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Abstract 

 

Tuberculosis is caused by Mycobacterium tuberculosis. The disease is still one of 

the major killer of humans. We derive and analyzed mathematical modeling of 

drug resistance in tuberculosis transmission. We use control on treatment to 

reduce of the number of infected population. For model without control optimal, 

we have the basic reproduction number for the sensitive and resistant tuberculosis 

infection in the first area and tuberculosis infection in the second area. This 

number determine the existence and stability of equilibria. Then, the Pontryagin 

Maximum Principle is applied to derive necessary conditions for the optimal 

control of the tuberculosis disease. Finally, numerical simulations are performed 

to describe the analytical results. 

 

Keywords: mathematical model, tuberculosis, optimal control, resistance.  

 

 

1 Introduction 

 

    Tuberculosis (TB) is a deadly infectious disease caused by Mycobacterium 

tuberculosis (MTB). There is about one-third of the world's population has latent 

TB, which means people have been infected by MTB but are not (yet) ill with  
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disease and cannot transmit the disease. TB is spread from person to person 

through the air. When people with pulmonary TB cough, sneeze or spit, they 

propel the TB germs into the air. Someone needs to breathe just a few of these 

germs to be infected. In 2011, 8.7 million people fell ill with TB and 1.4 million 

died from TB. Standard anti-TB drugs have been used for decades, and resistance 

to the medicines is growing. Disease strains that are resistant to a single anti-TB 

drug have been documented in every country surveyed [11]. Hence, a good 

understanding of the effectiveness of the treatment and control strategies in 

different regions of the world still needed 

  Study of the spread of TB disease have been conducted by several 

researchers [1,4,5,10]. Other forms of mathematical models can be used to control 

the spread of disease is to formulate the application of optimal control to prevent 

and control TB disease with minimum costs [6]. In [8], the authors have 

developed a model of the spread of tuberculosis by vaccination and treatment in 

patients with TB. While in [10], the authors have extended a model of the spread 

of TB disease by observing the migration of healthy subpopulations in the two 

regions without the factor of resistance to anti- TB drugs. Therefore, in this paper 

will be constructed a mathematical model that describes the dynamics of the 

spread of TB by a factor of resistance to anti-TB drugs and also the migration of 

healthy sub-population in the two regions. In addition, we further carried out 

qualitative optimal control analysis to reduce the number of TB patients with the 

resistance factor. We use Pontryagin Maximum Principle to find the necessary 

conditions for the optimal control of the tuberculosis disease. 

 

 

2.  Model Formulation  

 

 In this paper, we extended the model of tuberculosis that has been 

developed in [10]. Model of tuberculosis SIR by a factor of migration in human 

populations are vulnerable and transmission does not occur during the migration 

process. This model consists of two major subpopulations. Each subpopulation is 

divided into three classes based on the epidemiology status that is susceptible (Si), 

infected (Ii), and recovered , with . For the class of subpopulations 

infected first divided into two classes, namely class -infected sensitive )( sI  and 

resistant to the class of anti- TB drugs )( rI . Recruitment in each subpopulation  
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only in the susceptible class at a constant rate i , with . 

 Natural mortality is proportional to the population size of each region with 

the rate  1   and 2 on the first and second regions, respectively. Additional 

mortality due to TB disease only affects the class rs II ,  , and 2I  with the rate of 

the first region 1d and the second region 2d . Transmission of MTB occur after 

adequate contact between vulnerable populations with the infected population in 

each subpopulation. In each unit of time, susceptible individuals have an average 

contact ,, rrss II  and  22I  that will be sufficient to transmit the disease. Thus 

the rate of the population is susceptible to infection rrss ISIS 11 , , and 222 IS . 

Each individual is infected were given treatment )(u  with cure rate for treatment 

are s and r , respectively healing rate of the population is infected with sensitive 

and resistant to the treatment. While the natural healing rate of diseased 

individuals is constant sr  ,  and 2 . All parameters and variables used in the 

nonnegative value in order to have biological significance.   

 

  
 

Figure 1. Transmission diagram for tuberculosis disease 

 

 

Based on the assumption and transmission diagram, we can develop the 

model population as follows: 
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Model (1) has the biological domain as follows:   7
22211 ,,,,,,  RISRIIS rs . 

 

3. Model Analysis  

 

First, we analyze the model (1) without control function u, that is, without 

treatment. Let defined the parameter 
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The parameter 0R  is called the basic reproduction ratio. Parameters sR0 , rR0 , 

and 02R  is called basic reproduction ratio for the sensitive,  resistant TB 

infection in the first area and TB infection in second area, respectively. In this 

study, 0R obtained by constructing a matrix that generates a new number of 

infected individuals. This matrix is called the Next Generation Matrix [2].  

Model (1) has six equilibriums (with respect to 

coordinate ),,,,,,( 22211 RISRIIS rs ), these are 

a. )0,0,,0,0,0,( 21111 SSE   is called disease-free equilibrium in both regions, with 

  
211221

121211
22

211221

222121
11 ,



















aa

aa
S

aa

aa
S  

b. ),,,0,0,0,( 222222122 RISSE   is called the disease-free equilibrium in the first  
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area, but endemic in the second area, with 
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 The equilibrium   exists if and only if   102 R . 

 

c. )0,0,,,0,,( 23133133 SRISE s  is called the disease-free equilibrium  in second 

area but infective sensitive endemic in the first area, with 
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 The equilibrium  exists if and only if   10 sR . 

 

d. )0,0,,,,0,( 24144144 SRISE r is called the disease-free equilibrium in second 

area but resistant  endemic in the first area, with 
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 The equilibrium  exists if and only if   10 rR . 

 

e. ),,,,0,,( 252525155155 RISRISE S  is called sensitive endemic equilibrium in the 

first area and endemic in the second area, with 
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  The equilibrium 5E  exists if and only if it satisfies the following 

conditions 
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f. ),,,,,0,( 262626166166 RISRISE r  is called resistant endemic equilibrium in the 

first area and endemic in the second area, with 
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 The equilibrium  exists if and only if it satisfies the following conditions 
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 A criterion for the stability of the disease-free equilibrium is given in the 

following theorem.  

 

Theorem 1. 

Disease-free equilibrium is locally asymptotically stable if and only if 10 R . 
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Proof. Local stability of the disease-free equilibrium 1E  is determined by the 

eigenvalues of the Jacobian matrix of the model (1) at 1E . We get the eigenvalues 

are 
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While that calculation is obtained that both 6  and 7  are negative. From these 

results can be concluded that the equilibrium 1E  is locally asymptotically stable 

if only if 10 R , with  },,max{ 02000 RRRR rs .  

 Next, we will be reviewed the stability of the five endemic equilibriums iE , 

for  i{2,3,…,6}. From the calculation, the eigenvalues of the Jacobian matrix at 

the point iE , for i{2,3,…,6} , is difficult to determine analytically. Hence, the 

stability of the endemic equilibriums will be performed numerically. We use three 

initial values  for simulations. It aims to find out where the convergence of each 

solution given initial value. Numerically, the endemic equilibrium 2E is tend to 

locally asymptotically stable if 102 R , as given in Figure 2.  

 

 

 

Figure 2. Phase portrait of model (1) for 2E  
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Figure 3. Phase portrait of model (1) for 3E (left) and 4E (right) 

 

 

      
Figure 4. Phase portrait of model (1) for 5E  (left) and 6E (right). 

 

Based on Figure 3 and Figure 4, it is shown that each of the three different 

initial values, all the graphs tend to converge to the endemic equilibriums. Thus, 

the stability of endemic equilibriums 3E - 6E can be expressed in the following 

conjectures. 

 

Conjecture 1. 

The endemic equilibrium 3E is locally asymptotically stable if 10 sR . The 

endemic equilibrium 4E is locally asymptotically stable if 10 rR . 

 

Conjecture 2. 

The endemic equilibrium 5E  is locally asymptotically stable if                     

10 sR , 102 R ,
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 The endemic equilibrium 6E  is locally 

asymptotically stable if 10 rR , 102 R , 
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4.  Analysis of Optimal Control  

  

The application of optimal control in this study is to minimize the number 

of individuals infected with TB through treatment with minimal cost. The optimal 

control strategy can be achieved by minimizing the following objective function: 

 

dtcuIIIuJ

ft

rs










0

2
2

2

1
)(        (2) 

 

where c  is weighting constant for attempt treatment. The greater the value c  

will imply more expensive implementation costs for treatment. We seek an  

optimal control u* such that 

)(min)( * uJuJ


 ,         (3) 

where  }10{  uu .  

Consider again the objective function (2) to the model (1). Necessary 

conditions to determine the optimal control *u  so that satisfy the conditions (3) 

with the constraint (1) will be solved by the Pontriyagin Maximum Principle [9]. 

This principle is to convert equation (1) - (3) to minimize the problem to the 

Hamiltonian function: 
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Furthermore, adjoint equations or co-state equations can be written as:  
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with final condition .7,,1,0)(  it fi  

By applying Pontryagin’s Maximum Principle and the existence result of the 

optimal control [3, 9], we obtain the following theorem. 

 

Theorem 2. The optimal control *u  that minimizes J(u) over   is given by 

  1,,0maxmin 321

* u  

where )( 421 



c

I ss ,  )( 432 



c

I rr ,  )( 76
22

3 



c

I
, and 

i  is the solutions of the co-state equation (4) for  i = 1, 2, …7. 

Proof. Using the same argument as in Theorem 4.1 of [9], the co-states equations  

(4) is obtained by differentiating the Hamiltonian function, then the systems can 

be written as 
2

7

1

1 ,,
R

H

dt

d

S

H

dt

d












 , with transversality conditions 

,7,,1,0)(  it fi  where ft  is the final time.   

The optimal control is obtained by equating to the zero the derivative of the 

Hamiltonian with respect to the control, we have 

 .)(0 227226432 IIIIIIcu
u

H
rrssrrss  




   

Solving u* for subject the constrains, the optimal control can be derived.  

 

 

5.  Numerical Simulation 
 

 In this section, we present the numerically the optimal solution to the optimal 

control treatment on tuberculosis transmission with drug resistance by the fourth 

order Runge-Kutta [7]. The state system is solved forward in time with initial 

conditions x(0) = (4100, 7, 5, 4, 4110, 8, 4), while the co-state system is solved 

backward in time. For numerical simulation, we use the following parameters:      

1 = 100; 2=110; s = 0.001/year;   = 0.001/year; 2 = 0.002/year;    
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  = 65 year;    s = 0.15/ year;  r = 0.2/year; 2 = 0.15/year;                 

a1 = 0.5/year; a2 =0.5001/year; d1 = 0.0575/year;   d2 = 0.05751/ year;        

s = 0.8182/year; r = 0.5/year; 2 = 0.8183/year and weight control c = 80. 
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Figure 5.  The dynamic of sensitive infected sI (left) and resistant rI (right) 
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Figure 6. The dynamic of sensitive infected 2I (left) and optimal control profileu (right)   

 

 The dynamic of the sensitive and resistance infected population in the first 

region are given in Figure 5. We see in Figure 5 that there is a significant 

difference in the number of sensitive infected sI and drug resistant individuals 

rI between the case with control and case without control. We also observe in the 

left of Figure 6 that the number sensitive infected 2I  decreases with control 

compared to the situation where there is no control. The profile of the optimal 

control *u  could be seen in the right of Figure 6. From this Figure, we see that to 

reduce the number of individuals infected with TB in the first and the second 

regions in 10 years, the treatment should be hold intensively almost 8 years and 

then reduced to near zero at the end of the 10-th year. 
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6. Conclusion 

 

 In this paper we have constructed a mathematical model of drug resistant 

in the tuberculosis disease transmission that include treatment measure as optimal 

control. For the model without control, we obtained three basic reproduction 

ratios corresponding to the sensitive and resistant TB infection in the first region 

and the sensitive TB infection in the second region. These ratios determine the 

existence and stability of the equilibrium of the model. Using Pontryagin 

Maximum Principle, we derived and analyzed the condition for optimal control 

which minimize the both sensitive and resistant infective in the first region and 

the sensitive only in the second region. The numerical simulations with and 

without control show that the control strategy has a positive impact in reducing 

the spread of the disease.  
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