The Technical University of Lódź (TUL)
Lódź, Poland

Standing Members of Editorial Board
Prof. Valentin Afraimovich
Ph.D. of Informatics
Instituto de Investigación en Communicación Optica UASLP
Av.Karakorum 1470, Lomas 4a Seccion
San Luis Potosi, SLP
78210, Mexico

World Journal of Modelling and Simulation (WJMS, ISSN: 1746-7233) http://www.wjms.org.uk/

1 of 1 1/23/2020, 2:36 PM



World Journal of Modelling and Simulation
Published by print and online quarterly

ISSN: 1746-7233, England, UK World Academic Press, World Academic Union

Home Authors Guide Subscription Online Journal Link

Online Journal

Papers of WJMS are published by print and online

Papers published -- Please click links below to download the free e-journal, or
click Subscription to subscribe the printed journal. To order printed-journals, please
contact info@wjms.org.uk or link to Subscription.

Volume 14 Number 2, May 2018 page 81-160
083. Numerical simulation of electron beam-induced dielectric charging using

advanced computational scheme for solving semilinear reaction-diffusion
equation
Anna Pavelchuk, Anna Maslovskaya

090. Mathematical modelling of Tuberculosis in a logistically growing human
population with optimal control
Fatmawati, Ahmadin

100. Numerical study of swimming of an organism in a viscous fluid in a
channel
Ranjith Maniyeri, Sangmo Kang

108. Computational fluid dynamical analysis of turbulent heat transfer in a channel fitted with staggered V-Shaped
baffles
Younes Menni, Ahmed Azzi

124. On the influence of magnetic field on darcy mixed convection from a horizontal plate in a nanofluid saturated
porous medium
B. V. Rathish Kumar, Priti Kumari Mohit Nigam Vinay Kumar S.V.S.S.N.V.G. Krishna Murthy Shweta Raturi Meena
Pargaei Abdul Halim

136. Power flow control strategy for a three-phase four-leg voltage source inverter in a microgrid
Mohammad Reza Miveh, Shahrokh Akhlaghi, Amirreza Naderipour, Zulkurnain Abdul-Malek, Alireza Rezvani

144. Optimal control applied in a within-host HIV model
Aida Mojaver, Hossein Kheiri

Volume 14  Number 1, February 2018 page 1-80
003. Molecular Structure, Mulliken charges, HOMO-LUMO, Electrostatic Potential and Nonlinear Optical

Properties of Zwitterionic 6-methyl-2-oxo-3-[1-(ureidoiminio)ethyl]-2H-pyran-4-olate monohydrate molecule
by HF and DFT methods
Nadia Benhalima, Amel Djedouani, Rachida Rahmani, Abdelkader Chouaih Fodil Hamzaoui, El Hadj Elandaloussi

012. The Projected Thermal Attributes And Energy Saving Potential Of Green Fac¸ade Draped Multi-Storied
Cuboid Buildings At Major Indian Cities: An Ecotect Analysis
Jacob Thottathil Varghese, Sat Ghosh, Anshul S. Garg, Raghav Manchanda Akhil Afsan Prathyusha Meka

021. Optimization of the Flow-induced Crystallization Viscoelastic Melt Spinning Processes with respect to
Processing Conditions
SSN Perera

030. The effect of vaccination and treatment of measles disease described by a fractional order model
I. Ameen

039. Automated Teller Machine Analysis under Host-Bank Systems through Telephone Network

World Journal of Modelling and Simulation http://www.worldacademicunion.com/journal/1746-7233WJMS/online.htm

1 of 14 7/12/2018, 8:41 AM



ISSN 1 746-7233, England, UK
World Journal of Modelling and Simulation

Vol. 14 (2018) No. 2, pp. 90-99

Mathematical modelling of Tuberculosis in a logistically growing human
population with optimal control *

Fatmawati1 † , Ahmadin2

Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia

(Received October 14 2016, Accepted June 10 2017)

Abstract. Tuberculosis (TB) is a common deadly infectious disease caused mainly by Mycobacterium tuber-
culosis. Approximately, one-third of the world’s population is infected by TB. Therefore, the effectiveness of
treatment and control strategies to reduce the spread of TB is still needed. In this paper, we proposed and
analyzed a mathematical modelling of TB transmission considering logistically growing human population.
The model also incorporates TB prevention and anti-TB treatment efforts as control strategies to minimize
the number of latent and infectious populations. For model without controls, we obtain the basic reproduction
number which determines the stability of the equilibriums of the model. The disease free equilibrium is locally
asymptotically stable whenever the reproduction number is less than unity. Using the Pontryagin Maximum
Principle, the optimal control theory is then deduced analytically. Numerical simulations are further conducted
to confirm the effectiveness of the optimal treatments. According to the simulation results, the combination TB
prevention and anti-TB treatment give better result in term minimizing the number of the latent and infected
populations. However, as shown by the numerical results, the anti-TB treatment strategy is more effective than
TB prevention if we use only one control.

Keywords: mathematical model, tuberculosis, logistically growing, optimal control

1 Introduction

Tuberculosis (TB) is a common deadly infectious disease caused mainly by Mycobacterium tuberculosis,
which most commonly affects the lung. It is transmitted from person to person via droplets from the throat and
lungs of people with the active respiratory disease[18]. According to WHO, one-third of the world’s population
has latent TB (no symptoms), which means have been infected by TB bacteria but are not (yet) ill with the
disease and cannot transmit the disease[19]. The symptoms of active TB of the lung are coughing, sometimes
with sputum or blood, chest pains, weakness, weight loss, fever and night sweats. This can lead to delays in
seeking care, and results in transmission of bacteria to others. Tuberculosis mostly affects young adults, in their
most productive years.

Tuberculosis is a preventable and treatable disease. For prevention of TB, the BCG vaccine is widely used,
which is 80% effective in preventing TB[23]. Tuberculosis is treatable with a six month course of antibiotics[18].
There are two types of the treatment. The treatment of latent TB is called chemoprophylaxis and treatment
of active TB is called therapeutics. The treatment for an active TB lasts long. Therefore control strategies
have been developed for compliance to TB treatment. DOTS (Directly Observed Treatment, Short-Course) are
a treatment program used for compliance with treatment of drug-sensitive TB. Another control program is
DOTS-plus, which is developed for compliance with treatment of drug-resistant TB[20]. If not treated, active-
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TB can be fatal, killing up to 60% of patients. In 2014, 9.6 million people fell ill with TB and 1.5 million died
from the disease[19].

Mathematical models of transmission dynamics of TB is an important tool in analyzing the disease control
as they provide short and long term prediction of TB incidence. Mathematical models may be helpful to improve
our understanding of the major contributing factors to the epidemic. The dynamics of the transmission TB
model have been addressed by researchers[1, 6, 8, 12]. These models assume that the recruitment rate is constant.
In order to study disease dynamics for the model with more demographic effects, it should be assumed that the
recruitment is density-dependent. Motivated by infectious diseases models in the literature[15, 17], we propose a
new model to investigate the spread of TB infection in a population with the assumed that the recruitment rate
is a logistic growth.

Studies of dynamic systems with optimal control theory to the epidemiological models such as
malaria[4, 10], TB-HIV co-infection [2, 11] and also TB infection[1, 3, 5, 13, 21] have been done. For instance, the
impact of optimal control on the model that describes the dynamics of the spread of TB by a factor of resistance
to anti-TB drugs and also the migration of healthy sub-population in the two regions was depicted in [3]. The
optimal control strategies associated with case holding and case finding based on a two-strain TB model was
proposed in [13]. In [21], the authors used the optimal control strategies to minimize the cost of interventions,
considering re-infection and post-exposure interventions. Recently, the optimal control of TB model with case
detection and treatment was demonstrated in [5]. In this paper, we also applied the optimal control to the math-
ematical model of TB transmission with logistic growth human population. Our goal is to minimize the number
of latent and infectious individual and the cost of implementing the optimal prevention and treatment controls
of TB infection on the model.

Studies of dynamic systems with optimal control theory to the epidemiological models such as
malaria[4, 10], TB-HIV co-infection [2, 11] and also TB infection[3, 5, 13, 21] have been done. For instance, the
impact of optimal control on the model that describes the dynamics of the spread of TB by a factor of resistance
to anti-TB drugs and also the migration of healthy sub-population in the two regions was depicted in [3]. The
optimal control strategies associated with case holding and case finding based on a two-strain TB model was
proposed in [13]. In [21], the authors used the optimal control strategies to minimize the cost of interventions,
considering re-infection and post-exposure interventions. Recently, the optimal control of TB model with case
detection and treatment was demonstrated in [5]. In this paper, we also applied the optimal control to the math-
ematical model of TB transmission with logistic growth human population. Our goal is to minimize the number
of latent and infectious individual and the cost of implementing the optimal prevention and treatment controls
of TB infection on the model.

2 Model formulation

We consider the population dynamic of TB corresponding to logistic growth of human population is as-
sumed homogeneous and closed. The total population density N is divided into four class, namely, the sus-
ceptible class (S), the latent class (L), infected with TB class (I), and the recovered with temporary immunity
class (R). The growth rate constant and the carrying capacity of the environment corresponding to the human
population are denoted by r and K respectively.

Natural mortality is proportional to the size of subpopulation with the rate µ. Additional mortality due to
TB disease only affects the class I with the rate δ. Transmission of Mycobacterium TB occurs after adequate
contact between vulnerable populations with the infected population. In each unit of time, susceptible individ-
uals have an average contact βI that will be sufficient to transmit the disease. Thus the rate of the population is
susceptible to latent infection βSI . The latently infected individuals progress to infectious class at rate α. The
controls u1 and u2 represents the efforts of the TB prevention (vaccination) and the anti-TB treatment at rate a
respectively. The natural recovery of the class I is denoted by γ. The immunity of the recovered class is lost at
a rate of b per unit time. All parameters and variables used in the nonnegative value in order to have biological
significance.

We use the transmission diagram as in Fig. 1 for deriving our model, where N = S + L+ I +R.
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2.1 TB model without controls

Based on the above assumption, the model of tuberculosis transmission with logistic growth human pop-
ulation without control variables is given as:

dS
dt = rN

(
1− N

K

)
+ bR− βSI − µS

dL
dt = βSI − (µ+ α)L
dI
dt = αL− (δ + µ+ γ)I
dR
dt = γI − (µ+ b)R.

(1)

Therefore, the change rate of the total population is given by following equation

dN

dt
= rN

(
1− N

K

)
− δI − µN.

Since N = S + L+ I +R the model (1) can now be written as:
dN
dt = rN

(
1− N

K

)
− δI − µN

dL
dt = β(N − L− I −R)I − (µ+ α)L
dI
dt = αL− (δ + µ+ γ)I
dR
dt = γI − (µ+ b)R

(2)

The region of biological interest of model (2) is Ω =
{

(N, L, I,R) ∈ <4
+

}
Model (2) is well-posed in the non-negative region because the vector field on the boundary does not point

to the exterior. So, if it is given an initial condition in the region, the solution is defined for all time t ≥ 0 and
remains in the region.

2.2 TB model with controls

The model (1) is now modified with control functions u1 and u2 as control for the system to reduce the
spread of TB using logistic growth human population model. The TB model (1) becomes

dS
dt = rN

(
1− N

K

)
+ bR− (1− u1)βSI − uS

dL
dt = (1− u1)βSI − (u+ α)L
dI
dt = αL− (δ + u+ γ + au2)I
dR
dt = (γ + au2)I − (u+ b)R.

(3)

In this case, u describe the natural mortality.
The control functions u1 and u2 are defined on interval [0, tf ], where 0 ≤ ui(t) ≤ 1, t ∈ [0, tf ], i = 1, 2,

and tf denotes the end time of the controls. Our goal is to minimize the number of individuals with latent and
active tuberculosis infections and the cost of applying prevention and treatment controls as low as possible. For
this, we consider the objective functional

J(u1, u2) =

tf∫
0

{
L+ I +

1

2
c1u1

2 +
1

2
c2u2

2

}
dt (4)
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where c1 and c2 are the weighting positive constants for TB prevention and anti-TB treatment efforts
respectively. Here, we choose a quadratic cost on the controls for measuring the cost of epidemic controls[6, 13].
The term c1u

2
1 and c2u22 describe the relative cost of interventions associated with TB prevention and anti-TB

treatment controls respectively. Larger values of c1 and c2 will imply more expensive implementation cost for
TB prevention and anti-TB treatment. We seek an optimal control u∗1 and u∗2 such that

J(u∗1, u
∗
2) = min

Γ
J(u1, u2) (5)

where Γ = {ui |0 ≤ ui ≤ 1, i = 1, 2}.

3 Model analysis

In this section, we present the equilibrium and stability analysis of the model (2).

3.1 Equilibria of the model

The disease-free equilibrium of the model (2) is given by E0 = (N0, 0, 0, 0) with N0 = K(r−u)
r . The

equilibriumE0 exists if r−u > 0. The stability of this equilibrium will be investigated using the next generation
operator [22]. Using the operator, we calculate the basic reproduction ratio R0 of the model (2). It is given by

R0 =
αβK(r − u)

(u+ α) (δ + u+ γ)r

This ratio describes the average number of new cases of an infection caused by one typical infected indi-
vidual, in a population consisting of susceptible only[9].

The model (2) also has endemic equilibrium E1 = (N1, L1, I1, R1) where

N1 = 1
R0

K (r−u)
r +

(
δ+u+γ
α + 1 + γ

u+b

)
I1,

L1 = δ+u+γ
α I1,

R1 = γ
u+b I1,

I1 = r
δN1

(
1− N1

K

)
− u

δN1.

The equilibrium E1 exist if r − u > 0 and 0 < N1 <
K (r−u)

r .

3.2 Local stability analysis

Now, let us analyze the local stability of the equilibriums.

Theorem 1. The disease-free equilibrium E0 is locally asymptotically stable if R0 < 1.

Proof. Linearizing model (2) near the equilibrium E0 gives eigenvalues − (r − u) , − (u+ b) and the roots of
quadratic equation x2 + a1x+ a2 = 0 where

a1 = 2u+ α+ δ + γ,

a2 = (u+ α) (δ + u+ γ) (1−R0) .

We can see that based on the existence of the equilibrium E0, the all eigenvalues are negative. While the
quadratic equation has negative roots if a1 > 0, a2 > 0 or equivalently R0 < 1.

Stability of the endemic equilibrium E1 is not easy to confirm analytically because it is not really tractable
mathematically. Numerically, the endemic equilibrium is locally asymptotically stable. This can be seen in Fig.
2. We use three different initial conditions for the simulation. Those orbits tend to a same point as time evolves.

Theorem 2. The endemic equilibrium E1 is locally asymptotically stable if R0 > 1.
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4 Analysis of optimal control

In this section, we analyze model (3), that is, model of the spread of TB in population using optimal
control strategy. Consider the objective function (4) to model (3) as the state system. Necessary conditions to
determine the optimal control u∗1 and u∗2 that satisfy the condition (5) with constraint model (3) will be solved
by the Pontryagin’s Maximum Principle[7]. This principle converts (3), (4) and (5) into a problem of minimizing
pointwise a Hamiltonian H, with respect to (u1, u2), that is

H = L+ I + 1
2 c1u1

2 + 1
2 c2u2

2 + λ1
(
rN
(
1− N

K

)
+ bR− (1− u1)βSI − uS

)
+λ2 ((1− u1)βSI − (u+ α)L)
+λ3 (αL− (δ + u+ γ + au2) I) + λ4 ((γ + au2) I − (u+ b)R) .

The variable λi, i = 1, 2, 3, 4, are called adjoint variables satisfying the following co-state equations TB
model (1) becomes

dλ1
dt = λ1 ((1− u1)βI + u) − λ2 (1− u1)βI
dλ2
dt = −1 + λ2(u+ α)− λ3α
dλ3
dt = −1 + λ1 (1− u1)βS − λ2 (1− u1)βS + λ3 (δ + u+ γ + au2)− λ4 (γ + au2)
dλ4
dt = −λ1b+ λ4 (u+ b)

(6)

where the transversality conditions

λ1(tf ) = 0, λ2(tf ) = 0, λ3(tf ) = 0, λ4(tf ) = 0

.
By applying Pontryagin’s Maximum Principle and the existence result for the optimal control pairs[14, 16],

we obtain the following theorem.

Theorem 3. The optimal control pair (u∗1, u
∗
2) that minimizes J(u1, u2) over Γ is given by

u∗1 = min

{
max

{
0,

βSI

c1
(λ2 − λ1)

}
, 1

}
(7)

u∗2 = min

{
max

{
0,

aI

c2
(λ3 − λ4)

}
, 1

}
. (8)

where λi, i = 1, 2, 3, 4, is the solution of the co-state equation (6) with the transversality conditions λ1(tf ) =
0, λ2(tf ) = 0, λ3(tf ) = 0, λ4(tf ) = 0.

Proof. Using the result of Pontryagins Maximum Principle, there exist adjoint variables satisfying

dλ1
dt

= −∂H
∂S

, λ1 (tf ) = 0, . . . ,
dλ4
dt

= −∂H
∂R

, λ4 (tf ) = 0
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.
The optimal control (u1, u2) can be solve from the optimality condition,

∂H

∂u1
= 0,

∂H

∂u2
= 0,

and we have

0 =
∂H

∂u1
= c1u1 + (λ1 − λ2)βSI

0 =
∂H

∂u2
= c2u2 + (λ4 − λ3) aI.

Hence, we obtain

µ∗
1

=
βSI

c1
(λ2 − λ1) , u∗2 =

aI

c2
(λ3 − λ4)

Then, by the bounds on the controls, it is easy to obtain and in the form (7) and (8) respectively.
Next we discuss the numerical solutions of the optimality system. The optimality system is the state and

adjoint systems coupled with the optimal control characterization.

5 Numerical simulation

In this section, we present the numerical simulations of model (3) with and without optimal control. An
iterative scheme is used for solving the optimality system. We start to solve the state equations by the forward
Runge-Kutta method of order 4. Then we use the backward Runge-Kutta method of order 4 to solve the co-state
equations with the transversality conditions. Finally, the controls are updated by using a convex combination of
the previous controls and the value from the characterizations for u∗1 and u∗2. This iterative process is stopped
when current state, co-state and control values converge sufficiently[14].

Three scenarios of the control strategies are explored. In the first scenarios, we consider only the TB
preventive treatment (control u∗1 alone). In the second scenario, we use only the anti-TB treatment (control
u∗2 alone). Finally, we implement the combination of the TB preventive and anti-TB treatments (controls
u∗1 and u∗2). The numerical parameters are shown in Table 1. In these simulations, we use initial condition
(S (0) , L (0) , I (0) , R (0)) = (500, 50, 30, 20), weighting constants c1 = c2 = 50 and the carrying capacity
K = 100000.

Table 1: Parameters values for simulations
Parameter Value Ref. Parameter Value Ref.
r 0.02 assumed α 0.00023 [12]
b 0.08182 assumed γ 0.2 [5]
β 0.001 [12] δ 0.0575 [12]
u 0.0154 [3] α 2 [5]

5.1 First scenario

For this scenario, the TB preventive treatment (u∗1) is used to optimize the objective function J while we
set the anti-TB treatment control u∗2 to zero. The profile of the optimal prevention control u∗1 could be seen in
Fig. 3. To eradicate the TB infected in 10 years, the prevention control should be given intensively almost 6
years before dropping to the lower bound in the end of 10th year.

The dynamic of the latent and infected TB populations of this scenario are given in Fig. 4. We observe
in the left of Fig. 4, that the control strategy decreases the number of latent population significantly compared
with the case without control. On the contrary, the result in the right of Fig. 4 shows that there is no significant
difference in the number of TB infected populations with and without control. This may be due to the absence
of the anti-TB treatment against TB infection.
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5.2 Second scenario

For the second scenario, we set the prevention control u∗1 to zero and use only the anti-TB treatment control
u∗2 to optimize the objective function J. The control profile of anti-TB treatment is shown in Fig. 5. We see that,
to reduce the TB infection in 10 years, the anti-TB treatment should be given intensively in almost one year
before dropping gradually to lower bound at the end 10th year. The Fig. 6 are showing the effects of the optimal
anti-TB treatment strategy on the latent and infected TB populations respectively. From these figures it can be
observed that the optimal anti-TB treatment control has positive impact on decreasing the number of latent and
infected TB populations compared to numbers without control.

 

Fig. 5. The profile of the optimal treatment control *u2  
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5.3. Third scenario 
 

For this scenario, we use all two controls *u1  and  *u2  to optimize the objective function J. The 

profile of the optimal controls *u1  and  *u2  of this scenario is in Fig. 7. To reduce TB cases in 10 years, 

the preventive and anti-TB treatment controls should give full effort in the beginning of the TB disease 

spread and then the effort can be smoothly reduced after one and the middle year respectively. We 

observed in Fig. 8 that the optimal control strategies resulted in a decrease in the numbers of latent L and 

infected I populations compared to the numbers without control. This scenario shows that the 

combination of the prevention and anti-TB treatment controls the most effectively to minimize the 

number of the latent and infected TB populations. 

Fig. 5: The profile of the optimal treatment control u∗2
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5.3 Third scenario

For this scenario, we use all two controls u∗1 and u∗2 to optimize the objective function J. The profile of
the optimal controls u∗1 and u∗2 of this scenario is in Fig. 7. To reduce TB cases in 10 years, the preventive and
anti-TB treatment controls should give full effort in the beginning of the TB disease spread and then the effort
can be smoothly reduced after one and the middle year respectively. We observed in Fig. 8 that the optimal
control strategies resulted in a decrease in the numbers of latent L and infected I populations compared to the
numbers without control. This scenario shows that the combination of the prevention and anti-TB treatment
controls the most effectively to minimize the number of the latent and infected TB populations.
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Numerical simulations of the model suggest that if we have to use only one control, then the anti-TB
treatment strategy is more effective than TB prevention.

6 Conclusion

In this paper, we have devoted a deterministic model of tuberculosis transmission considering logistically
growing human population. The model also incorporates TB prevention and anti-TB treatment efforts as control
strategies to reduce the spread of the disease. For the model without controls, we obtain the basic reproduction
number R0 which determines the stability of the equilibriums of the model. The disease-free equilibrium is
locally asymptotically stable if R0 < 1 and the endemic equilibrium is tend to locally asymptotically stable
if R0 > 1. Using the Pontryagin Maximum Principle, the optimal control theory is then derived analytically.
Numerical simulations of the control model (3) showed that the control strategy of the TB prevention only
has positive impact on decreasing the number of latent TB populations. On the contrary, there is no significant
difference in the number of TB infected populations with and without control using the TB prevention only.
This may be due to the absence of the anti-TB treatment against TB infection. The simulation results of the
optimal control indicate that the combination TB prevention and anti-TB treatment give better result in term
minimizing the number of the latent and infected populations. The numerical analysis also indicates that the
anti-TB treatment strategy is more effective than TB prevention if we use only one control strategy.
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