Preface

Following the successful of the 1st International Conference on Science (ICOS), held by Faculty of Mathematics and Natural Sciences, Hasanuddin University, we have organised the 2nd International Conference on Science, ICOS 2017 in November 2017.

The 2nd International Conference on Science (ICOS) is a conference organized by Faculty of Mathematics and Natural Sciences, Hasanuddin University, Indonesia in cooperation with Indonesian Mathematical Society Sulawesi region (IndoMS), Indonesian Physical Society (HFI), Indonesian Association of Geophysicists (HAGI) and Indonesian Biology Consortium (KOBI). It is a three-year conference activity of the Faculty of Mathematics and Natural Science, started three years back on 19th – 20th of November 2014.

The objectives are to bring together scholars, researchers and experts from diverse backgrounds and applications areas. Special emphasis is placed on promoting interaction between the theoretical, experimental, and case studies, so that a high level exchange in new and emerging areas within Physics, bioscience, computational science and mathematics in science and technology.

The keynote presentations are provided especially to show the contribution of the various fields of sciences, with the main theme “Science for Sustainable Development and Better Quality of Life”. We have eight keynote speakers coming from The University of Melbourne, Australia, Prof Alexander Babanin, Directorate Research and Community Services, Ministry of Research and Technology, Higher Education, Indonesia, Prof Ocky Karna Rajadsa, United Nations, Pulse Lab Jakarta, Dr Jong Gun Lee, The University of Tokyo, Jepang, Prof Koji Inoue, La Trobe University, Australia, Assoc Prof Agus Salim, Universiti Kebangsaan Malaysia, Malaysia, Prof Mohammad B Kassim, Geophysical Adviser, PT Pertamina Indonesia, Dr Alvius Dwi Guntara and Universitas Riau, Indonesia, Erman Taer, Ph.D.

Sri Astuti Thamrin (Chairman) and Dahlang Tahir (Editor in Chief)*
The 2nd International Conference on Science (ICOS 2017) Publication
Faculty of Mathematics and Natural Sciences
Hasanuddin University
Tamalanrea, Makassar, 90245, Indonesia
*E-mail: dtahir@fmipa.unhas.ac.id
The Committees

To cite this article: 2018 J. Phys.: Conf. Ser. 979 011002

View the article online for updates and enhancements.
The Committees

The Second International Conference on Science (ICOS 2017)

Advisory Editorial Board
Dahlang Tahir (Hasanuddin University, Indonesia)
James McGree (Queensland University of Technology, Australia)
Setia Pramana (Karolinka Institute, Sweden & Institute Statistic Indonesia)
Halmar Halide (Hasanuddin University, Indonesia)
Sutiman Bambang Sumitro (Brawijaya University, Indonesia)
Widodo (Brawijaya University, Indonesia)
Hasnuwati (Hasanuddin University, Indonesia)
Magdalena Litaay (Hasanuddin University, Indonesia)
Tasrief Surungan (Hasanuddin University, Indonesia)
Mawardi Bahri (Hasanuddin University, Indonesia)
Muhammad Altin Massinai (Hasanuddin University, Indonesia)

Organizing Committee
Sri Astuti Thamrin Chairman
Fredryk Mandey Co-Chair
Naimah Aris Treasurer
Sulfahri Secretary
Kasbawati Secretariat Member
Andi Masnawati Secretariat Member
Agustinus Ribal Secretariat Member

Advisory Committee
Amiruddin Dean of Faculty of Mathematics and Natural Sciences
Moh Ivan Azis Vice-Dean for Academic Affairs
Muhammad Zakir Vice-Dean for General Administration, Finance, and Human Resources
Andi Ilham Latunra Vice-Dean for Student Affairs and Alumni Relations

Steering Committee
Alexander Babanin (the University of Melbourne, Australia)
Koji Inoue (The University of Tokyo, Japan)
Mohammad B. Kassim (Universiti Kebangsaan Malaysia, Malaysia)
Jong Gun Lee (United Nations, Pulse Lab Jakarta, Indonesia)
Agus Salim (La Trobe University, Australia)
Erman Taer (University of Riau, Indonesia)
Alfian Noor (Hasanuddin University, Indonesia)
Moh Ivan Azis (Hasanuddin University, Indonesia)
Dadang Suriamihardja (Hasanuddin University, Indonesia)
Alpius Dwi Guntara (Geophysical PT Pertamina)
Ocky Karna Radjasa (Ministry of Research, Technology and Higher Education, Indonesia)

Scientific and Reviewer Committee
Dahlang Tahir (Hasanuddin University)
Isnaeni (Indonesian Institute of Sciences)
Halmar Halide (Hasanuddin University)
Taufik Sutanto (Syarif Hidayatullah State Islamic University)
Paulina Taba (Hasanuddin University)
Misita Anwar (Monash University, Australia)
Utami Dyah Syafitri (Bogor Agricultural University)
Junaidi (Tadulako University)
Sri Astuti Thamrin (Hasanuddin University)
Achmad Effendi (Brawijaya University)
Mawardi Bahri (Hasanuddin University)
Peer review statement

To cite this article: 2018 J. Phys.: Conf. Ser. 979 011005

View the article online for updates and enhancements.
Peer review statement

All papers published in this volume of *Journal of Physics: Conference Series* have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.
Table of contents

Volume 979

2018

- Previous issue
- Next issue

The 2nd International Conference on Science (ICOS)

2–3 November 2017, Makassar, Indonesia

View all abstracts

Accepted papers received: 20 February 2018

Published online: 13 March 2018

Preface

OPEN ACCESS

The 2nd International Conference on Science (ICOS)

+ View abstract

OPEN ACCESS

The Committees

+ View abstract

OPEN ACCESS

Sponsor or funding acknowledgements

+ View abstract

OPEN ACCESS

Conference Photographs

+ View abstract

OPEN ACCESS

Peer review statement

+ View abstract

Papers

Bioscience and Bioinformatics

OPEN ACCESS

Thermostable α-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

F M Gazali and I N Suwastika

+ View abstract

OPEN ACCESS

The potential for Probiotic Bacteria from milkfish intestine in reducing mercury metals in skimmed milk media

Zaraswati Dwyana, D Priosambodo, N Haedar, A E Erviani, A K Djabura and R Sukma

+ View abstract

OPEN ACCESS

Marine tunicates from Sangkarang Archipelago Indonesia: recent finding and bio-prospecting

Magdalena Litaay

+ View abstract
OPEN ACCESS
Preliminary Study on Testicular Germ Cell Transplantation of Endemic Species *Oryzias celebensis*
I Andriani, F Agustiani, M Hassan, A Pareas and K Inoue

OPEN ACCESS
Characterization of rice physicochemical properties local rice germplasm from Tana Toraja regency of South Sulawesi
A Mashlawaht, Nur Al Marwah Asrul, E Johannes and M Asnady

OPEN ACCESS
Physical structure of artificial seagrass affects macrozoobenthic community recruitment
R Ambo-Rappe and C Rani

OPEN ACCESS
Using site-selection model to identify suitable sites for seagrass transplantation in the west coast of South Sulawesi
Mahatma Lamunu, S Mashorong and K Amri

OPEN ACCESS
Gene distribution of ABO blood type system on the Dengue Hemorrhagic Fever (DHF) patients in the working area of Puskesmas Bonto Bangun, District of Rilau Ale, Bulukumba
Sjafaeraen, D N Alvinita, R Agus and A Sabran

Chemistry

OPEN ACCESS
Chlorella sp.: Extraction of fatty acid by using avocado oil as solvent and its application as an anti-aging cream
T W Putri, I Raya, H Natsir and E Mayasari

OPEN ACCESS
Synthesis, structural elucidation and antioxidant study of Ortho-substituted \(N,N'\)-bis(benzamidothiocarbonyl)hydrazine derivatives
Syazda Firdausiah, S A Hasbullah and B M Yamin

OPEN ACCESS
Heavy metal concentrations in cocoa beans (*Theobroma cacao* L) originating from East Luwu, South Sulawesi, Indonesia
A Assa, A Noor, M R Yunus, Misnawi and M N Djide

OPEN ACCESS
Effect of \(\text{Fe}^{2+}\) and \(\text{Mn}^{2+}\) addition on growth and \(\beta\)-carotene production of *Dunaliella salina*
E Mayasari, I Raya and H Natsir

OPEN ACCESS
Contribution of \(\text{Co}^{2+}\) in increasing chlorophyll a concentration of *Nannochloropsis salina* in controlled Conwy medium
Y Hala, P Taba, E Suryani, P Kasih and N F Firman

OPEN ACCESS
Utilization of Diamine Oxidase Enzyme from Mung Bean Sprouts (*Vigna radiata* L) for Histamine biosensors
Abdul Karim, A W Wahab, I Raya, H Natsir and A R Arif
Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method
A R Arif, H Natsir, H Rohani and A Karim

Phenethyl ester and amide of Ferulic Acids: Synthesis and bioactivity against P388 Leukemia Murine Cells
Firdaus, N H Soekamto, Seniwalli, M F Islam and Sultan

Dengue antiviral activity of polar extract from Melocchia umbellata (Houtt) Stapf var. Visenia
Nuruik Hariami Soekamto, S Long, S Fauziah, I Wahid, Firdaus, P Taba and F Ahmad

Utilization of α-amylase enzyme from Bacillus stearothermophilus R5A15 for maltodextrin production from sago starch
R A Arif, A Ahmad, S Dali, M N Djode, Mahdalia and A R Arif

Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro
H Natsir, A W Wahab, A Laga and A R Arif

Study of characteristic of tsunami base on the coastal morphology in north Donggal, Central Sulawesi
W S N Rahmadaninggal, A H Assaqaf, W Setyonegoro and Paharuddin

Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles
I W Sutapa, Abdul Wahid Wahab, P Taba and N L Nafe

Benzene derivatives from the marine sponges Cinachyrella
Abraham, Y M Syah, H Natsir and Nuruik Hariami Soekamto

Pilafization TiO$_2$ onto De-oiled spent bleaching clay using Rasapoin as surfactant
N Hindrayawati, Daniel, Erwin and N D Fadillah

Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor
M Zakir, P Budi, I Raya, A Karim, R Wulandari and A B J Sobrido

Application of MSSIP-2 nutrient in marine phytoplankton culture to support the production of biomass for biofuel industry
Paulina Taba, S Kasim and I Raya
Determination of the optimum concentration cellulose bagasse in making film bioplastics
S Chadjah, W O Rustiah and M I D Munir

Computational Science

Voice Based City Panic Button System
Febrtanayah, Zahir Zainuddin and M. Bachtiar Nappu

Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System
Andi Nurtrimali Karim, Sri Mawar Said, Indar Chaerah Gunadin and Mustadil Darusman B

Armin Lawi and Yudhi Adhitya

Combination of Rivest-Shamir-Adleman Algorithm and End of File Method for Data Security
Dian Rachmawati, Amalia Amalia and Elwiwani

Implementation of Canny and Isotropic Operator with Power Law Transformation to Identify Cervical Cancer
A Amalia, D Rachmawati, I A Lestari and C Mourisa

Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine
Armin Lawi and M Syd'Rani Machrizzandi

Super-Encryption Implementation Using Monoalphabetic Algorithm and XOR Algorithm for Data Security
Dian Rachmawati, Mohammad Andri Budiman and Indra Aulia

The Observation of Bahasa Indonesia Official Computer Terms Implementation in Scientific Publication
D Gunawan, A Amalia, M S Lydia and M I Muthaqin

Automated Robot Movement in the Mapped Area Using Fuzzy Logic for Wheel Chair Application
B Siregar, S Efendi, H Ramachana, U Andayani and F Fahmi

Content Abstract Classification Using Naive Bayes
Syukriyanto Latif, Uitung Suwardoyo and Edwin Aidin Wilhelmus Sanadi

Environmental Science
Effect of Fruits Waste in Biopore Infiltration Hole Toward The Effectiveness of Water Infiltration Rate on Baraya Campus Land of Hasanuddin University
Slamet Santosa
+ View abstract

Analysis of Chemical and Physical Properties of Biochar from Rice Husk Biomass
Bidayatul Amynah, Atika, Zuryati Djafar, Wahyu H Piarah and Dahiang Tahir
+ View abstract

Solar Pond Potential as A New Renewable Energy in South Sulawesi
Nur Fadillah Baso, Indar Chaerah Gunadin and Yusran
+ View abstract

The Habitat of Yellow Mouth Turban *Turbo Chrysostomus*, Linnaeus, 1758
E Soekendaris
+ View abstract

Status of Suspended Particulate Matters Pollution at Traditional Markets in Makassar City
Sri Suryani and Fahrurrahma
+ View abstract

Distribution of Escherichia Coli as Soil Pollutant around Antang Landfills
Andi Artininggih, Hazairin Zubair, A.M. Imran and Sri Widodo
+ View abstract

The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe
Ari Prasetyo, Budi Krsiawan, Dominicus Danardono and Syamsul Hadi
+ View abstract

Effect of Blade Curvature Angle of Savonius Horizontal Axis Water Turbine to the Power Generation
Taufan Apha Sandiyya, Ari Prasetyo, Budi Krsiawan and Syamsul Hadi
+ View abstract

Geophysics

Determination Hypocentre and Focal Mechanism Earthquake of Oct 31, 2016 in Bone, South Sulawesi
Muhammad Altin Massinai and Muhammad Fawzy Ismullah M
+ View abstract

Shallow Depth Study Using Gravity & Magnetics Data in Central Java - Yogyakarta
Muhammad Fawzy Ismullah M, Muhammad Altin Massinai and Mania
+ View abstract

Ore Reserve Estimation of Saprolite Nickel Using Inverse Distance Method in PIT Block 3A Banggai Area Central Sulawesi
Muhammad Khaidir Noor
+ View abstract

Coal Layer identification using Electrical Resistivity Imaging Method in Sinjai Area South Sulawesi
Andi Ilham Samanlangi

OPEN ACCESS
Upwelling Dynamic Based on Satellite and INDESO Data in the Flores Sea
Reski Kurniawan, D. A, Suriamihardja and Alimuddin Hamzah Assegaf
+ View abstract PDF

OPEN ACCESS
Earthquake Macro-zonation Based Peak Ground Acceleration, Modified Mercalli Intensity, And Type of Rocks around Matano Fault
Muh Karnaen, D A Suriamihardja, A Maulana and A Jaya
+ View abstract PDF

OPEN ACCESS
Response of Gravity, Magnetic, and Geoelectrical Resistivity Methods on Ngeni Southern Blitar Mineralization Zone
Sunaryo
+ View abstract PDF

OPEN ACCESS
Preliminary Result of Earthquake Source Parameters the Mw 3.4 at 23:22:47 IWST, August 21, 2004, Centre Java, Indonesia Based on MERAMEX Project
Y A Laksmono, K S Brotopuspito, W Suryanto, Widodo, R A Wardah and I Rudianto
+ View abstract PDF

OPEN ACCESS
Microtremor Study of Site Effect for Disaster Mitigation and Geotechnical Purpose
Sabrianto Aswad, Muh. Alhin Massinal and Syamsuddin
+ View abstract PDF

OPEN ACCESS
Earthquake Hazard Analysis Use Vs30 Data In Palu
Muhammad Rusydi, Rustan Efendi, Sandra and Rahmawati
+ View abstract PDF

Material Science

OPEN ACCESS
Determination of Binding Energy For Cu and Cu2O Based X-Ray Diffraction Spectrum
Heryanto, Bualkar Abdullah and Dahlang Tahir
+ View abstract PDF

OPEN ACCESS
Dye sensitized solar cell (DSSC) with natural dyes extracted from Jatropha leaves and purple Chrysanthemum flowers as sensitizer
Dahlang Tahir, Wilda Satriani, P L Gareso and B Abdullah
+ View abstract PDF

OPEN ACCESS
Modifying Of Particle Boards From Rice Husk and Pinus Merkusii Sawdust And Using Soybean Waste Waters Based Adhesive.
Indah Raya, Nurrika Ramdani, Abd. Karim and Musrizal Muin
+ View abstract PDF

OPEN ACCESS
Adsorption of Pb²⁺ on Thiol-functionalized Mesoporous Silica, SH-MCM-48
P Tabba, R D P Mustafa, L M Ramang and A H Kasim
+ View abstract PDF

OPEN ACCESS
Selectivity of β-Sitosterol Imprinted Polymers as Adsorbent
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Open Access</th>
<th>View abstract</th>
<th>PDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovated Conceptual Design of Loading Unloading Tool for Livestock at the Port</td>
<td>Achmad Mustakim and Firmanoto Hadi</td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
<tr>
<td>The Isolation of Nanofibre Cellulose from Oil Palm Empty Fruit Bunch Via Steam Explosion and Hydrolysis with HCl 10%</td>
<td>S Gea, Z Zulfahmi, D Yunus, A Andriyani and Y A Hutapea</td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
<tr>
<td>The Effect of Synthesis Temperature on Physical and Magnetic Properties of Manganese Ferrite (MnFe2O4) based on Natural Iron Sand</td>
<td>E A Setiadi, Rahmat, S Simbolon, M Yunus, C Kurmaawan, A P Tetuko, S Zelviani, Rahmaniah and P Sebayang</td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
<tr>
<td>Edge Anti-magic Total Labeling on Two Copies of Path</td>
<td>Nurdin, A M Abrar, A R M Bhayangkara, Muliani, A U Samsir and M R An Nahdi</td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
<tr>
<td>A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells</td>
<td>Kasbawati, A Kalondeng, N Aris, N Erawaty and M I Azis</td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
<tr>
<td>On Super Edge-magic Total Labeling of Modified Watermill Graph</td>
<td>Nurdin, T S Ungko, J Gormantara, A Abdullah, S Aulyah and Nikita</td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
<tr>
<td>Some Properties of Fixed Point for Contraction Mappings in Quasi ε-metric Space</td>
<td>Budi Nurwahyu, Asriadiah Nasrun and Naimah Aris</td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
<tr>
<td>Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model</td>
<td>S Toaha and M I Azis</td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
<tr>
<td>Irregular Assignment of Series Parallel Networks</td>
<td>Nurdin</td>
<td>OPEN ACCESS</td>
<td>View abstract</td>
<td>PDF</td>
</tr>
</tbody>
</table>
Prediction of Tidal Elevations and Barotropic Currents in the Gulf of Bone
Rika Purnamasari, Agustinus Ribil and Jeffry Kusuma

A boundary element method with analytical integration for deformation of inhomogeneous elastic materials
Moh, Ivan Azis, Syamsuddin Toaha, Mawardi Bahri and Nirwan Ilyas

The Ramsey Numbers for Star Versus Wheel of Even Order
Hasnawati, P Nur Rohmah Oktaviani and Locky Haryanto

Flattening Property and the Existence of Global Attractors in Banach Space
Naimah Aris, Sitti Maharan, Massalesse Jusnawati and Budi Nurwaifyu

On some examples of pollutant transport problems solved numerically using the boundary element method
Moh, Ivan Azis, Kasbawati, Amiruddin Haddade and Sri Astuti Thamrin

Source to Skin Distance (SSD) Characteristics from Varian CX Linear Accelerator
Wirha Bahari Nurdin, Aji Purnomo and Syamsir Dewang

Evaluation of Energy Dose and Output Power Optimum of Diode’s Laser of 450 nm and 650 nm in Photoantimicrobial Mechanisms Against Inhibition of C. Albicans Biofilm Cells
S Dewi Astudy, Suharliningsih, S Dyah Astuti and A Baktir

Study of Image Quality, Radiation Dose and Low Contrast Resolution from MSCT Head by Using Low Tube Voltage
Jumrinah, Syamsir Dewang, Buaikar Abdullah and Dahiag Tahir

Improve Image Quality of Transversal Relaxation Time PROPELLER and FLAIR on Magnetic Resonance Imaging
N Rauf, D Y Alam, M Jamaluddin and B A Samad

Study of Image Quality From CT Scanner Multi-Detector by using Americans College of Radiology (ACR) Phantom
Mulyadin, Syamsir Dewang, Buaikar Abdullah and Dahiag Tahir

Deviations Value for Conventional X-ray in Hospitals in South Sulawesi Province from 2014 to 2016
Ilham Bachtiar, Buaikar Abdullah and Dahiag Tahir
<table>
<thead>
<tr>
<th>Title</th>
<th>Document ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamic and Mechanic Consideration on the stability of Anti-symmetric Schaefer's equation</td>
<td>012082</td>
</tr>
<tr>
<td>Design of Oil Viscosity Sensor Based on Plastic Optical Fiber</td>
<td>012083</td>
</tr>
<tr>
<td>Study on steam pressure characteristics in various types of nozzles</td>
<td>012084</td>
</tr>
<tr>
<td>Characteristic Analysis Light Intensity Sensor Based On Plastic Optical Fiber At Various Configuration</td>
<td>012085</td>
</tr>
<tr>
<td>Probing critical behavior of 2D Ising ferromagnet with diluted bonds using Wang-Landau algorithm</td>
<td>012086</td>
</tr>
<tr>
<td>The Application of Extended Cox Proportional Hazard Method for Estimating Survival Time of Breast Cancer</td>
<td>012087</td>
</tr>
<tr>
<td>The Application Law of Large Numbers That Predicts The Amount of Actual Loss in insurance of Life</td>
<td>012088</td>
</tr>
<tr>
<td>Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine</td>
<td>012089</td>
</tr>
<tr>
<td>Interevent Time Distribution of Renewal Point Process, Case Study: Extreme Rainfall in South Sulawesi</td>
<td>012090</td>
</tr>
<tr>
<td>Preliminary Study of Perception and Consumer Behaviour Towards Energy Saving for Household Appliances: A Case of Makassar</td>
<td>012091</td>
</tr>
<tr>
<td>On The Impact of Climate Change to Agricultural Productivity in East Java</td>
<td>012092</td>
</tr>
</tbody>
</table>

Statistics

The Application of Extended Cox Proportional Hazard Method for Estimating Survival Time of Breast Cancer

Hartina Husain, Sri Asuti Thamrin, Sulaiha Tahir, Ahmad Mukhilis and M Mirna Apriani

The Application Law of Large Numbers That Predicts The Amount of Actual Loss in insurance of Life

Georgina Maria Tinungki

Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine

Nevyanti Santoso and Wahyu Wibowo

Interevent Time Distribution of Renewal Point Process, Case Study: Extreme Rainfall in South Sulawesi

Nurtiti Sunusi

Preliminary Study of Perception and Consumer Behaviour Towards Energy Saving for Household Appliances: A Case of Makassar

Yusni Syam Aki, Saiful Mangeningre, Sri Mawar and Kifayah Amir

On The Impact of Climate Change to Agricultural Productivity in East Java

Heri Kuswanto, Mudjah Salamah, Sri Mumpuni Retnaningsih and Dedy Dwi Prasetyo
Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression
A. Ismailiyati, Fatnawati and N. Chamiddah
+ View abstract PDF

Risk evaluation on leading companies in property and real estate subsector at IDX: A Value-at-Risk with ARMAX-GARCHX approach and duration test
Dedy DwI Prastyo, Dwi Handayani, Soo-Fen Fam, Santi Puteri Rahayu, Suhartono and Ni Luh Putu Satyaning Pradnya Paramita
+ View abstract PDF

Spatial Random Effects Survival Models to Assess Geographical Inequalities in Dengue Fever Using Bayesian Approach: a Case Study
Sri Astuti Thamin and Irfan Taufik
+ View abstract PDF

Forecasting Inflow and Outflow of Money Currency in East Java Using a Hybrid Exponential Smoothing and Calendar Variation Model
Ana Susanti, Suhartono, Harlo Jati Setyadi, Medi Tanuk, Haviluddin and Putut Pamilih Widagdo
+ View abstract PDF

Modified Exponential Weighted Moving Average (EWMA) Control Chart on Autocorrelation Data
Erni Tri Herdiani, Geysa Fandirlia and Nurtiti Sunusi
+ View abstract PDF

Journal Links
Journal home
Information for organizers
Information for authors
Search for published proceedings
Contact us
Reprint services from Curran Associates
Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression

To cite this article: A Islamiyati et al 2018 J. Phys.: Conf. Ser. 979 012093

View the article online for updates and enhancements.
Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression

A Islamiyati¹, Fatmawati² and N Chamidah²

¹Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Indonesia
²Department of Mathematics, Faculty of Sciences and Technology, Airlangga University, Indonesia

E-mail: annaislamiyati_701@gmail.com

Abstract. The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the auto-correlation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.

1. Introduction
The covariance matrix is usually used as a weighting in the model estimation in case of violation of assumptions such as the correlation between errors. Error correlation can occur if the data contains more than one correlated response. The covariance matrix can be assumed to be known [1] and estimated with the smoothing spline estimator [2]. However, if the covariance matrix is unknown, then it is necessary to be estimated. The covariance matrix can be estimated from the data and it may have an impact on the estimation results of the smoothing spline estimator [3]. The estimation of the covariance matrix in cross sectional data to overcome the correlation between the responses has been estimated by using the maximum likelihood method in spline regression [4]. Besides that, it also has been estimated by using the expected value of the error based on the local polynomial estimators [5], and the kernel estimators [6].

Our study analyses longitudinal data which is a combination of cross sectional and time series data. The analysis of cross sectional data that should be performed on longitudinal data will provide a different interpretation of a problem [7]. The longitudinal data consists of several subjects that are measured over time based on measurement time. Each subject is assumed to be independent, but the measurements in the subject are mutually dependent. The approach used for addressing the correlations that occur in longitudinal data can be done through principal component analysis [8], varying coefficient models [9] and mixed-effect penalized spline models [10].

The longitudinal data can consist of two responses that are assumed to be correlated called bi-response [11]. The correlation between the responses was overcome by using the covariance matrix and it is estimated through the smoothing spline estimator [12]. In this article, we use the covariance matrix as a weighted in the penalized spline criteria to solve correlations that occur in the data, both correlations between responses, or the correlation between observed data bi-response longitudinal
data. The advantage of a penalized spline is the ability of the estimator to produce a smooth and fitted curve, and also the pattern change of curve regression can be seen visually. This is due to knot involvement and smoothing parameters simultaneously in controlling the smoothness of the curve. The penalized spline estimators consist goodness of fit and penalty function. The function of goodness of fit is truncated polynomials that have an optimal rate of convergence [13]. Knot points in the goodness of fit selected based on fixed methods [14]. We use the penalty function in the penalized spline criterion based on quadratic polynomials form of spline regression coefficient [15].

The covariance matrix is estimated based on the error of the nonparametric bi-response regression model based on the penalized spline estimator un-weighted. This is why the use of covariance matrix can produce to accurate estimation results. The advantages of using the weighted of the covariance matrix are shown through a longitudinal data simulation study on a correlation value of 0.9. The results show that the use of the covariance matrix in the penalized spline criteria in the case of longitudinal bi-response data provides a smaller error value.

2. Bi-response longitudinal data

Bi-response longitudinal data are longitudinal data involving two correlated responses. Longitudinal data are measured data from subjects, where each subject is measured repeatedly in a time interval. Longitudinal data are assumed to be independent among subjects, however, on the inter-observations in the same subjects, the data are mutually dependent [16]. Furthermore, if \(t_{ij} \) is the observation at the \(j^{th} \) time of the \(i^{th} \) subject, \(y_{1ij} \) is the 1st response variable at a time \(t_{ij} \) and \(y_{2ij} \) is the 2nd response variable at a time \(t_{ij} \), then the longitudinal data bi-response was given by \(\left(t_{ij}, y_{1ij}, y_{2ij}\right), j=1,2,\ldots,m_{i}, i=1,2,\ldots,n \), where \(m_{i} \) is the number of repeated measurement of the \(i^{th} \) individual. The relationship between \(t_{ij}, y_{1ij} \) and \(y_{2ij} \) can be expressed in the form of the regression model as follows.

\[
y_{r_{ij}} = f_r(t_{ij}) + \epsilon_{r_{ij}}, r=1,2
\]

The longitudinal data structure of bi-response is shown in table 1.

| Table 1. The structure of the longitudinal data bi-response to the predictor variable \(t_{ij} \) |
|-----------------|-----------------|-----------------|
| \(r \) | \(i \) | \(j \) | \(t_{ij} \) | \(y_{1ij} \) | \(r \) | \(i \) | \(j \) | \(t_{ij} \) | \(y_{2ij} \) |
| 1 | 1 | 1 | \(t_{11} \) | \(y_{111} \) | 1 | 1 | \(t_{11} \) | \(y_{211} \) |
| 2 | 1 | 2 | \(t_{12} \) | \(y_{112} \) | 2 | 2 | \(t_{12} \) | \(y_{212} \) |
| \vdots |
\(m_{i} \)	\(t_{im_{i}} \)	\(y_{1im_{i}} \)	\(m_{i} \)	\(t_{im_{i}} \)	\(y_{2im_{i}} \)		
\(n \)	\(1 \)	\(1 \)	\(t_{n1} \)	\(y_{n1} \)	1	\(t_{n1} \)	\(y_{2n1} \)
2	\(t_{n2} \)	\(y_{1n2} \)	2	\(t_{n2} \)	\(y_{2n2} \)		
\vdots							
\(m_{n} \)	\(t_{mn_{n}} \)	\(y_{1mn_{n}} \)	\(m_{n} \)	\(t_{mn_{n}} \)	\(y_{2mn_{n}} \)		

Table 1 shows the structure of the longitudinal data containing two responses \((r = 1,2) \). Each response consists of \(n \) subjects \((i=1,2,\ldots,n) \) which each subject is measured several times as much as \(m_{i} \) \((j=1,2,\ldots,m_{i}) \).

3. Penalized spline regression

The penalized spline is one of the estimators used in nonparametric regression in the estimation of the nonparametric regression function. Penalized spline estimator involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Penalty function in the
penalized spline estimator takes the quadratic form of the truncated regression coefficient as recommended on the cross sectional data [17].

If the function \(f_i(t_{ij}) \) in equation (1) is assumed unknown and estimated through a penalized spline estimator, then it is expressed as follows.

\[
f_i(t_{ij}) = \sum_{a=0}^{q} \beta_{i,a} (t_{ij})^a + \sum_{r=1}^{p} \beta_{i,r} (t_{ij} - K_i)^r.
\]

(2)

The equation (2) can be made in matrix form, as in (3).

\[
\mathbf{f}(\mathbf{t}) = \mathbf{X}\beta,
\]

(3)

where \(\mathbf{f}(\mathbf{t}) = \begin{bmatrix} f_{i1}(\mathbf{t}), f_{i2}(\mathbf{t}) \end{bmatrix}^T \) are an unknown form of regression function in the first and the second response.

Furthermore, the penalized spline regression model in equation (1) can be expressed to (4) based on the function at (3).

\[
\mathbf{y} = \mathbf{X}\beta + \mathbf{e},
\]

(4)

where \(\mathbf{y} \) is a response vector containing the first and the second response. \(\mathbf{X} \) is a predictor matrix in the first and the second response. \(\mathbf{e} \) is an error vector in the first and the second response with \(E(\mathbf{e}) = \mathbf{0} \) and \(\text{Var}(\mathbf{e}) = \mathbf{\Omega} \).

In the estimation of the covariance matrix, we need estimates of the nonparametric bi-response regression model un-weighted. The estimation criteria is called penalized least square (PLS) which can be expressed in the form of vector as in (5).

\[
\text{PLS} = (\mathbf{y} - \mathbf{X}\hat{\beta})^T (\mathbf{y} - \mathbf{X}\hat{\beta}) + \lambda \hat{\beta}^T \mathbf{D}\hat{\beta}.
\]

(5)

4. Estimation of covariance matrix

The assumption for error random \(\epsilon_{r,ij} \) is related to the variance of the error.

\[
E(\epsilon_{r,ij}^2) = \sigma_{r,ij}^2, E(\epsilon_{r,ij}, \epsilon_{s,ij}) = \begin{cases} \sigma_{r,ij}\sigma_{s,ij} & ; \quad i = i^* \\ 0 & ; \quad i \neq i^* \end{cases}
\]

(6)

Equation (6) occurs at \(r \neq s = 1, 2 \). The model of bi-response nonparametric regression on longitudinal data is assumed to have a correlation between responses and to have a correlation between measurement data on the same subject. This led to the estimation of bi-response nonparametric regression model on longitudinal data using a weighted covariance matrix from \(\mathbf{e} \) is \(\mathbf{\Omega} \).

\[
\mathbf{\Omega} = \text{Var}(\mathbf{e}) = E[\mathbf{e} - E(\mathbf{e})][\mathbf{e} - E(\mathbf{e})]^T = E(\mathbf{\bar{e}\bar{e}}^T),
\]

(7)

where \(\mathbf{\bar{e}} = \begin{bmatrix} \mathbf{\bar{e}}_1, \mathbf{\bar{e}}_2 \end{bmatrix}^T, \mathbf{\bar{e}}_i = \begin{bmatrix} \bar{e}_{i1}, \bar{e}_{i2}, ..., \bar{e}_{ir} \end{bmatrix}^T, \mathbf{\bar{e}}_2 = \begin{bmatrix} \bar{e}_{21}, \bar{e}_{22}, ..., \bar{e}_{2r} \end{bmatrix}^T \).

Based on the assumption in (6), we can make a form the matrix of covariance as follows.

\[
\mathbf{\Omega} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}
\]

(8)

Equation (8) can also be expressed as in (9).
The matrix \(\Sigma_{rs,i} \) is the matrix of the variance in the same response, \(r = 1, 2 \) with the same subject, \(i = 1, 2, \ldots, n \) that is \(\Sigma_{rs,i} = \text{diag} \left(\Sigma_{r,11,i}, \Sigma_{r,22,i}, \ldots, \Sigma_{r,mw,i} \right) \). The matrix \(\Sigma_{rs,ij} \) is the matrix of covariance in the different response, \(r \neq s = 1, 2 \) with the same subject, \(i = 1, 2, \ldots, n \) that is \(\Sigma_{rs,ij} = \text{diag} \left(\Sigma_{r,11,i}, \Sigma_{r,22,i}, \ldots, \Sigma_{r,mw,i} \right) \). The matrix of covariance \(\Omega \) in equation (9) is used in estimating bi-response nonparametric regression model in longitudinal data with a penalized spline estimator. The matrix of covariance is used to overcome the correlation between responses. The estimation covariance matrix is related to the estimation of error variance in the measurement data. The covariance matrix at (9) is assumed to be unknown, so it estimated as set forth in Theorem 1.

Theorem 1

If the nonparametric regression model with two responses based on the un-weighted penalized spline in each sample \(t_{r,i} \) is

\[
\hat{y}_{r,i} = X_{r,i} \hat{\beta}_0 + e_{r,i}, \quad r = 1, 2; i = 1, 2, \ldots, n,
\]

then we get

1. \(\hat{\sigma}^2_{r,i} = \frac{y^T_{r,i} P_{r,i} y_{r,i} - y^T_{r,i} A_{r,i} P_{r,i} A_{r,i} y_{r,i}}{\text{tr} (P_{r,i})} \), \(P_{r,i} = [I - A_{r,i}]^T [I - A_{r,i}] \)

2. \(\hat{\sigma}_{rs,ij} = \frac{y^T_{r,j} P_{r,j} y_{r,j} - y^T_{r,j} A_{r,j} P_{r,j} A_{r,j} y_{r,j}}{\text{tr} (P_{r,j})} \), \(P_{r,j} = [I - A_{r,j}]^T [I - A_{r,j}] \)

Proof

The coefficient of regression \(\hat{\beta}_0 \) is a vector of the regression coefficient on the un-weighted penalized spline. The covariance matrix is \(\Omega \) in the criteria of PLS. The PLS criterion in (5) can be described in the matrix form.

\[
\text{PLS} = y^T_{r,i} \hat{y}_{r,i} - 2 \hat{\beta}^T_{r,0} X^T_{r,ij} \hat{y}_{r,i} + \hat{\beta}^T_{r,0} X_{r,ij} \hat{\beta}_0 + \lambda^T_{r} \hat{\beta}^T_{r,0} T \lambda^T_{r,0} + \lambda^T_{r} \hat{\beta}^T_{r,0} T \lambda^T_{r,0} + \lambda^T_{r} \hat{\beta}^T_{r,0} T \lambda^T_{r,0}
\]

If equation (10) is differentiable to \(\hat{\beta}_0 \), then obtained

\[
\hat{\beta}(0) = \left(X^T_{r,ij} X_{r,ij} + \lambda^T_{r} T \lambda^T_{r,0} + \lambda^T_{r} T \lambda^T_{r,0} \right)^{-1} X^T_{r,ij} \hat{y}_{r,i}.
\]

Furthermore, the estimation of nonparametric bi-response regression function in longitudinal data through un-weighted penalized spline estimator can be expressed as follows.

\[
\hat{f}_r (t_j) = X_{r,t} \hat{\beta}(0) = X_{r,t} \left(X^T_{r,t} X_{r,t} + \lambda^T_{r} T \lambda^T_{r,0} \right)^{-1} X^T_{r,t} \hat{y}_{r,i}.
\]

If the matrix of the smoothing parameter is \(A_r = X_{r,t} \left(X^T_{r,t} X_{r,t} + \lambda^T_{r} T \lambda^T_{r,0} \right)^{-1} X^T_{r,t} \), then the equation (11) can be written into

\[
\hat{f}_r (t_j) = A_r \hat{y}_{r,i}.
\]
Next, \(E\left(\varepsilon_{r,i}^{(0)}\right) \) is obtained on the assumption of \(\varepsilon_{r,i} \) on (7).

\[
E\left(\varepsilon_{r,i}^{(0)}\varepsilon_{r,i}^{(0)}\right) = E\left(\tilde{y}_{r,i}^T \left[I - A_r \right] \left[I - A_r \right]^T \tilde{y}_{r,i}\right) = E\left(\tilde{y}_{r,i}^T P_n \tilde{y}_{r,i}\right),
\]

where \(P_n = \left[I - A_r \right]^T \left[I - A_r \right] \).

Equation (12) described by using the properties of the matrix and the result it as follows.

\[
E\left(\tilde{y}_{r,i}^T P_n \tilde{y}_{r,i}\right) = \text{tr}\left(\text{cov}(P_n \tilde{y}_{r,i})\right) = \sigma_{r,i}^2 \text{tr}(P_n) + \tilde{y}_{r,i}^T A_r^T \left[I - A_r \right]^T \left[I - A_r \right] A_r \tilde{y}_{r,i}
\]

\[
= \sigma_{r,i}^2 \text{tr}(P_n) + \tilde{y}_{r,i}^T A_r^T \left[I - A_r \right] A_r \tilde{y}_{r,i}
\]

(13)

Based on (13), the estimated variance of the error is as follows.

\[
\tilde{\sigma}_{r,i}^2 = \frac{\tilde{y}_{r,i}^T P_n \tilde{y}_{r,i} - \tilde{y}_{r,i}^T A_r^T P_n A_r \tilde{y}_{r,i}}{\text{tr}(P_n)}, \quad P_n = \left[I - A_r \right]^T \left[I - A_r \right].
\]

The covariance assumption of error is expressed by \(E\left(\varepsilon_{r,i}^{(0)}\varepsilon_{s,i}^{(0)}\right) \), so \(\text{Cov}(\varepsilon_{r,i}^{(0)}\varepsilon_{s,i}^{(0)}) = \sigma_{r,i} \sigma_{s,i} \) to \(r = s = 1, 2 \) and \(i = i' \), as for \(\text{Cov}(\varepsilon_{r,i}^{(0)}\varepsilon_{s,i}^{(0)}) = 0 \) to \(i \neq i' \). Next, \(E\left(\varepsilon_{r,i}^{(0)}\varepsilon_{s,i}^{(0)}\right) \) is described as follows.

\[
E\left(\varepsilon_{r,i}^{(0)}\varepsilon_{s,i}^{(0)}\right) = E\left(\tilde{y}_{r,i}^T \left[I - A_r \right] \left[I - A_r \right]^T \tilde{y}_{s,i}\right) = E\left(\tilde{y}_{r,i}^T P_n \tilde{y}_{s,i}\right),
\]

where \(P_n = \left[I - A_r \right]^T \left[I - A_r \right] \).

Furthermore, the equation (14) is described and the result is obtained at (15).

\[
E\left(\tilde{y}_{r,i}^T P_n \tilde{y}_{s,i}\right) = \text{tr}\left(\text{cov}(P_n \tilde{y}_{s,i})\right) = \sigma_{r,i} \sigma_{s,i} \text{tr}(P_n) + \tilde{y}_{r,i}^T A_r^T \left[I - A_r \right]^T \left[I - A_r \right] A_r \tilde{y}_{s,i}
\]

\[
= \sigma_{r,i} \sigma_{s,i} \text{tr}(P_n) + \tilde{y}_{r,i}^T A_r^T \left[I - A_r \right] A_r \tilde{y}_{s,i}
\]

(15)

Let \(\sigma_{r,i} \sigma_{s,i} = \sigma_{s,i} \), then the estimated variance of the error is as follows.

\[
\tilde{\sigma}_{r,i} = \frac{\tilde{y}_{r,i}^T P_n \tilde{y}_{s,i} - \tilde{y}_{r,i}^T A_r^T P_n A_r \tilde{y}_{s,i}}{\text{tr}(P_n)}, \quad P_n = \left[I - A_r \right]^T \left[I - A_r \right].
\]

As a result of the theorem, estimation of covariance matrices \(\Omega \) on (9) in the nonparametric bi-response regression model on the longitudinal data based on the penalized spline estimator, it is as follows.

\[
\hat{\Omega} = \begin{bmatrix}
\hat{\Sigma}_{11,11} & 0 & \ldots & 0 & \hat{\Sigma}_{11,11} & 0 & \ldots & 0 \\
0 & \hat{\Sigma}_{12,12} & \ldots & 0 & 0 & \hat{\Sigma}_{12,12} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \hat{\Sigma}_{1n,n} & 0 & 0 & \ldots & \hat{\Sigma}_{1n,n} \\
\hat{\Sigma}_{21,11} & 0 & \ldots & 0 & \hat{\Sigma}_{22,11} & 0 & \ldots & 0 \\
0 & \hat{\Sigma}_{21,22} & \ldots & 0 & 0 & \hat{\Sigma}_{22,22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \hat{\Sigma}_{21,n} & 0 & 0 & \ldots & \hat{\Sigma}_{22,n} \\
\end{bmatrix}
\]

with \(\hat{\Sigma}_{r,i,j} = \text{diag}\left(\tilde{\sigma}_{r,i}, \tilde{\sigma}_{s,i}, \ldots, \tilde{\sigma}_{r,i}\right) \) and \(\hat{\Sigma}_{\nu,\mu} = \text{diag}\left(\tilde{\sigma}_{r,i}, \tilde{\sigma}_{s,i}, \tilde{\sigma}_{s,i}, \ldots, \tilde{\sigma}_{r,i}, \tilde{\sigma}_{s,i}\right) \).
5. Simulation Study

The ability of covariance matrix as a weighting in the nonparametric bi-response regression model of the longitudinal data is shown through a simulation study. We use a covariance matrix corresponding to equation (19). Simulated studies were performed on the number of subjects 5, 10 and 30, while each subject was measured from 3 to 5 times the measurement. The correlation between the first and the second response is 0.9 and \(\varepsilon_i \sim N(0,1) \). The model of each response to the number of knot points of 2 and the lambda is 0.5 is shown in equation (17).

\[
\begin{align*}
 y_{1ij} &= f_1(t_{ij}) + \varepsilon_{1ij}, \quad \varepsilon_{1ij} \sim N(0,1), \\
 y_{2ij} &= f_2(t_{ij}) + \varepsilon_{2ij}, \quad \varepsilon_{2ij} \sim N(0,1), \\
\end{align*}
\]

where \(f_1 = 3.5 + 2t_y - 2t_y^2 + 2(t_y - 2)^2 - 2(t_y - 4)^2 \) and \(f_2 = 6.5 - t_y + 2t_y^2 + 1.5(t_y - 2)^2 + 1.5(t_y - 4)^2 \).

We compare the error value of the simulated data with the error value after weight through the covariance matrix. It is shown through Box Plot in figure 1.

Figure 1 consists of three box plots for each number of subjects 5, 10 and 30. Each box plot shows an error from the model of simulated data without weighted (left) and error after weight with the covariance matrix (right). The results of the analysis show that the error of the simulated data without weighted is greater than the estimated error of the nonparametric bi-response regression model with the covariance matrix. The average error of the model of the covariance matrix rate close to zero with smaller error range. This result shows the superiority of the covariance matrix of error in overcoming the correlation that occurs in the longitudinal data of bi-response through the penalized spline estimator. The simultaneous process between the covariance matrix, knots and smoothing parameters are capable of produce estimation errors of smaller nonparametric bi-response regression models.

6. Conclusion

In this study, we described the covariance matrix estimation of the error in the bi-response longitudinal case through a penalized spline estimator. In addition, through simulation studies, we also demonstrated the ability of the covariance matrix as weight in correlated bi-response data. The result of the covariance matrix estimation through the penalized spline estimator is outlined in Theorem 1, and then it used in the simulation study. Our results have shown that the use of the covariance matrix as weight as set forth in Theorem 1 is capable of providing a smaller error value. The error value is shown through the box plot on several simulations of a number of different subjects.

Acknowledgments

Many thanks to the Directorate General of Higher Education, the Ministry of Research, Technology and Higher Education of the Republic of Indonesia passed through BPPDN grant and the University of Hasanuddin for financial support.
References

[17] Ruppert D 2002 Selecting the Number of Knot for Penalized Spline *Journal of Computational and Graphical Statistics* **11** 735-757
Journal of Physics: Conference Series

Country: United Kingdom
Subject Area and Category: Physics and Astronomy
Publisher: Institute of Physics
Publication type: Journals
ISSN: 17426588, 17426596
Coverage: 2005-ongoing
Scope: The open access Journal of Physics: Conference Series (JPCS) provides a fast, versatile and cost-effective proceedings publication service.

Quartiles

Physics and Astronomy (miscellaneous)

SJR

Total Cites: 12k
Self-Cites

Citations per document

H Index: 65
Dear HOSEXIN,

Thomson Reuters?

Show this widget in your own website

Just copy the code below and paste within your html code:

`<a href="https://www.scimagojr.com/journalsearch.php?q=130053&tip=sid&cl...`

Journal of Physics: Conference Series

Q3

Physics and Astronomy (miscellaneous)
best quartile

SJR 2018
0.22
powered by Scimago

The SJR and Country Rank uses Scopus data, our impact indicator is the SJR. Check our website to locate the journal. We suggest you to consult the Journal Citation Report for other indicators (like Impact Factor) with a Web of Science data source. Best Regards, SCImago Team

ThangNguyen 1 month ago

Dear, Editorial Board!

Our paper was published in the Journal of Physics: Conference Series, 11/2019. But now, we cannot find it on site Scopus.com. Question to you: is this paper was included in the scopus database or not?

Thank you very much!

reply