## PAPER • OPEN ACCESS

## The 2nd International Conference on Science (ICOS)

To cite this article: 2018 J. Phys.: Conf. Ser. 979011001

View the article online for updates and enhancements.

## IOP ebooks" ${ }^{\text {" }}$

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

## Preface

Following the successful of the $1^{\text {st }}$ International Conference on Science (ICOS), held by Faculty of Mathematics and Natural Sciences, Hasanuddin University, we have organised the $2^{\text {nd }}$ International Conference on Science, ICOS 2017 in November 2017.

The $2^{\text {nd }}$ International Conference on Science (ICOS) is a conference organized by Faculty of Mathematics and Natural Sciences, Hasanuddin University, Indonesia in cooperation with Indonesian Mathematical Society Sulawesi region (IndoMS), Indonesian Physical Society (HFI), Indonesian Association of Geophysicists (HAGI) and Indonesian Biology Consortium (KOBI). It is a three-year conference activity of the Faculty of Mathematics and Natural Science, started three years back on $19^{\text {th }}-20^{\text {th }}$ of November 2014.

The objectives are to bring together scholars, researchers and experts from diverse backgrounds and applications areas. Special emphasis is placed on promoting interaction between the theoretical, experimental, and case studies, so that a high level exchange in new and emerging areas within Physics, bioscience, computational science and mathematics in science and technology.

The keynote presentations are provided especially to show the contribution of the various fields of sciences, with the main theme "Science for Sustainable Development and Better Quality of Life". We have eight keynote speakers coming from The University of Melbourne, Australia, Prof Alexander Babanin, Directorate Research and Community Services, Ministry of Research and Technology, Higher Education, Indonesia, Prof Ocky Karna Rajadsa, United Nations, Pulse Lab Jakarta, Dr Jong Gun Lee, The University of Tokyo, Jepang, Prof Koji Inoue, La Trobe University, Australia, Assoc Prof Agus Salim, Universiti Kebangsaan Malaysia, Malaysia, Prof Mohammad B Kassim, Geophysical Adviser, PT Pertamina Indonesia, Dr Alvius Dwi Guntara and Universitas Riau, Indonesia, Erman Taer, Ph.D.

> Sri Astuti Thamrin (Chairman) and Dahlang Tahir (Editor in Chief)* The $2^{\text {nd }}$ International Conference on Science (ICOS 2017) Publication Faculty of Mathematics and Natural Sciences Hasanuddin University Tamalanrea, Makassar, 90245, Indonesia *E-mail: dtahir@fmipa.unhas.ac.id

## PAPER • OPEN ACCESS

## The Committees

To cite this article: 2018 J. Phys.: Conf. Ser. 979011002

View the article online for updates and enhancements.

## IOP ebooks"

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

## The Committees

## The Second International Conference on Science (ICOS 2017)

## Advisory Editorial Board

Dahlang Tahir (Hasanuddin University, Indonesia)
James McGree (Queensland University of Technology, Australia)
Setia Pramana (Karolinka Institute, Sweden \& Institute Statistic Indonesia)
Halmar Halide (Hasanuddin University, Indonesia)
Sutiman Bambang Sumitro (Brawijaya University, Indonesia)
Widodo (Brawijaya University, Indonesia)
Hasmawati (Hasanuddin University, Indonesia)
Magdalena Litaay (Hasanuddin University, Indonesia)
Tasrief Surungan (Hasanuddin University, Indonesia)
Mawardi Bahri (Hasanuddin University, Indonesia)
Muhammad Altin Massinai (Hasanuddin University, Indonesia)

## Organizing Committee

| Sri Astuti Thamrin | Chairman |
| :--- | :--- |
| Fredryk Mandey | Co-Chair |
| Naimah Aris | Treasurer |
| Sulfahri | Secretary |
| Kasbawati | Secretariat Member |
| Andi Masniawati | Secretariat Member |
| Agustinus Ribal | Secretariat Member |

## Advisory Committee

Amiruddin
Moh Ivan Azis
Muhammad Zakir

Andi Ilham Latunra

Dean of Faculty of Mathematics and Natural Sciences Vice-Dean for Academic Affairs Vice-Dean for General Administration, Finance, and Human Resources Vice-Dean for Student Affairs and Alumni Relations

## Steering Committee

Alexander Babanin (the University of Melbourne, Australia)
Koji Inoue (The University of Tokyo, Japan)
Mohammad . B. Kassim (Universiti Kebangsaan Malaysia, Malaysia)
Jong Gun Lee (United Nations, Pulse Lab Jakarta, Indonesia)
Agus Salim (La Trobe University, Australia)
Erman Taer (University of Riau, Indonesia)
Alfian Noor (Hasanuddin University, Indonesia)
Moh Ivan Azis (Hasanuddin University, Indonesia)
Dadang Suriamihardja (Hasanuddin University, Indonesia)
Alpius Dwi Guntara (Geophysical PT Pertamina)
Ocky Karna Radjasa (Ministry of Research, Technology and Higher Education, Indonesia)

## Scientific and Reviewer Committee

Dahlang Tahir (Hasanuddin University)
Isnaeni (Indonesian Institute of Sciences)
Halmar Halide (Hasanuddin University)
Taufik Sutanto (Syarif Hidayatullah State Islamic University)
Paulina Taba (Hasanuddin University)

Misita Anwar (Monash University, Australia)<br>Utami Dyah Syafitri (Bogor Agricultural University)<br>Junaidi (Tadulako University)<br>Sri Astuti Thamrin (Hasanuddin University)<br>Achmad Effendi (Brawijaya University)<br>Mawardi Bahri (Hasanuddin University)

## PAPER • OPEN ACCESS

## Peer review statement

To cite this article: 2018 J. Phys.: Conf. Ser. 979011005

View the article online for updates and enhancements.

## IOP ebooks ${ }^{\text {m }}$

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

## Peer review statement

All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

## Table of contents

Volume 979
2018
4 Previous issue Next issue *

The 2nd International Conference on Science (ICOS)
2-3 November 2017, Makassar, Indonesia

View all abstracts

Accepted papers received: 20 February 2018
Published online: 13 March 2018

## Preface

OPEN ACCESS 011001

The 2nd International Conference on Science (ICOS)

+ View abstract PDF
OPEN ACCESS 011002

The Committees

+ View abstract 国 PDF
OPEN ACCESS 011003

Sponsor or funding acknowledgements

+ View abstract PDF

OPEN ACCESS
Conference Photographs

+ View abstract PDF

OPEN ACCESS
Peer review statement

+ View abstract PDF


## Papers

## Bioscience and Bioinformatics

## OPEN ACCESS

Thermostable $\boldsymbol{\alpha}$-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi
F M Gazali and I N Suwastika

+ View abstract PDF


## OPEN ACCESS

The potential for Probiotic Bacteria from milkfish intestine in reducing mercury metals in skimmed milk media
Zaraswati Dwyana, D Priosambodo, N Haedar, A E Erviani, A K Djabura and R Sukma

+ View abstract PDF

OPEN ACCESS
Marine tunicates from Sangkarang Archipelago Indonesia: recent finding and bio-prospecting


OPEN ACCESS
Effect of pH fermentation on production bioethanol from jackfruit seeds（Artocarpus heterophyllus）through separate fermentation hydrolysis method
A R Arif，H Natsir，H Rohani and A Karim
＋View abstract ${ }^{\text {D }}$ PDF

OPEN ACCESS
Phenethyl ester and amide of Ferulic Acids：Synthesis and bioactivity against P388 Leukemia Murine Cells
Firdaus，N H Soekamto，Seniwati，M F Islam and Sultan
＋View abstract PDF
OPEN ACCESS 012017

Dengue antiviral activity of polar extract from Melochia umbellata（Houtt）Stapf var．Visenia
Nunuk Hariani Soekamto，S Liong，S Fauziah，I Wahid，Firdaus，P Taba and F Ahmad
＋View abstract PDF
OPEN ACCESS 012018

Utilization of $\alpha$－amylase enzyme from Bacillus stearothermophilus RSAl $_{1 B}$ for maltodextrin production from sago starch
R A Arfah，A Ahmad，S Dali，M N Djide，Mahdalia and A R Arif
＋View abstract PDF

OPEN ACCESS
Inhibitory activities of Moringa oleifera leaf extract against $\alpha$－glucosidase enzyme in vitro
H Natsir，A W Wahab，A Laga and A R Arif
＋View abstract PDF

## OPEN ACCESS

Study of characteristic of tsunami base on the coastal morphology in north Donggala，Central Sulawesi
W S N Rahmadaningsi，A H Assegaf，W Setyonegoro and Paharuddin
＋View abstract 4．PDF
OPEN ACCESS 012021

Dislocation，crystallite size distribution and lattice strain of magnesium oxide nanoparticles
I W Sutapa，Abdul Wahid Wahab，P Taba and N L Nafie
＋View abstract PDF

OPEN ACCESS
Benzene derivatives from the marine sponges Cinachyrella
Abraham，Y M Syah，H Natsir and Nunuk Hariani Soekamto
＋View abstract 気 PDF

OPEN ACCESS
Pilarization $\mathrm{TiO}_{2}$ onto De－oiled spent bleaching clay using Rarasaponin as surfactant
N Hindryawati，Daniel，Erwin and N D Fadillah
＋View abstract 国 PDF

## OPEN ACCESS

Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor
M Zakir，P Budi，I Raya，A Karim，R Wulandari and A B J Sobrido
＋View abstract 気 PDF

## OPEN ACCESS

Application of MSSIP－2 nutrient in marine phytoplankton culture to support the production of biomass for biofuel industry
Paulina Taba，S Kasim and I Raya
$\boldsymbol{+}$ View abstract 郕 PDF

Determination of the optimum concentration cellulose baggase in making film bioplastic
S Chadijah，W O Rustiah and M I D Munir
＋View abstract 岡 PDF

＋View abstract 团 PDF

## OPEN ACCESS

Implementation of Canny and Isotropic Operator with Power Law Transformation to Identify Cervical Cancer
A Amalia，D Rachmawati，I A Lestari and C Mourisa
＋View abstract PDF
OPEN ACCESS 012032

Facial Expression Recognition using Multiclass Ensemble Least－Square Support Vector Machine
Armin Lawi and M Sya＇Rani Machrizzandi
＋View abstract PDF
OPEN ACCESS 012033

Super－Encryption Implementation Using Monoalphabetic Algorithm and XOR Algorithm for Data Security
Dian Rachmawati，Mohammad Andri Budiman and Indra Aulia
＋View abstract PDF
OPEN ACCESS 012034

The Observation of Bahasa Indonesia Official Computer Terms Implementation in Scientific Publication
D Gunawan，A Amalia，M S Lydia and M I Muthaqin
＋View abstract 国 PDF

## OPEN ACCESS

Automated Robot Movement in the Mapped Area Using Fuzzy Logic for Wheel Chair Application
B Siregar，S Efendi，H Ramadhana，U Andayani and F Fahmi
＋View abstract 気 PDF

## OPEN ACCESS

Content Abstract Classification Using Naive Bayes
Syukriyanto Latif，Untung Suwardoyo and Edwin Aldrin Wihelmus Sanadi
＋View abstract 気 PDF

## Enviromental Science

Slamet Santosa
＋View abstract PDF

## OPEN ACCESS

Analysis of Chemical and Physical Properties of Biochar from Rice Husk Biomass
Bidayatul Armynah，Atika，Zuryati Djafar，Wahyu H Piarah and Dahlang Tahir
＋View abstract（a）PDF
OPEN ACCESS 012039

Solar Pond Potential as A New Renewable Energy in South Sulawesi
Nur Fadliah Baso，Indar Chaerah Gunadin and Yusran
＋View abstract 因 PDF
OPEN ACCESS 012040

The Habitat of Yellow Mouth Turban Turbo Chrysostomus，Linnaeus， 1758
E Soekendarsi
＋View abstract PDF
OPEN ACCESS 012041

Status of Suspended Particulate Matters Pollution at Traditional Markets in Makassar City
Sri Suryani and Fahrunnisa
$\boldsymbol{+}$ View abstract 気 PDF

OPEN ACCESS
Distribution of Escherichia Coli as Soil Pollutant around Antang Landfills
Andi Artiningsih，Hazairin Zubair，A．M．Imran and Sri Widodo
＋View abstract 龱 PDF

## OPEN ACCESS

The Effect of Deflector Angle in Savonius Water Turbine with Horizontal Axis on the Power Output of Water Flow in Pipe
Ari Prasetyo，Budi Kristiawan，Dominicus Danardono and Syamsul Hadi
＋View abstract PDF
OPEN ACCESS 012044

Effect of Blade Curvature Angle of Savonius Horizontal Axis Water Turbine to the Power Generation
Taufan Apha Sanditya，Ari Prasetyo，Budi Kristiawan and Syamsul Hadi
＋View abstract 盏 PDF

## Geophysics

OPEN ACCESS
Determination Hypocentre and Focal Mechanism Earthquake of Oct 31， 2016 in Bone，South Sulawesi
Muhammad Altin Massinai and Muhammad Fawzy Ismullah M
＋View abstract M PDF

## OPEN ACCESS

Shallow Depth Study Using Gravity \＆Magnetics Data in Central Java－Yogyakarta
Muhammad Fawzy Ismullah M，Muhammad Altin Massinai and Maria
＋View abstract 気 PDF

## OPEN ACCESS

Ore Reserve Estimation of Saprolite Nickel Using Inverse Distance Method in PIT Block 3A Banggai Area Central Sulawesi
Muhammad Khaidir Noor
＋View abstract 㶡 PDF

Coal Layer Identification using Electrical Resistivity Imaging Method in Sinjai Area South Sulawesi

Andi llham Samanlangi
＋View abstract PDF

## OPEN ACCESS

Upwelling Dynamic Based on Satellite and INDESO Data in the Flores Sea
Reski Kurniawan，D．A．Suriamihardja and Alimuddin Hamzah Assegaf
＋View abstract 国 PDF
OPEN ACCESS 012050

Earthquake Macro－zonation Based Peak Ground Acceleration，Modified Mercalli Intensity，And Type of Rocks around Matano Fault

Muh Karnaen，D A Suriamihardja，A Maulana and A Jaya
＋View abstract 気 PDF

OPEN ACCESS 012051
Response of Gravity，Magnetic，and Geoelectrical Resistivity Methods on Ngeni Southern Blitar Mineralization Zone
Sunaryo
＋View abstract 岛 PDF

OPEN ACCESS
Preliminary Result of Earthquake Source Parameters the Mw 3.4 at 23：22：47 IWST，August 21，2004，Centre Java，Indonesia Based on MERAMEX Project
Y A Laksono，K S Brotopuspito，W Suryanto，Widodo，R A Wardah and I Rudianto
＋View abstract DDF
OPEN ACCESS 012053

Microtremor Study of Site Effect for Disaster Mitigation and Geotechnical Purpose
Sabrianto Aswad，Muh．Altin Massinai and Syamsuddin
＋View abstract 2 PDF
OPEN ACCESS 012054

Earthquake Hazard Analysis Use Vs30 Data In Palu
Muhammad Rusydi，Rustan Efendi，Sandra and Rahmawati
＋View abstract 禺 PDF

## Material Science

## OPEN ACCESS

Determination of Binding Energy For Cu and $\mathrm{Cu}_{2} \mathrm{O}$ Based X－Ray Diffraction Spectrum
Heryanto，Bualkar Abdullah and Dahlang Tahir
＋View abstract MDF

OPEN ACCESS
Dye sensitized solar cell（DSSC）with natural dyes extracted from Jatropha leaves and purple Chrysanthemum flowers as sensitizer

Dahlang Tahir，Wilda Satriani，P L Gareso and B Abdullah
＋View abstract 国 PDF
OPEN ACCESS 012057

Modifying Of Particle Boards From Rice Husk and Pinus Merkusii Sawdust And Using Soybean Waste Waters Based Adhesive．
Indah Raya，Nurfika Ramdani，Abd．Karim and Musrizal Muin
＋View abstract 4 PDF

OPEN ACCESS
Adsorption of $\mathrm{Pb}^{2+}$ on Thiol－functionalized Mesoporous Silica，SH－MCM－48
P Taba，R D P Mustafa，L M Ramang and A H Kasim
＋View abstract PDF

OPEN ACCESS
Selectivity of $\beta$－Sitosterol Imprinted Polymers as Adsorbent

St Fauziah，Nunuk Hariani Soekamto，Paulina Taba and Muh Bachri Amran

| ＋View abstract | （4）PDF |  |
| :---: | :---: | :---: |
| OPEN ACCESS |  | 012060 |
| Optical and Structural Characterization of $\mathrm{ZnO} / \mathrm{TiO}_{2}$ Bilayer Thin Films Grown by Sol－Gel Spin Coating |  |  |
| P．L．Gareso，Musfitasari and Eko Juarlin |  |  |
| ＋View abstract | 閣 PDF |  |
| OPEN ACCESS |  | 012061 |
| Innovated Conceptual Design of Loading Unloading Tool for Livestock at the Port |  |  |
| Achmad Mustakim and Firmanto Hadi |  |  |
| ＋View abstract | （2）PDF |  |
| OPEN ACCESS |  | 012062 |
| Piper Ornatum and Piper Betle as Organic Dyes for $\mathrm{TiO}_{2}$ and $\mathrm{SnO}_{2}$ Dye Sensitized Solar Cells |  |  |
| Azwar Hayat，A．Erwin E．Putra，Novriany Amaliyah，Shuzi Hayase and Shyam．S．Pandey |  |  |
| ＋View abstract | 閣PDF |  |
| OPEN ACCESS |  | 012063 |
| The Isolation of Nanofibre Cellulose from Oil Palm Empty Fruit Bunch Via Steam Explosion and Hydrolysis with HCl 10\％ |  |  |
| S Gea，Z Zulfahmi，D Yunus，A Andriayani and Y A Hutapea |  |  |
| ＋View abstract | 卥PDF |  |
| OPEN ACCESS |  | 012064 |

The Effect of Synthesis Temperature on Physical and Magnetic Properties of Manganese Ferrite $\left(\mathrm{MnFe}_{2} \mathrm{O}_{4}\right)$ based on Natural Iron Sand
E A Setiadi，Rahmat，S Simbolon，M Yunus，C Kurniawan，A P Tetuko，S Zelviani，Rahmaniah and P Sebayang
＋View abstract 国 PDF


## OPEN ACCESS

Prediction of Tidal Elevations and Barotropic Currents in the Gulf of Bone
Rika Purnamasari，Agustinus Ribal and Jeffry Kusuma
＋View abstract PDF
OPEN ACCESS 012072

A boundary element method with analytical integration for deformation of inhomogeneous elastic materials
Moh．Ivan Azis，Syamsuddin Toaha，Mawardi Bahri and Nirwan Ilyas
＋View abstract PDF

OPEN ACCESS 012073
The Ramsey Numbers for Star Versus Wheel of Even Order
Hasmawati，P Nur Rohmah Oktaviani and Loeky Haryanto
＋View abstract LDP
OPEN ACCESS 012074

Flattening Property and the Existence of Global Attractors in Banach Space
Naimah Aris，Sitti Maharani，Massalesse Jusmawati and Budi Nurwahyu
＋View abstract PDF

OPEN ACCESS
012075
On some examples of pollutant transport problems solved numerically using the boundary element method
Moh．Ivan Azis，Kasbawati，Amiruddin Haddade and Sri Astuti Thamrin
＋View abstract 皿 PDF

## Physics

## open access

Source to Skin Distance（SSD）Characteristics from Varian CX Linear Accelerator
Wira Bahari Nurdin，Aji Purnomo and Syamsir Dewang
＋View abstract 皿 PDF
OPEN ACCESS 012077

Evaluation of Energy Dose and Output Power Optimum of Diode＇s Laser of 450 nm and 650 nm in Photoantimicrobial Mechanisms Against Inhibition of C．Albicans Biofilm Cells
S Dewi－Astuty，Suhariningsih，S Dyah－Astuti and A Baktir
＋View abstract 国 PDF

## OPEN ACCESS

Study of Image Quality，Radiation Dose and Low Contrast Resolution from MSCT Head by Using Low Tube Voltage
Jumriah，Syamsir Dewang，Bualkar Abdullah and Dahlang Tahir
＋View abstract PDF

OPEN ACCESS
Improve Image Quality of Transversal Relaxation Time PROPELLER and FLAIR on Magnetic Resonance Imaging
N Rauf，D Y Alam，M Jamaluddin and B A Samad
＋View abstract PDF

## OPEN ACCESS

Study of Image Quality From CT Scanner Multi－Detector by using Americans College of Radiology（ACR）Phantom
Mulyadin，Syamsir Dewang，Bualkar Abdullah and Dahlang Tahir
＋View abstract 包 PDF

Deviation Value for Conventional X－ray in Hospitals in South Sulawesi Province from 2014 to 2016
Ilham Bachtiar，Bualkar Abdullah and Dahlan Tahir
＋View abstract
N PDF

Thermodynamic and Mechanic Consideration on the stability of Anti－symmetric Schaefer＇s equation
D．A．Suriamihardja，Amiruddin and Saaduddin
＋View abstract 気 PDF

## OPEN ACCESS

Design of Oil Viscosity Sensor Based on Plastic Optical Fiber
Muhammad Yunus and A．Arifin
＋View abstract PDF
OPEN ACCESS 012084

Study on steam pressure characteristics in various types of nozzles
Firman and Muhammad Anshar
＋View abstract PDF

OPEN ACCESS 012085
Characteristic Analysis Light Intensity Sensor Based On Plastic Optical Fiber At Various Configuration
A．Arifin，Lusiana，Muhammad Yunus and Syamsir Dewang
＋View abstract 会 PDF
OPEN ACCESS 012086

Probing critical behavior of 2D Ising ferromagnet with diluted bonds using Wang－Landau algorithm
N．A．Ridha，M．F．Mustamin and T．Surungan
＋View abstract 圆 PDF
Statistics
0PEN ACCESS
The Application of Extended Cox Proportional Hazard Method for Estimating Survival Time of Breast Cancer
Hartina Husain，Sri Astuti Thamrin，Sulaiha Tahir，Ahmad Mukhlisin and M Mirna Apriani
＋View abstract 且 PDF

OPEN ACCESS 012088
The Application Law of Large Numbers That Predicts The Amount of Actual Loss in Insurance of Life
Georgina Maria Tinungki
＋View abstract PDF
OPEN ACCESS 012089

Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine
Noviyanti Santoso and Wahyu Wibowo
＋View abstract PDF
OPEN ACCESS 012090

Interevent Time Distribution of Renewal Point Process，Case Study：Extreme Rainfall in South Sulawesi
Nurtiti Sunusi
＋View abstract \＆PDF

OPEN ACCESS
Preliminary Study of Perception and Consumer Behaviour Towards Energy Saving for Household Appliances：A Case of Makassar
Yusri Syam Akil，Saiful Mangngenre，Sri Mawar and Kifayah Amar
＋View abstract 国 PDF

## OPEN ACCESS

On The Impact of Climate Change to Agricultural Productivity in East Java
Heri Kuswanto，Mutiah Salamah，Sri Mumpuni Retnaningsih and Dedy Dwi Prastyo
＋View abstract 因 PDF

Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression
A Islamiyati, Fatmawati and N Chamidah

+ View abstract PDF

OPEN ACCESS
Risk evaluation on leading companies in property and real estate subsector at IDX: A Value-at-Risk with ARMAX-GARCHX approach and duration test
Dedy Dwi Prastyo, Dwi Handayani, Soo-Fen Fam, Santi Puteri Rahayu, Suhartono and Ni Luh Putu Satyaning Pradnya Paramita

+ View abstract PDF

OPEN ACCESS 012095
Spatial Random Effects Survival Models to Assess Geographical Inequalities in Dengue Fever Using Bayesian Approach: a Case Study
Sri Astuti Thamrin and Irfan Taufik

+ View abstract 気 PDF
OPEN ACCESS 012096

Forecasting Inflow and Outflow of Money Currency in East Java Using a Hybrid Exponential Smoothing and Calendar Variation Model

Ana Susanti, Suhartono, Hario Jati Setyadi, Medi Taruk, Haviluddin and Putut Pamilih Widagdo

+ View abstract \& PDF
OPEN ACCESS 012097

Modified Exponential Weighted Moving Average (EWMA) Control Chart on Autocorrelation Data
Erna Tri Herdiani, Geysa Fandrilla and Nurtiti Sunusi

+ View abstract 㘠 PDF

JOURNAL LINKS
Journal home

Information for organizers
Information for authors
Search for published proceedings
Contact us
Reprint services from Curran Associates

# Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression 

To cite this article: A Islamiyati et al 2018 J. Phys.: Conf. Ser. 979012093

View the article online for updates and enhancements

## IOP ebooks"

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

# Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression 

A Islamiyati ${ }^{1}$, Fatmawati $^{2}$ and $\mathrm{N}^{\text {Chamidah }}{ }^{2}$<br>${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Indonesia<br>${ }^{2}$ Department of Mathematics, Faculty of Sciences and Technology, Airlangga University, Indonesia<br>E-mail: annaislamiyati_701@gmail.com


#### Abstract

The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the autocorrelation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.


## 1. Introduction

The covariance matrix is usually used as a weighting in the model estimation in case of violation of assumptions such as the correlation between errors. Error correlation can occur if the data contains more than one correlated response. The covariance matrix can be assumed to be known [1] and estimated with the smoothing spline estimator [2]. However, if the covariance matrix is unknown, then it is necessary to be estimated. The covariance matrix can be estimated from the data and it may have an impact on the estimation results of the smoothing spline estimator [3]. The estimation of the covariance matrix in cross sectional data to overcome the correlation between the responses has been estimated by using the maximum likelihood method in spline regression [4]. Besides that, it also has been estimated by using the expected value of the error based on the local polynomial estimators [5], and the kernel estimators [6].

Our study analyses longitudinal data which is a combination of cross sectional and time series data. The analysis of cross sectional data that should be performed on longitudinal data will provide a different interpretation of a problem [7]. The longitudinal data consists of several subjects that are measured over time based on measurement time. Each subject is assumed to be independent, but the measurements in the subject are mutually dependent. The approach used for addressing the correlations that occur in longitudinal data can be done through principal component analysis [8], varying coefficient models [9] and mixed-effect penalized spline models [10].

The longitudinal data can consist of two responses that are assumed to be correlated called biresponse [11]. The correlation between the responses was overcome by using the covariance matrix and it is estimated through the smoothing spline estimator [12]. In this article, we use the covariance matrix as a weighted in the penalized spline criteria to solve correlations that occur in the data, both correlations between responses, or the correlation between observed data bi-response longitudinal
data. The advantage of a penalized spline is the ability of the estimator to produce a smooth and fitted curve, and also the pattern change of curve regression can be seen visually. This is due to knot involvement and smoothing parameters simultaneously in controlling the smoothness of the curve. The penalized spline estimators consist goodness of fit and penalty function. The function of goodness of fit is truncated polynomials that have an optimal rate of convergence [13]. Knot points in the goodness of fit selected based on fixed methods [14]. We use the penalty function in the penalized spline criterion based on quadratic polynomials form of spline regression coefficient [15]. The covariance matrix is estimated based on the error of the nonparametric bi-response regression model based on the penalized spline estimator un-weighted. This is why the use of covariance matrix can produce to accurate estimation results. The advantages of using the weighted of the covariance matrix are shown through a longitudinal data simulation study on a correlation value of 0.9 . The results show that the use of the covariance matrix in the penalized spline criteria in the case of longitudinal biresponse data provides a smaller error value.

## 2. Bi-response longitudinal data

Bi-response longitudinal data are longitudinal data involving two correlated responses. Longitudinal data are measured data from subjects, where each subject is measured repeatedly in a time interval. Longitudinal data are assumed to be independent among subjects, however, on the inter-observations in the same subjects, the data are mutually dependent [16]. Futhermore, if $t_{i j}$ is the observation at the $j^{\text {th }}$ time of the $i^{\text {th }}$ subject, $y_{1 . i j}$ is the $1^{\text {st }}$ response variable at a time $t_{i j}$ and $y_{2 . i j}$ is the $2^{\text {nd }}$ response variable at a time $t_{i j}$, then the longitudinal data bi-response was given by $\left(t_{i j}, y_{1 . i j}, y_{2 . i j}\right), j=1,2, \ldots, m_{i}$, $i=1,2, \ldots, n$, where $m_{i}$ is the number of repeated measurement of the $i^{\text {th }}$ individual. The relationship between $t_{i j}, y_{1 . i j}$ and $y_{2 . i j}$ can be expressed in the form of the regression model as follows.

$$
\begin{equation*}
y_{r, i j}=f_{r}\left(t_{i j}\right)+\varepsilon_{r . i j}, r=1,2 \tag{1}
\end{equation*}
$$

The longitudinal data structure of bi-response is shown in table 1 .
Table 1. The structure of the longitudinal data bi-response to the predictor variable $t_{i j}$

| $r$ | $i$ | $j$ | $t_{i j}$ | $y_{r i j}$ | $r$ | $i$ | $j$ | $t_{i j}$ | $y_{r . i j}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 1 | $t_{11}$ | $y_{1.11}$ |  |  | 1 | $t_{11}$ | $y_{2.11}$ |
|  | 1 | $2$ | $t_{12}$ | $y_{1.12}$ |  | 1 | 2 | $t_{12}$ | $y_{2.12}$ |
|  |  | $m_{1}$ | $t_{1 m_{1}}$ | $y_{1.1 m_{1}}$ |  |  | $m_{1}$ | $t_{1 m_{1}}$ | $y_{2.1 m_{1}}$ |
|  | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | 2 |  | $\vdots$ | $\vdots$ |  |
|  |  | 1 | $t_{n 1}$ | $y_{1 . n 1}$ |  |  | 1 | $t_{n 1}$ | $y_{2 . n 1}$ |
|  | $n$ | 2 | $t_{n 2}$ | $y_{1 . n 2}$ |  | $n$ | 2 | $t_{n 2}$ $\vdots$ | $y_{2 . n 2}$ |
|  |  | $m_{n}$ | $t_{n m_{n}}$ | $y_{1 . n m_{n}}$ |  |  | $m_{n}$ | $t_{n m_{n}}$ | $y_{2 . n m_{n}}$ |

Table 1 shows the structure of the longitudinal data containing two responses ( $r=1,2$ ). Each response consists of $n$ subjects ( $i=1,2, \ldots, n$ ) which each subject is measured several times as much as $m\left(j=1,2, \ldots, m_{i}\right)$.

## 3. Penalized spline regression

The penalized spline is one of the estimators used in nonparametric regression in the estimation of the nonparametric regression function. Penalized spline estimator involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Penalty function in the
penalized spline estimator takes the quadratic form of the truncated regression coefficient as recommended on the cross sectional data [17].

If the function $f_{r}\left(t_{i j}\right)$ in equation (1) is assumed unknown and estimated through a penalized spline estimator, then it is expressed as follows.

$$
\begin{equation*}
f_{r}\left(t_{i j}\right)=\sum_{u=0}^{q} \beta_{r . u}\left(t_{i j}\right)^{u}+\sum_{v=1}^{d} \beta_{r .(q+v)}\left(t_{i j}-K_{v}\right)_{+}^{q} . \tag{2}
\end{equation*}
$$

The equation (2) can be made in matrix form, as in (3).

$$
\begin{equation*}
\vec{f}(\vec{t})=\mathbf{X} \vec{\beta} \tag{3}
\end{equation*}
$$

where $\vec{f}(\vec{t})=\left[\vec{f}_{1}(\vec{t}), \vec{f}_{2}(\vec{t})\right]^{T}$ are an unknown form of regression function in the first and the second response.

Furthermore, the penalized spline regression model in equation (1) can be expressed to (4) based on the function at (3).

$$
\begin{equation*}
\vec{y}=\mathbf{X} \vec{\beta}+\vec{\varepsilon}, \tag{4}
\end{equation*}
$$

where $\vec{y}$ is a response vector containing the first and the second response. $\mathbf{X}$ is a predictor matrix in the first and the second response. $\underset{\sim}{\mathcal{E}}$ is an error vector in the first and the second response with $E(\vec{\varepsilon})=\overrightarrow{0}$ and $\operatorname{Var}(\vec{\varepsilon})=\boldsymbol{\Omega}$.

In the estimation of the covariance matrix, we need estimates of the nonparametric bi-response regression model un-weighted. The estimation criteria is called penalized least square (PLS) which can be expressed in the form of vector as in (5).

$$
\begin{equation*}
\operatorname{PLS}=(\vec{y}-\mathbf{X} \vec{\beta})^{T}(\vec{y}-\mathbf{X} \vec{\beta})+\lambda \vec{\beta}^{T} \mathbf{D} \vec{\beta} \tag{5}
\end{equation*}
$$

## 4. Estimation of covariance matrix

The assumption for error random $\varepsilon_{r i, j}$ is related to the variance of the error.

$$
E\left(\varepsilon_{r i, j}^{2}\right)=\sigma_{r, i j}^{2}, E\left(\varepsilon_{r . i j}, \varepsilon_{s, i j}\right)=\left\{\begin{array}{cl}
\sigma_{r . i j} \sigma_{s, i j} & ; i=i^{*}  \tag{6}\\
0 & ; i \neq i^{*}
\end{array}\right.
$$

Equation (6) occurs at $r \neq s=1,2$. The model of bi-response nonparametric regression on longitudinal data is assumed to have a correlation between responses and to have a correlation between measurement data on the same subject. This led to the estimation of bi-response nonparametric regression model on longitudinal data using a weighted covariance matrix from $\vec{\varepsilon}$ is $\boldsymbol{\Omega}$.

$$
\begin{equation*}
\boldsymbol{\Omega}=\operatorname{Var}(\vec{\varepsilon})=E[\vec{\varepsilon}-E(\vec{\varepsilon})][\vec{\varepsilon}-E(\vec{\varepsilon})]^{T}=E\left(\vec{\varepsilon}^{T}{ }^{T}\right) \tag{7}
\end{equation*}
$$

where $\vec{\varepsilon}=\left(\vec{\varepsilon}_{1}, \vec{\varepsilon}_{2}\right)^{T}, \vec{\varepsilon}_{1}=\left(\vec{\varepsilon}_{1.1}, \vec{\varepsilon}_{1.2}, \ldots, \vec{\varepsilon}_{1 . n}\right)^{T}, \vec{\varepsilon}_{2}=\left(\vec{\varepsilon}_{2.1}, \vec{\varepsilon}_{2.2}, \ldots, \vec{\varepsilon}_{2, n}\right)^{T}$.
Based on the assumption in (6), we can make a form the matrix of covariance as follows.

$$
\boldsymbol{\Omega}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11 . i} & \boldsymbol{\Sigma}_{12, i}  \tag{8}\\
\boldsymbol{\Sigma}_{21 . i} & \boldsymbol{\Sigma}_{22, i}
\end{array}\right] .
$$

Equation (8) can also be expressed as in (9).

$$
\boldsymbol{\Omega}=\left[\begin{array}{cccccccc}
\boldsymbol{\Sigma}_{11.11} & \mathbf{0} & \ldots & \mathbf{0} & \boldsymbol{\Sigma}_{12.11} & \mathbf{0} & \ldots & \mathbf{0}  \tag{9}\\
\mathbf{0} & \boldsymbol{\Sigma}_{11.22} & \ldots & \mathbf{0} & \mathbf{0} & \boldsymbol{\Sigma}_{12.22} & \ldots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & \boldsymbol{\Sigma}_{11 . n n} & \mathbf{0} & \mathbf{0} & \ldots & \boldsymbol{\Sigma}_{12 . n n} \\
\boldsymbol{\Sigma}_{21.11} & \mathbf{0} & \ldots & \mathbf{0} & \boldsymbol{\Sigma}_{22.11} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{21.22} & \ldots & \mathbf{0} & \mathbf{0} & \boldsymbol{\Sigma}_{22.22} & \ldots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & \boldsymbol{\Sigma}_{21 . n n} & \mathbf{0} & \mathbf{0} & \ldots & \boldsymbol{\Sigma}_{22 . n n}
\end{array}\right]
$$

The matrix $\boldsymbol{\Sigma}_{r r i}$ is the matrix of the variance in the same response, $r=1,2$ with the same subject, $i=1,2, \ldots, n$ that is $\boldsymbol{\Sigma}_{r r i}=\operatorname{diag}\left(\boldsymbol{\Sigma}_{r .11}, \boldsymbol{\Sigma}_{r .22}, \ldots, \boldsymbol{\Sigma}_{r ., n n}\right)$. The matrix $\boldsymbol{\Sigma}_{r . s i i}$ is the matrix of covariance in the different response, $r \neq s=1,2$ with the same subject, $i=1,2, \ldots, n$ that is $\boldsymbol{\Sigma}_{r s, i}=\operatorname{diag}\left(\boldsymbol{\Sigma}_{r s .11}, \boldsymbol{\Sigma}_{r s, 22}, \ldots, \boldsymbol{\Sigma}_{r s, n n}\right)$. The matrix of covariance $\boldsymbol{\Omega}$ in equation (9) is used in estimating bi-response nonparametric regression model in longitudinal data with a penalized spline estimator. The matrix of covariance is used to overcome the correlation between responses. The estimation covariance matrix is related to the estimation of error variance in the measurement data. The covariance matrix at (9) is assumed to be unknown, so it estimated as set forth in Theorem 1.

## Theorem 1

If the nonparametric regression model with two responses based on the un-weighted penalized spline in each sample $t_{r, i j}$ is

$$
\vec{y}_{r, i}=\mathbf{X}_{r, t, i} \vec{\beta}_{r}^{(0)}+\vec{\varepsilon}_{r, i}^{(0)}, r=1,2 ; i=1,2, \ldots, n,
$$

then we get

1. $\hat{\sigma}_{r . i j}^{2}=\frac{\vec{y}_{r i}^{T} \mathbf{I}_{r r} \vec{y}_{r, i}-\vec{y}_{r i}^{T} \mathbf{A}_{r}^{T} \mathbf{P}_{r r} \mathbf{A}_{r} \vec{y}_{r i,}}{\operatorname{tr}\left(\mathbf{P}_{r r}\right)}, \mathbf{P}_{r r}=\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{r}\right]$
2. $\hat{\sigma}_{r s, i j}=\frac{\vec{y}_{r i}^{T} \mathbf{P}_{r s} \vec{y}_{s, i}-\vec{y}_{r i, i}^{T} \mathbf{A}_{r}^{T} \mathbf{P}_{r s} \mathbf{A}_{s} \vec{y}_{s, i}}{\operatorname{tr}\left(\mathbf{P}_{r s}\right)}, \mathbf{P}_{r s}=\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{s}\right]$

## Proof

The coefficient of regression $\vec{\beta}_{r}^{(0)}$ is a vector of the regression coefficient on the un-weighted penalized spline. The covariance matrix is $\boldsymbol{\Omega}$ in the criteria of PLS. The PLS criterion in (5) can be described in the matrix form.

$$
\begin{equation*}
\text { PLS }=\vec{y}_{r i,}^{T} \vec{y}_{r, i}-2 \vec{\beta}_{r}^{(0) T} \mathbf{X}_{r, t_{i}}^{T} \vec{y}_{r, i}+\vec{\beta}_{r}^{(0) T} \mathbf{X}_{r, t_{i}} \mathbf{X}_{r, t_{i j}} \vec{\beta}_{r}^{(0)}+\vec{\lambda}_{r}^{T} \vec{\beta}_{r}^{(0) T} \mathbf{D}_{r} \vec{\beta}_{r}^{(0)} \tag{10}
\end{equation*}
$$

If equation (10) is differentiable to $\vec{\beta}_{r}^{(0)}$, then obtained

$$
\hat{\bar{\beta}}^{(0)}=\left(\mathbf{X}_{r, t_{j}}^{T} \mathbf{X}_{r, t_{j}}^{T}+\vec{\lambda}_{r}^{T} \mathbf{D}_{r}\right)^{-1} \mathbf{X}_{r, t_{j}}^{T} \vec{y}_{r, i} .
$$

Furthermore, the estimation of nonparametric bi-response regression function in longitudinal data through un-weighted penalized spline estimator can be expressed as follows.

$$
\begin{equation*}
\hat{\vec{f}}_{r}\left(t_{i j}\right)=\mathbf{X}_{r, t_{j}} \hat{\vec{\beta}}^{(0)}=\mathbf{X}_{r, t_{i j}}\left(\mathbf{X}_{r, t_{i j}}^{T} \mathbf{X}_{r, t_{i j}}^{T}+\vec{\lambda}_{r}^{T} \mathbf{D}_{r}\right)^{-1} \mathbf{X}_{r, t_{j}}^{T} \vec{y}_{r, i} . \tag{11}
\end{equation*}
$$

If the matrix of the smoothing parameter is $\mathbf{A}_{r}=\mathbf{X}_{r t_{i j}}\left(\mathbf{X}_{r t_{j}}^{T} \mathbf{X}_{r t_{j j}}^{T}+\vec{\lambda}_{r}^{T} \mathbf{D}_{r}\right)^{-1} \mathbf{X}_{t_{t_{j}}}^{T}$, then the equation (11) can be written into

$$
\hat{\vec{f}}_{r}\left(t_{i j}\right)=\mathbf{A}_{r} \vec{y}_{r, i} .
$$

Next, $E\left(\varepsilon_{r, i j}^{2(0)}\right)$ is obtained on the assumption of $\varepsilon_{r . i j}$ on (7).

$$
\begin{equation*}
E\left(\varepsilon_{r, i j}^{(0)} \varepsilon_{r i j}^{(0)}\right)=E\left\{\vec{y}_{r, i}^{T}\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{r}\right] \vec{y}_{r, i}\right\}=E\left\{\vec{y}_{r, i}^{T} \mathbf{P}_{r r} \vec{y}_{r, i}\right\}, \tag{12}
\end{equation*}
$$

where $\mathbf{P}_{r r}=\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{r}\right]$.
Equation (12) described by using the properties of the matrix and the result it is as follows.

$$
\begin{align*}
E\left(\vec{y}_{r i,}^{T} \mathbf{P}_{r r} \vec{y}_{r, i}\right) & =\operatorname{tr}\left(\mathbf{P}_{r r} \sigma_{r, i \mathbf{I}}^{2} \mathbf{I}\right)+\left(\mathbf{A}_{r} \vec{y}_{r, i}\right)^{T} \mathbf{P}_{r r}\left(\mathbf{A}_{r} \vec{y}_{r, i}\right) \\
& =\sigma_{r, i v}^{2} \operatorname{tr}\left(\mathbf{P}_{r r}\right)+\vec{y}_{r, i}^{T} T_{r}^{T}\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{r}\right] \mathbf{A}_{r} \vec{y}_{r, i} \\
& =\sigma_{r, i t}^{2} \operatorname{tr}\left(\mathbf{P}_{r r}\right)+\vec{y}_{r i,}^{T} T_{r}^{T} \mathbf{P}_{r r} \mathbf{A}_{r} \vec{y}_{r, i} \tag{13}
\end{align*}
$$

Based on (13), the estimated variance of the error is as follows.

$$
\hat{\sigma}_{r, i j}^{2}=\frac{\overrightarrow{\vec{y}}_{r i,}^{T} \mathbf{P}_{r r} \vec{y}_{r i,}-\vec{y}_{r, i}^{T} \mathbf{A}_{r}^{T} \mathbf{P}_{r r} \mathbf{A}_{r} \vec{y}_{r i}}{\operatorname{tr}\left(\mathbf{P}_{r r}\right)}, \mathbf{P}_{r r}=\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{r}\right] .
$$

The covariance assumption of error is expressed by $E\left(\varepsilon_{r i, j}^{(0)}, \varepsilon_{s . i{ }^{\prime} j}^{(0)}\right)$, so $\operatorname{Cov}\left(\varepsilon_{r . i j}^{(0)} \varepsilon_{s . i^{\prime} j}^{(0)}\right)=\sigma_{r . i j} \sigma_{s . i j}$ to $r=s=1,2$ and $i=i^{*}$, as for $\operatorname{Cov}\left(\varepsilon_{r, i j}^{(0)} \varepsilon_{s, i, j}^{(0)}\right)=0$ to $i \neq i^{*}$. Next, $E\left(\varepsilon_{r, i j}^{(0)}, \varepsilon_{s, i j}^{(0)}\right)$ is described as follows.

$$
\begin{equation*}
E\left(\varepsilon_{r . i j}^{(0)}, \varepsilon_{s, i}(0)=E\left\{\vec{y}_{r, i}^{T}\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{s}\right] \vec{y}_{s, i}\right\}=E\left\{\vec{y}_{r i}^{T} \mathbf{P}_{r s} \vec{y}_{s, i}\right\},\right. \tag{14}
\end{equation*}
$$

where $\mathbf{P}_{r s}=\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{s}\right]$.
Furthermore, the equation (14) is described and the result is obtained at (15).

$$
\begin{align*}
E\left(\vec{y}_{r i,}^{T} \mathbf{P}_{r s} \vec{y}_{s, i}\right) & =\operatorname{tr}\left(\mathbf{P}_{r s} \sigma_{r: i j} \sigma_{s, i, j} \mathbf{I}\right)+\left(\mathbf{A}_{r} \vec{y}_{r i}\right)^{T} \mathbf{P}_{r s}\left(\mathbf{A}_{s} \vec{y}_{s, i t}\right) \\
& =\sigma_{r i j i} \sigma_{s, i j} \operatorname{tr}\left(\mathbf{P}_{r s}\right)+\vec{y}_{r i,}^{T} \mathbf{A}_{r}^{T}\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{s}\right] \mathbf{A}_{s} \vec{y}_{s, i} \\
& =\sigma_{r, i j} \sigma_{s, i t j} \operatorname{tr}\left(\mathbf{P}_{r s}\right)+\vec{y}_{r, i}^{T} \mathbf{A}_{r}^{T} \mathbf{P}_{r s} \mathbf{A}_{s} \vec{y}_{s, i^{*}} \tag{15}
\end{align*}
$$

Let $\sigma_{r: i j} \sigma_{s, i{ }^{*} j}=\sigma_{r: i, j}$, then the estimated variance of the error is as follows.

$$
\hat{\sigma}_{r s, i j}=\frac{\vec{y}_{r . i}^{T} \mathbf{P}_{r s} \vec{y}_{s, i}-\vec{y}_{r i}^{T} \mathbf{A}_{r}^{T} \mathbf{P}_{r s} \mathbf{A}_{s} \vec{y}_{s, i}}{\operatorname{tr}\left(\mathbf{P}_{r s}\right)}, \mathbf{P}_{r s}=\left[\mathbf{I}-\mathbf{A}_{r}\right]^{T}\left[\mathbf{I}-\mathbf{A}_{s}\right] .
$$

As a result of the theorem, estimation of covariance matrices $\boldsymbol{\Omega}$ on (9) in the nonparametric biresponse regression model on the longitudinal data based on the penalized spline estimator, it is as follows.

$$
\hat{\boldsymbol{\Omega}}=\left[\begin{array}{cccccccc}
\hat{\boldsymbol{\Sigma}}_{11.11} & \mathbf{0} & \ldots & \mathbf{0} & \hat{\boldsymbol{\Sigma}}_{12.11} & \mathbf{0} & \ldots & \mathbf{0}  \tag{16}\\
\mathbf{0} & \hat{\boldsymbol{\Sigma}}_{11.22} & \ldots & \mathbf{0} & \mathbf{0} & \hat{\boldsymbol{\Sigma}}_{12.22} & \ldots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & \hat{\boldsymbol{\Sigma}}_{11 . . n n} & \mathbf{0} & \mathbf{0} & \ldots & \hat{\boldsymbol{\Sigma}}_{12 . n n} \\
\hat{\boldsymbol{\Sigma}}_{21.11} & \mathbf{0} & \ldots & \mathbf{0} & \hat{\boldsymbol{\Sigma}}_{22.11} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \hat{\boldsymbol{\Sigma}}_{21.22} & \ldots & \mathbf{0} & \mathbf{0} & \hat{\boldsymbol{\Sigma}}_{22.22} & \ldots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & \hat{\boldsymbol{\Sigma}}_{21 . n n} & \mathbf{0} & \mathbf{0} & \ldots & \hat{\boldsymbol{\Sigma}}_{22 . n n}
\end{array}\right]
$$

with $\hat{\boldsymbol{\Sigma}}_{r r i i}=\operatorname{diag}\left(\hat{\sigma}_{r i,}^{2}, \hat{\sigma}_{r i,}^{2}, \ldots, \hat{\sigma}_{r i}^{2}\right)$ and $\hat{\boldsymbol{\Sigma}}_{r s, i i}=\operatorname{diag}\left(\hat{\sigma}_{r i,} \hat{\sigma}_{s i,}, \hat{\sigma}_{r i,} \hat{\sigma}_{s, i}, \ldots, \hat{\sigma}_{r i,} \hat{\sigma}_{s, i}\right)$.

## 5. Simulation Study

The ability of covariance matrix as a weighting in the nonparametric bi-response regression model of the longitudinal data is shown through a simulation study. We use a covariance matrix corresponding to equation (19). Simulated studies were performed on the number of subjects 5,10 and 30 , while each subject was measured from 3 to 5 times the measurement. The correlation between the first and the second response is 0.9 and $\varepsilon_{r} \square N(0,1)$. The model of each response to the number of knot points of 2 and the lambda is 0.5 is shown in equation (17).

$$
\begin{align*}
& y_{1 . i j}=f_{1}\left(t_{i j}\right)+\varepsilon_{1 . i j}, \quad \varepsilon_{1 . i j} \square N(0,1), \\
& y_{2 . i j}=f_{2}\left(t_{i j}\right)+\varepsilon_{2 . i j}, \quad \varepsilon_{2 . i j} \square N(0,1), \tag{17}
\end{align*}
$$

where $f_{1}=3.5+2 t_{i j}-t_{i j}^{2}+2\left(t_{i j}-2\right)_{+}^{2}-2\left(t_{i j}-4\right)_{+}^{2}$ and $f_{2}=6.5-t_{i j}+2 t_{i j}^{2}+1.5\left(t_{i j}-2\right)_{+}^{2}+1.5\left(t_{i j}-4\right)_{+}^{2}$
We compare the error value of the simulated data with the error value after weight through the covariance matrix. It is shown through Box Plot in figure 1.

error_unweighted error-weighted

error_unweighted error-weighted

error_unweighted error-weighted

Figure 1. Plots of error of simulation data with error after weight through a matrix of covariance based on penalized spline estimators.

Figure 1 consists of three box plots for each number of subjects 5, 10 and 30. Each box plot shows an error from the model of simulated data without weighted (left) and error after weight with the covariance matrix (right). The results of the analysis show that the error of the simulated data without weighted is greater than the estimated error of the nonparametric bi-response regression model with the covariance matrix. The average error of the model of the covariance matrix rate close to zero with smaller error range. This result shows the superiority of the covariance matrix of error in overcoming the correlation that occurs in the longitudinal data of bi-response through the penalized spline estimator. The simultaneous process between the covariance matrix, knots and smoothing parameters are capable of produce estimation errors of smaller nonparametric bi-response regression models.

## 6. Conclusion

In this study, we described the covariance matrix estimation of the error in the bi-response longitudinal case through a penalized spline estimator. In addition, through simulation studies, we also demonstrated the ability of the covariance matrix as weight in correlated bi-response data. The result of the covariance matrix estimation through the penalized spline estimator is outlined in Theorem 1, and then it used in the simulation study. Our results have shown that the use of the covariance matrix as weight as set forth in Theorem 1 is capable of providing a smaller error value. The error value is shown through the box plot on several simulations of a number of different subjects.

## Acknowledgments

Many thanks to the Directorate General of Higher Education, the Ministry of Research, Technology and Higher Education of the Republic of Indonesia passed through BPPDN grant and the University of Hasanuddin for financial support.

## References

[1] Fessler J A 1991 Nonparametric fixed-interval smoothing with vector splines IEEE Trans. Signal Processing 39 852-59
[2] Wahba G 1992 Multivariate functional and operator estimation, based on smoothing splines and reproducing kernels Nonlinear Modelling and Forecasting SFI Studies in the Science of Complexity ed by M. Casdagli and S. Eubank Vol XII (Addison Wesley Reading) pp 95-112
[3] Wang Y 1998 Smoothing spline models with correlated random errors J. Amer. Statist. Assoc. 93 341-48
[4] Soo Y W and Bates D M 1996 Multi-response Spline Regression Computational Statistics \& Dana Analysis 22 619-31
[5] Chamidah N, Budiantara I N, Sunaryo S and Ismaini Z 2012 Designing of Child Growth Chart Based on Multi Response Local Polynomial Modeling Journal of Mathematics and Statistics 8 342-347
[6] Chamidah N and Saifudin T 2013 Estimation of Children Growth Based on Kernel Smoothing in Multi response Nonparametric Regression Applied Mathematical Sciences 7 1839-47
[7] Diggle P J, Liang Y K and Zeger Z L 2006 Analysis of Longitudinal Data second edition (New York: Oxford)
[8] Yao and Lee 2006 Penalized Spline Models for Functional Principal Component Analysis Journal Royal Statistical Society Series B 68 3-25
[9] Liang H and Xiao Y 2006 Penalized for Longitudinal Data with an Application in AIDS Studies Journal of Modern Applied Statistical Methods 73 13-22
[10] Chen H and Wang Y 2011 A Penalized Spline Approach to Functional Mixed Effects Model Analysis Biometrics 67 861-70
[11] Fernandes A A R, Budiantara IN, Otok B W and Suhartono 2014 Spline Estimators for BiResponses Nonparametric Regression Model for Longitudinal Data Applied Mathematical Sciences 8 5653-65
[12] Wang Y, Guo W and Brown M B 2000 Spline Smoothing for Bivariate Data with Application to Association Between Hormones Statistica Sinica 10 377-397
[13] Claeskens G, Kribovokova T and Opsomer J D 2009 Asymptotic Properties of Penalized Spline Estimators Biometrik 96 529-544
[14] Montoya L E, Ulloa N and Miller V 2014 A Simulation Study Comparing Knot Selection Methods with Equally Spaced Knot in a Penalized Regression Spline International Journal of Statistic and Probability 396-110
[15] Ruppert D and Carrol R J 2000 Spatially-Adaptive Penalties for Spline Fitting Australian and New Zealand Journal of Statistics 42 205-223
[16] Wu H and Zhang J T 2002 Local Polynomial Mixed Effects Models for Longitudinal Data Journal of American Statistical Association 97 883-897
[17] Ruppert D 2002 Selecting the Number of Knot for Penalized Spline Journal of Computational and Graphical Statistics 11 735-757

## Journal of Physics: Conference Series ${ }^{\text {a }}$

| Country | United Kingdom - ПII SIR Ranking of United Kingdom |
| :---: | :---: |
| Subject Area and Category | Physics and Astronomy <br> Physics and Astronomy (miscellaneous) |
| Publisher | Institute of Physics H Index |
| Publication type | Journals |
| ISSN | 17426588, 17426596 |
| Coverage | 2005-ongoing |
| Scope | The open access Journal of Physics: Conference Series (JPCS) provides a fast, versatile and costeffective proceedings publication service. |
| (?) | Homepage |
|  | How to publish in this journal |
|  | Contact |
|  | Q Join the conversation about this journal |

Quartiles


Dear, Editorial Board!
Our paper was published in the Journal of Physics: Conference Series, 11/2019. But now, we cannot find it on site Scopus.com. Question to you: is this paper was included in the scopus database or not?

Thank you very much! reply

