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Abstract. Tuberculosis (TB) is a common deadly infectious disease caused mainly by Mycobacterium tuber-
culosis. Approximately, one-third of the world’s population is infected by TB. Therefore, the effectiveness of
treatment and control strategies to reduce the spread of TB is still needed. In this paper, we proposed and
analyzed a mathematical modelling of TB transmission considering logistically growing human population.
The model also incorporates TB prevention and anti-TB treatment efforts as control strategies to minimize
the number of latent and infectious populations. For model without controls, we obtain the basic reproduction
number which determines the stability of the equilibriums of the model. The disease free equilibrium is locally
asymptotically stable whenever the reproduction number is less than unity. Using the Pontryagin Maximum
Principle, the optimal control theory is then deduced analytically. Numerical simulations are further conducted
to confirm the effectiveness of the optimal treatments. According to the simulation results, the combination TB
prevention and anti-TB treatment give better result in term minimizing the number of the latent and infected
populations. However, as shown by the numerical results, the anti-TB treatment strategy is more effective than
TB prevention if we use only one control.
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1 Introduction

Tuberculosis (TB) is a common deadly infectious disease caused mainly by Mycobacterium tuberculosis,
which most commonly affects the lung. It is transmitted from person to person via droplets from the throat and
lungs of people with the active respiratory diseasel! 8. According to WHO, one-third of the world’s population
has latent TB (no symptoms), which means have been infected by TB bacteria but are not (yet) ill with the
disease and cannot transmit the diseasel!”). The symptoms of active TB of the lung are coughing, sometimes
with sputum or blood, chest pains, weakness, weight loss, fever and night sweats. This can lead to delays in
seeking care, and results in transmission of bacteria to others. Tuberculosis mostly atfects young adults, in their
most productive years.

Tuberculosis 1s a preventable and treatable disease. For prevention of TB, the BCG vaccine is widely used,
which is 80% effective in preventing TB23). Tuberculosis is treatable with a six month course of antibiotics %),
There are two types of the treatment. The treatment of latent TB is called chemoprophylaxis and treatment
of active TB is called therapeutics. The treatment for an active TB lasts long. Therefore control strategies
have been developed for compliance to TB treatment. DOTS (Directly Observed Treatment, Short-Course) are
a treatment program used for compliance with treatment of drug-sensitive TB. Another control program is
DOTS-plus, which is developed for compliance with treatment of drug-resistant TBPY). If not treated, active-
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TB can be fatal, killing up to 60% of patients. In 2014, 9.6 million people fell ill with TB and 1.5 million died
from the disease!'”].

Mathematical models of transmission dynamics of TB is an important tool in analyzing the disease control
as they provide short and long term prediction of TB incidence. Mathematical models may be helpful to improve
our understanding of the major contributing factors to the epidemic. The dynamics of the transmission TB
model have been addressed by researchers!! % 8- 121, These models assume that the recruitment rate is constant.
In order to study disease dynamics for the model with more demographic effects, it should be assumed that the
recruitment is density-dependent. Motivated by infectious diseases models in the literature!'> 171 we propose a
new model to investigate the spread of TB infection in a population with the assumed that the recruitment rate
is a logistic growth.

Studies of dynamic systems with optimal control theory to the epidemiological models such as
malarial®- 191 TB-HIV co-infection [ !l and also TB infection!!: ¥ 313 21l have been done. For instance, the
impact of optimal control on the model that describes the dynamics of the spread of TB by a factor of resistance
to anti-TB drugs and also the migration of healthy sub-population in the two regions was depicted in [3]. The
optimal control strategies associated with case holding and case finding based on a two-strain TB model was
proposed in [13]. In [21], the authors used the optimal control strategies to minimize the cost of interventions,
considering re-infection and post-exposure interventions. Recently, the optimal control of TB model with case
detection and treatment was demonstrated in [5]. In this paper, we also applied the optimal control to the math-
ematical model of TB transmission with logistic growth human population. Our goal is to minimize the number
of latent and infectious individual and the cost of implementing the optimal prevention and treatment controls
of TB infection on the model.

Studies of dynamic systems with optimal control theory to the epidemiological models such as
malaria- 19/, TB-HIV co-infection (%1 and also TB infection!® 3 1321 have been done. For instance, the
impact of optimal control on the model that describes the dynamics of the spread of TB by a factor of resistance
to anti-TB drugs and also the migration of healthy sub-population in the two regions was depicted in [3]. The
optimal control strategies associated with case holding and case finding based on a two-strain TB model was
proposed in [13]. In [21], the authors used the optimal control strategies to minimize the cost of interventions,
considering re-infection and post-exposure interventions. Recently, the optimal control of TB model with case
detection and treatment was demonstrated in [5]. In this paper, we also applied the optimal control to the math-
ematical model of TB transmission with logistic growth human population. Our goal is to minimize the number
of latent and infectious individual and the cost of implementing the optimal prevention and treatment controls
of TB infection on the model.

2 Model formulation

We consider the population dynamic of TB corresponding to logistic growth of human population is as-
sumed homogeneous and closed. The total population density [V is divided into four class, namely, the sus-
ceptible class (), the latent class (L), infected with TB class ([), and the recovered with temporary immunity
class (R). The growth rate constant and the carrying capacity of the environment corresponding to the human
population are denoted by r and K respectively.

Natural mortality is proportional to the size of subpopulation with the rate p. Additional mortality due to
TB disease only affects the class / with the rate 4. Transmission of Mycobacterium TB occurs after adequate
contact between vulnerable populations with the infected population. In each unit of time, susceptible individ-
uals have an average contact 57 that will be sufficient to transmit the disease. Thus the rate of the population is
susceptible to latent infection 3S1. The latently infected individuals progress to infectious class at rate «v. The
controls u; and uy represents the efforts of the TB prevention (vaccination) and the anti-TB treatment at rate a
respectively. The natural recovery of the class [ is denoted by ~. The immunity of the recovered class is lost at
a rate of b per unit time. All parameters and variables used in the nonnegative value in order to have biological
significance.

‘We use the transmission diagram as in Fig. | for deriving our model, where N = S+ L + I + R.
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Fig. 1: Tuberculosis transmission diagram

2.1 TB model without controls

Based on the above assumption, the model of tuberculosis transmission with logistic growth human pop-
ulation without control variables is given as:

L =rN(1-f)+bR—BSI—puS
% =351 - (p+a)L
A (1
G =ol =0+ p+)1
U — AT — (u+b)R.
Therefore, the change rate of the total population is given by following equation
IN N
((T —rN (1 - R) — 61 — uN.
Since N = §+ L + I + R the model (1) can now be written as:
4 —yN (1 %) 61— puN
a4 — BN —-L-T1-R)JI-(u+a)L @
i: al — (8 +p+ )1
G=—-(p+bR

The region of biological interest of model (2) is (2 = {(N, L I,R)e 5]?4_}

Model (2) is well-posed in the non-negative region because the vector field on the boundary does not point
to the exterior. So, if it is given an initial condition in the region, the solution is defined for all time ¢ > 0 and
remains in the region.

2.2  TB model with controls

The model (1) is now modified with control functions u; and u» as control for the system to reduce the
spread of TB using logistic growth human population model. The TB model (1) becomes

% =rN(L- %)+ bR~ (1—u1)BSI —u§
& = (1 —uy)B5T — (u+ )L

S =al—-(d+u+v+au)l

% = (v+ au2)l — (u+b)R.

€))

In this case, u describe the natural mortality.

The control functions u; and wu are defined on interval [0, 1], where 0 < u;(t) <1, t € [0,£7],1=1,2,
and t; denotes the end time of the controls. Our goal is to minimize the number of individuals with latent and
active tuberculosis infections and the cost of applying prevention and treatment controls as low as possible. For
this, we consider the objective functional

ty
J(ur, uz) = / {L + I+ % crun? + %cgu.g?} dt )
0
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where ¢; and ¢ are the weighting positive constants for TB prevention and anti-TB treatment efforts
respectively. Here, we choose a quadratic cost on the controls for measuring the cost of epidemic controls!® 13,
The term cl'uf and CQ'U-% describe the relative cost of interventions associated with TB prevention and anti-TB
treatment controls respectively. Larger values of ¢; and ¢, will imply more expensive implementation cost for
TB prevention and anti-TB treatment. We seek an optimal control u] and u3 such that

J(ug, uy) = n}in J(ug, up) (5

where I' = {u; [0 < u; <1, i =1, 2}.

3 Model analysis

In this section, we present the equilibrium and stability analysis of the model (2).

3.1 Equilibria of the model

The disease-free equilibrium of the model (2) is given by Ey = (N, 0, 0, 0) with Ny = 2= The
equilibrium Fy exists if r —u > (. The stability of this equilibrium will be investigated using the next generation
operator 22]. Using the operator, we calculate the basic reproduction ratio R of the model (2). It is given by

affK(r —u)
(u+e)(d4+u+y)r

Ry =

This ratio describes the average number of new cases of an infection caused by one typical infected indi-
vidual, in a population consisting of susceptible only*).
The model (2) also has endemic equilibrium Fy = (Ny, Ly, [, Ry) where

1 K{r—u) d4+uty ]
N=g—7+ (—“ +1+ THJ) L,
AT N r
PR Y

The equilibrium E existif r — u > 0and 0 < N; < M

3.2 Local stability analysis
Now, let us analyze the local stability of the equilibriums.
Theorem 1. The disease-free equilibrium Ey is locally asymptotically stable if Ry < 1.

Proof. Linearizing model (2) near the equilibrium £ gives eigenvalues — (r — u) , — (u + b) and the roots of
quadratic equation 2 + a1 + ap = 0 where
ap =2u+ao+4d+ 7,
a2 = (u+«) (6 +u-+~)(1— Ro).
We can see that based on the existence of the equilibrium FY, the all eigenvalues are negative. While the
quadratic equation has negative roots if a; > (0, ay > 0 or equivalently Ry < 1.
Stability of the endemic equilibrium E is not easy to confirm analytically because it is not really tractable

mathematically. Numerically, the endemic equilibrium is locally asymptotically stable. This can be seen in Fig.
2. We use three different initial conditions for the simulation. Those orbits tend to a same point as time evolves.

Theorem 2. The endemic equilibrium L1 is locally asymptotically stable if Ry > 1.
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Fig. 2: Phase portrait of model (2) in L — [ plane

4 Analysis of optimal control

In this section, we analyze model (3), that is, model of the spread of TB in population using optimal
control strategy. Consider the objective function (4) to model (3) as the state system. Necessary conditions to
determine the optimal control ] and u3 that satisfy the condition (5) with constraint model (3) will be solved
by the Pontryagin’s Maximum Principle!”l. This principle converts (3), (4) and (5) into a problem of minimizing
pointwise a Hamiltonian H, with respect to (11, us), that is

H=L+T+cu? 4 Leyus® + 0 (hN (1 X) 4 bR — (1 — wy)BSI — uS)
+Aa ((1— ‘u.l) aSI — (u+ ;1-) L)
+Az (@l — (0 +ut v +aup) ) + A ((v + aug) [ = (ut b) R).

The variable A;,7 = 1, 2, 3, 4, are called adjoint variables satisfying the following co-state equations TB
model (1) becomes

=AM (=) Bl +u) — A (1 —uy) BI

= =14 M(u+a)—Asa

=—=14+M1-u)B5 =X (1 =) B35+ M (04 u+~+ auz) — M (v + auy)
= —Atb+ Ay (u+b)

(6)

SPeepas

where the transversality conditions

By applying Pontryagin’s Maximum Principle and the existence result for the optimal control pairs!'* 161,
we obtain the following theorem.

Theorem 3. The optimal control pair (ui, us) that minimizes J (w1, ua) over I' is given by

BST
u} = min {max {0, - . (A2 — /\1)} , 1} (7
°1
. ) al
wy = min {max {0. - (Ag = )\4)} ; 1} . ®
&)

where ;i = 1, 2, 3, 4, is the solution of the co-state equation (6) with the transversality conditions Ay (t f) =
0, /\Q(If) =10, /\;;(ﬂf) =0, /\4(ﬁf) =0

Proof. Using the result of Pontryagins Maximum Principle, there exist adjoint variables satisfying

d\ _ 0H d\  oH

& =85 M(tp)=0,..., i - aR A (tp) =0
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The optimal control (g, u2) can be solve from the optimality condition,

oH  9H 0
6'“-1 - 8'“-2 o
and we have
JdH
0= Ju, = + (A1 — A2) BSI
0= o _ etz + (A — Ag) al.
3'!.[-2
Hence, we obtain

8851 al
= - Ao = A),uy=—(Ng— A
T (A2 = A1), ug - (A3 — A4)
Then, by the bounds on the controls, it is easy to obtain and in the form (7) and (8) respectively.
Next we discuss the numerical solutions of the optimality system. The optimality system is the state and

adjoint systems coupled with the optimal control characterization.

5 Numerical simulation

In this section, we present the numerical simulations of model (3) with and without optimal control. An
iterative scheme is used for solving the optimality system. We start to solve the state equations by the forward
Runge-Kutta method of order 4. Then we use the backward Runge-Kutta method of order 4 to solve the co-state
equations with the transversality conditions. Finally, the controls are updated by using a convex combination of
the previous controls and the value from the characterizations for uj and uj. This iterative process is stopped
when current state, co-state and control values converge sufficiently!! ],

Three scenarios of the control strategies are explored. In the first scenarios, we consider only the TB
preventive treatment (control u] alone). In the second scenario, we use only the anti-TB treatment (control
u; alone). Finally, we implement the combination of the TB preventive and anti-TB treatments (controls
u] and u3). The numerical parameters are shown in Table 1. In these simulations, we use initial condition
(5(0),L(0),I(0),R(0))= (500,50, 30, 20), weighting constants ¢; = ¢ = 50 and the carrying capacity
K = 100000.

Table 1: Parameters values for simulations

Parameter Value Ref. Parameter Value Ref.
r 0.02 assumed o 0.00023  [12]
b 0.08182 assumed =~ 0.2 [51
3 0.001 [12] § 0.0575 [12]
" 0.0154 [31 o 2 [51

5.1 First scenario

For this scenario, the TB preventive treatment (u]) is used to optimize the objective function J while we
set the anti-TB treatment control u5 to zero. The profile of the optimal prevention control ] could be seen in
Fig. 3. To eradicate the TB infected in 10 years, the prevention control should be given intensively almost 6
years before dropping to the lower bound in the end of 10th year.

The dynamic of the latent and infected TB populations of this scenario are given in Fig. 4. We observe
in the left of Fig. 4, that the control strategy decreases the number of latent population significantly compared
with the case without control. On the contrary, the result in the right of Fig. 4 shows that there is no significant
difference in the number of TB infected populations with and without control. This may be due to the absence
of the anti-TB treatment against TB infection.
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Fig. 4: The dynamic of latent and infected populations using control ]

5.2 Second scenario

For the second scenario, we set the prevention control u] to zero and use only the anti-TB treatment control
wy to optimize the objective function J. The control profile of anti-TB treatment is shown in Fig. 5. We see that,
to reduce the TB infection in 10 years, the anti-TB treatment should be given intensively in almost one year
betore dropping gradually to lower bound at the end 10th year. The Fig. 6 are showing the effects of the optimal
anti-TB treatment strategy on the latent and infected TB populations respectively. From these figures it can be
observed that the optimal anti-TB treatment control has positive impact on decreasing the number of latent and
infected TB populations compared to numbers without control.

Time (years)

Fig. 5: The profile of the optimal treatment control 3
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5.3 Third scenario

For this scenario, we use all two controls ] and u} to optimize the objective function J. The profile of
the optimal controls u} and w5 of this scenario is in Fig. 7. To reduce TB cases in 10 years, the preventive and
anti-TB treatment controls should give full effort in the beginning of the TB disease spread and then the effort
can be smoothly reduced after one and the middle year respectively. We observed in Fig. 8 that the optimal
control strategies resulted in a decrease in the numbers of latent L and infected I populations compared to the
numbers without control. This scenario shows that the combination of the prevention and anti-TB treatment
controls the most effectively to minimize the number of the latent and infected TB populations.
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Fig. 8: The dynamic of latent and infected populations using controls u] and w3
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Numerical simulations of the model suggest that if we have to use only one control, then the anti-TB
treatment strategy is more effective than TB prevention.

6 Conclusion

In this paper, we have devoted a deterministic model of tuberculosis transmission considering logistically
growing human population. The model also incorporates TB prevention and anti-TB treatment efforts as control
strategies to reduce the spread of the disease. For the model without controls, we obtain the basic reproduction
number Ry which determines the stability of the equilibriums of the model. The disease-free equilibrium is
locally asymptotically stable if By < 1 and the endemic equilibrium is tend to locally asymptotically stable
if Ry > 1. Using the Pontryagin Maximum Principle, the optimal control theory is then derived analytically.
Numerical simulations of the control model (3) showed that the control strategy of the TB prevention only
has positive impact on decreasing the number of latent TB populations. On the contrary, there is no significant
difference in the number of TB infected populations with and without control using the TB prevention only.
This may be due to the absence of the anti-TB treatment against TB infection. The simulation results of the
optimal control indicate that the combination TB prevention and anti-TB treatment give better result in term
minimizing the number of the latent and infected populations. The numerical analysis also indicates that the
anti-TB treatment strategy is more effective than TB prevention if we use only one control strategy.
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