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Abstract. This paper presents a mathematical model of HIV and malaria co-infection
transmission dynamics. Optimal control strategies such as malaria preventive, anti-malaria
and antiretroviral (ARV) treatments are considered into the model to reduce the co-infection.
First, we studied the existence and stability of equilibria of the presented model without control
variables. The model has four equilibria, namely the disease-free equilibrium, the HIV endemic
equilibrium, the malaria endemic equilibrium, and the co-infection equilibrium. We also obtain
two basic reproduction ratios corresponding to the diseases. It was found that the disease-
free equilibrium is locally asymptotically stable whenever their respective basic reproduction
numbers are less than one. We also conducted a sensitivity analysis to determine the dominant
factor controlling the transmission. sic reproduction mumbers are less than one. We also
conducted a sensitivity analysis to determine the dominant factor controlling the transmission.
Then, the optimal control theory for the model was derived analytically by using Pontryagin
Maximum Principle. Numerical simulations of the optimal control strategies are also performed
to illustrate the results. From the numerical results, we conclude that the best strategy is
to combine the malaria prevention and ARV treatments in order to reduce malaria and HIV
co-infection populations.

1. Introduction

HIV (Human Immunodeficiency Virus) is the infectious diseases that can develop into AIDS
(Acquired Immune Deficiency Syndrome). HIV infects the immune system and weakens
human defence system againsts infections and some types of cancer. A weakened immune
in patients with HIV/AIDS will lead to a variety of bacteria/viruses are easy to infect the
body (opportunistic infections). Until now, HIV /AIDS is untreatable disease, but the effective
antiretroviral (ARV) drugs could control the disease. Moreover, a HIV patient with antiretroviral
therapy could can enjoy healthy, long and productive lives [1].

Malaria is a contagious disease that is still a major health problem in the world. The disease is
caused by parasites that are transmitted to people through the bites of infected female Anopheles
mosquitoes. The female mosquito Anopheles require human blood for their reproductive process.
In 2015, WHO reported that there are 91 countries and areas had ongoing malaria transmission.
Malaria is preventable and curable, and increased efforts are dramatically reducing the malaria
burden in many places [2].

Until now, malaria has not been regarded as an opportunistic infection of HIV disease.
However, the weakening of the immune system due to HIV infection affects an increase in
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malaria infections infected people. Malaria and HIV co-infection has caused more than 2 million
deaths every year [3]. In areas highly endemic malaria, HIV-infected individuals more at risk
of developing severe malaria. Some reports also recommend that antimalarial therapy failure
might be more common in HIV-infected adults with low CD4-cell counts compared to those not
infected with HIV. People who are stricken with acute malaria increases viral replication so that
the increase in HIV viral load in patients with HIV [4].

Mathematical models are useful to analvze the transmission dynamics of HIV and malaria
co-infection. The dynamics of HIV and malaria co-infection spread have been conducted in
the literature [5, 6, 7). For instance, the authors in [5] constructed and analyzed a simple
mathematical model to study the co-infection of HIV and malaria. Mukandavire et al. [6]
formulated and analyzed a realistic mathematical model for HIV-malaria co-infection, which
combines the key epidemiological and biological features of each of the two diseases. Nyabadza
et al. [7] developed a mathematical model to describe population dynamics of HIV/AIDS and
malaria co-infections.

The optimal control strategies have been employed in the study of epidemiological models
such as HIV, TB, Malaria, HCV, co-infection TB-HIV and Malaria-Cholera diseases dynamics
[8, 9,10, 11, 12, 13, 14]. Very little studies have been applied the optimal control to HIV and
malaria co-infection model that conducted researchers. Recently, the authors in [15] have used
optimal control strategies for a nonlinear dynamical system to describe the dynamics and effects
of HIV-malaria co-infection in a workplace. In this paper, we developed a mathematical model
of the HIV and malaria co-infection transmission dynamies of incorporate malaria preventive,
anti-malaria treatment and ARV treatment for HIV as control optimal strategies.

The remainder of this paper is organized as follows. In Section 2, we propose a mathematical
model of HIV and malaria co-infection transmission with controls on malaria prevention, anti-
malaria and ARV treatments. In Section 3, we analyze the model without controls and perform
sensitivity analysis of the basic reproduction numbers. In the Section 4, we present the optimal
control analysis. In Section 5, we perform some numerical simulations to illustrate the purpose
of the treatments. The coneclusion of is presented in the last section.

2. Model formulation

In general, the population is classified into two classes namely human (host) population and
the mosquito (vector) population. The human population was assumed to be homogenecous
and closed. The total human population at time ¢, denoted by N(f), is classified into five
classes, namely, the class of susceptible population (S(t)), the class of the infected with
malaria only ([,,(t)) and susceptible to HIV, the class of the infected with HIV only and
susceptible to malaria (1), (t)), the class of the infected with HIV and malaria both ({,,,,(¢)),
and the class of the infected with AIDS population (A(t)). Hence, the total human population
N(t) = S(t} + I‘m(t} + Ih(t) + Ihm(t) + ‘4(}:}'

We also assume that the susceptible cannot get HIV and malaria infection simultaneously
at the same time. The class of individuals with AIDS (A(t)) and dually infected individuals
(Inm () are isolated, so that they cannot infect anyone.

The total vector population at time ¢, denoted by N,(t), is classified into two classes, namely,
the class of susceptible vector population (9,(t)) and the class of infected vector (I,(t)). Thus,
Ny(t) = Sy(t) + Lu(t).

We suppose the malaria prevention (w;(f)), anti-malaria treatment (up(f)) and the ARV
treatment (usz(t)) as the control efforts to reduce the HIV and malaria infection respectively.
The control functions wu,us and us are defined on interval [0,t;], where 0 < w;(t) < 1,
te [IJ, tf].i =1,2,3 and Lty denotes the final time of the controls.

the transmission diagram for deriving our model was shown in the Figure 1.
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Table 1. Parameters of model

Description Parameter
Infection rate for HIV B
Progression rate from malaria to HIV-malaria co-infection ¢,
Progression rate from HIV to HIV-malaria co-infection o
Recovery rate from malaria o
Recovery rate from malaria among HIV-malaria o
Progression rate from HIV only to AIDS 11
Progression rate from HIV-malaria co-infection to AIDS 2
Disease AIDS induced death rate Ha
Disease HI'V-malaria induced death rate Jid
Recruitment rate into the host population A
Recruitment rate into the vector population Ay
Infection rate for host B
Infection rate for vector 3,
Natural death rate for host ]
Natural death rate for vector 0y
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The region of biological interest of the model (1) is
5 2
h = hy, x hy, C?R_'_ X.SH+,

with
A
h-'h = {(S(tL Im(t}w Ih(r')n Ihm(t)‘ ‘4(”) € %i_ 0= Nh(t} = i_s} ;
and

hy = {(Sv(t).fv(t)) € SRi DS NL(E) < f;—v} .
v

It is assumed that all parameters used in the model (1) are non-negative. The description of
the parameters is given in Table 1. The region 7 is positively invariant. Hence, model (1) is well-
posed in this region since any vector fields on the boundary will not move to the exterior region.
So, if it was given any non-negative initial condition in R7_, then the solution was defined for any
time ¢ > () and the solution remain in the region. We desire to minimize the number of a HIV
and malaria co-infection while keeping the costs of applving malaria preventive, anti-malaria

and ARV treatment controls as low as possible. The cost function is defined as

Ly S S e
Iy, ug) = /n (I + T + A+ I + %’ ui + %2 uj + % uj ) dt, (2)

where c1, c2 and c3 are the weighting constants for malaria preventive, anti-malaria and ARV
treatment efforts, respectively. We take a quadratic form for measuring the control cost [8, 10].
The term cl-u%‘ czug and c;;u% describe the cost associated with the malaria preventive, anti-
malaria and ARV treatment controls respectively. The cost of malaria preventive is associated
with the costs of vaccination, spraying of insecticide, personal protection and insecticide treated
bed nets. Larger values of ¢;, ¢» and ¢35 will imply more expensive implementation cost for
malaria preventive, anti-malaria and ARV treatment efforts. Our goal is to find an optimal
control pair u}, uj and uj such that

J(ui, us,uy) = n}_in J(ug, ug,ug), (3)

where I' = {(uq, ug, u3)[0 < u; <1, =1,2,3}.

3. Model and sensitivity analysis
Consider the mathematical model in eq. (1) without the control functions w;,us and ugz. Let

3% BB AN,

B = Ay,
_ ﬁh A
B = 56 +71)

Parameters R, and R), are basic reproduction ratio corresponding to the malaria infection,
and HIV infection, respectively. These ratios define number of secondary cases of primary case
throughout the infective period because of the type of infection [16, 17].

By setting w1 = u2 = uz = 0, the mathematical model in eq. (1) has four equilibria (to the
coordinate (S, L, In, Inm. A, Sy, 1), namely,
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1. The disease-free equilibrinm Ey = (?\ 0,0,0,0, %ﬂ“ 0).

T . ) Y B AL A BuAulm
2. The malaria endemic equilibrium E,, = (:‘J’mI.,+6‘ ST, 0,0,0, iy 5.,{;'3.,In.+6u))'

3. The HIV endemic equilibrinm E, = (7};5.0.5(’?1 +d)(Rn — 1),0, giﬁ;;—;’ﬂ) The

equilibrinm Fj, exists if &), > 1.
4. The HIV-malaria endemic equilibrinm Ey,,, = (S*, Ly, I}, I}, A", 55, I5), with

1 L ey L

¢2ﬁmjv +7n+ )

5 = e,
ﬁh
I = .BmSIv
" 618nIn + 8
;o _ A—BuSL-0s
e ﬁhS ‘
I _ (D.lﬁhlm-‘rh + (D.QI{BY!LIJAIU
han fta + J‘l"?’ﬂ
A* = ’TlIh + ’:"Zlhru
&+ flg
g — Ay
o .(iv(-‘rm +Ihm} +JU‘
™ ﬂvSv(Im + Ihm}
Iv = 5.—
o

The equilibrium £y, exists if By, > 1 and 6(8 + v )(Ry — 1) > 28212 + 86 + v1) 1, +
fi¢2f{371r,1v-

The following theorem give the stability criteria of the disease-free equilibrium.

Theorem 1 The disease-free equilibrium Ey is locally asymptotically stable whenever Ry, , Ry, <
1. Furthermore, the equilibrium Ey is unstable if Ry, Ry > 1.

Proof. Linearizing the mathematical model in eq. (1) near the equilibrium FEj; gives
eigenvalues —4, —=d,, —(0 + pga), —(0 + pa + 72), — (0 + 71 ) (R — 1) and the roots of quadratic
equation 22 + (§ + dy)r + 86,(1 - T,,) = 0, with T,,, = % The ¢uadratic equation have
negative roots if 15, < 1 or equivalently R,, < /1. It is clear that all of the eigenvalues are
negative if 17, < 1 and R, < 1. So, if R,,,, &, < 1, then the equilibrium £y is locally asymptotic
stable. Otherwise, it is unstable.

Next, we analyze the sensitivity of the basic reproduction numbers R,, and Rj; to the
parameters in the presented model. The purpose of this analysis was to find the parameters
that have the greatest effects on the reproduction numbers. By using the method in [18], we
derived the analytical expression for sensitivity index of the R, and Ry to each parameters.

The sensitivity indices of a variable, [?y, that depends differentially on a parameter, [, is
defined as

dRy 1

TF{] = W b E (4)

Now, by using the parameter values in the Table 2, we have the following results in Table 3. For
example, the sensitivity index of R,, with respect to 3, is
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aR 3
Th = — x % = 0.5. 5
Am 9Bm Ry, ’ ( ))

The sensitivity indices of R, and Rj, with respect to other parameters such as A, Ay, 5., 4, 4y,
Bn, 71, can be derived in the same way as (5). The interpretation of the sensitivity index is as
follow. Since T?’“ = 0.5, that is to say, increasing (or decreasing) infection rate for malaria,

Hm ~

Bm, by 10%, increases (or decreases) the reproduction number Ry, by 5%. Thus, increasing (or
decreasing) natural death rate § by 10% decreases (increases) R, by 10%.

Table 2. Parameter values.

Parameter Value Ref.

A 500/ year Assumed
5 0.02/year [13]

3 0.00031/year Assumed
B 0.00045/year  Assumed
By 0.00035/year Assumed
" 0.01/year Assumed
o 0.05/year Assumed
Ay 5000/ year Assumed
&y 0.1429/vear  [18§]

o 1.1/year Assumed
o 1.15/year Assumed
Mo 0.02/year Assumed
I 0.03/year Assumed
2%} 0.2/year Assumed
ay 0.2/vear Assumed

Table 3. Sensitivity indices to parameter for model (1).

Parameter Sensitivity index (R,,) Parameter Sensitivity index (R},)

A 0.5 A 1

A 0.5 o 1

o 0.5 ) -1.67
3. 0.5 T -0.33
) -1

Oy -1
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4. Mathematical analysis of optimal control

In this section, we consider the mathematical model in eq. (1) with its control functions wuy, us
and uz. We describe the cost function in eq. (2) for the model in eq. (1). The necessary
conditions to find the optimal controls uj, u5 and u} such that condition (3) with constraint
model (1) must satisfy come from the Pontriyagin Maximum Principle [19]. The principle
converts the equations (1) - (3) into minimizing Hamiltonian function H problem with respect
(11,12, ug), that is

H(S, Ln, Iy Ty A, Suy Loy un, uz, us, A, Aay - -0 A7) =

2
¢ . [ [
Im + Ihm, + A + Jru + ?1 “‘% + 5 u% + E “‘% + Z)‘igi‘
i=1
where g¢; is the right hand side of the mathematical model in eq. (1) which is the i-th state
variable equation. The variables A;, i = 1,2,...,7, are called adjoint variables satisfyving the
following co-state equations

I\

(d_fl = (A1 = M1 — 1) Brn Iy + (M1 — Ag) Bndi + A6,

1A .

(d_rz = =14 (A2 = A)aqua + (A2 = Ag) o180ty + (e — A7) (L — u1) 8,5y + Aad,

dA; . .

Tf; = (M = A0S+ (Ae = M) Ondn + (A — M) (1 — wr) B, 1y
Fh = 2)(1 = ug)yt + A,

I\

(d_;l = =14 (A= Ag)ugan + (A — As) (L —ug)ye 4+ (Ag — A7) (L — ug)B3, 5, +
Aq(0 + pa), ©)

d/\s

T =14 As(0 + pa),

1A\

(drr = (Ag = A7)(1 = w1)Bu(dy, + L) + Ao,

I\7 |

fdrr = =14 (A= M)l = u1)BmS 4+ (As — M) = wi)o B dn + A7dy,

where the transversality conditions \;(ty) =0,7=1,..., 7

By using Pontryagin’s Maximum Principle and the existence result for the optimal control
pairs, the steps to obtain the optimal controls u = (uj,u3, u3) are as following [20, 21].

(i) Minimize the Hamiltonian function H with respect to u, that is % = 0 which is the
stationary condition. Hence, we find

0 for w; <0
“‘T ()\4—/\:«}@'}2.‘3:7:1uh|+()«2—A1):iy;;SI.J-H/\T—A[;]:ﬁ.,&'.,(hﬁ—f:‘m} for 0 <wup <1
1 for w; =1
0 for wus <0
uh = {/\-‘1—/\:i}IJ\nlai:‘{AZ—/\l}ﬂflIh for 0<uy <1
1 for wup =1
0 for uz <0
u} As—Aa) M In+(As—Aa)ve Tpom for 0<ug<l

g

for wugz>1
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(ii) Solve the state system Z(f) = % which is the mathematical model in eq. (1), where
x = (8 Ln, In, Inm, A, 8o, 1), A = (A1, A2, ..., A7) and the initial condition x(0).

(iii) Solve the co-state system /I\(r‘,} = —% which is the system in eq. (6) with the final condition
/\,‘(f,f) =0,i=1,...,7.

Henceforth, we find the following theorem.

Theorem 2 The optimal controls (ui, us, ul) that minimizes the objective function J(u, ug, uz)
on I is given by

'M-T — max {U,min (1‘ (/\4 - /\I'S)QDQ.SHLI'UIJA + (/\Q - /\l}ﬁnis-{v + (/\7 - /\Ei)ﬁ'ﬂS'u(Ih + Ihrn})}
8]
'UE —  max {U,min (1‘ (/\4 - /\I'S)Ihruaﬂ + (AQ - AI}Ofl-{h)} i
(&3]
w) = max {U,min (1‘ (As = Ag)yidn + (A5 — /\4)*!21.'””)}
Cc3

where \;, 1 =1, ..., 7 is the solution of the co-state equations (6) with the transversality conditions
Ailtp) =0,i=1,...,7.

Substituting the optimal control (u], w5, u3) which is achieved from the state system in eq. (1)
and the co-state system in eq. (6), we find an optimal system. The solutions of the optimality
system will be solved numerically for some choices of the parameter. Because of lack of data,
most of parameter values are assumed within realistic ranges for a typical scenario.

5. Numerical simulation

In this section, we perform some numerical simulations of the presented model in eq. (1) with
and without optimal control. The optimal control strategy is found by the iterative method of
the fourth order Runge-Kutta method. The state equations are initially solved by the forward
Runge-Kutta method of the fourth order. Then, by using the backward Runge-Kutta method
of the fourth order, we solved the co-state equations with the transversality conditions. The
controls are updated by using a convex combination of the previous controls and the value from
the characterizations of uj,u3 and uj. This process is reiterated and the iteration is ended if
the current state, the adjoint, and the control values converge sufficiently [22].

We present four scenarios. In the first situations, we study combination of the malaria
preventive and the anti-malaria treatment as control strategy. In the second scenario, we consider
combination of the malaria preventive and ARV treatment controls. In the third scenario, we
use the combination of the anti-malaria and ARV treatment controls. In the last one, we
use the combination of the malaria preventive, anti-malaria and ARV treatment as control
strategy. Parameters used in these simulations given in Table 2. In these simulations, we use
initial econdition (S(0), L, (0), I;,(0), 1, (0), A(0), S,(0), 1,0)) = (500,100, 50, 30, 50, 5000, 100},
weighting constants ¢; = 20, co = 50, e3 = 50.

5.1. First scenario

In this scenario, we apply the malaria prevention control u; and the anti-malaria treatment
control us to optimize the objective function .J, while setting the ARV control us to zero. For
this scenario, we found in the Figure 2-3 that the population of malaria infected (7,,) and
HIV-malaria co-infection (Ij,,) decreases, while the population increases when there is no any
controls. Similarly, the result in the Figure 4-5 show that the number of AIDS infected (A)
and mosquito infected (1,) a reduction in the number infected compared with the case without
control. Hence, the malaria prevention and the anti-malaria treatment control gives a significant
influence in controlling infected malaria, HIV-malaria co-infection and AIDS infected. The
profile of the optimal treatment controls uj and w5 for this scenario is presented in the Figure 6.
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5.2. Second scenario

In the second scenario, we utilize the malaria prevention control u; and the ARV treatment
control ugz to optimize the objective function .J, while set the anti-malaria treatment control us
to zero. The infected populations dynamics of this scenario are presented in Figure 7-10. We
observe in Figure 7-8 that this control strategy results in a significant decrease in the number
of malaria infected (I,,) and HIV-malaria co-infection ({j,,) compared with the case without
control. Also in Figure 9-10, this control strategy results in a significant decrease in the number
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of AIDS infected (A) and mosquito infected () as against an increase in the uncontrolled case.
The result shown in the Figure 7-10 clearly suggests that this scenario is very effective in the
control of the number of the infected. The control profiles of the malaria prevention and ARV
treatment is shown in the Figure 11.
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5.3. Third scenario

In the third scenario, we active controls us and us on the anti-malaria and ARV treatment to
optimize the objective function .J whereas the malaria prevention control u; is set to zero. The
dynamics of the infected populations of this scenario are given in Figure 12-15. We observe
in Figure 12 that the malaria infected populations are lesser when the control strategy is used
than when the control strategy is not implemented. It was also shown in Figure 13 that the
number of HIV-malaria co-infection populations increases with this control strategy compared
to the number without control. Figure 14-15 depict the number of AIDS infected and mosquito
infected that the populations is higher with this control scenario than the cases without control.
Figure 16 shows the control profiles of the anti-malaria (u2) and ARV treatment (us3) in which
the control us is given maximum in almost 5 years, while the the optimal control ug starts and
remain at the lower bound in 5 years. The results show that the anti-malaria treatment give
the positive impact to reduce the malaria infected, while the mosquito infected tend to increases
using this strategy. Then, the HIV-malaria co-infection and AIDS infection populations also
increase with this strategy due to there is no significant ARV treatment intervention.
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Figure 12. The dynamics of [,,, using Figure 13. The dynamics of Iy,
the controls uj and wu3. using the controls uj and uj.
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Figure 14. The dynamics of A using Figure 15. The dynamics of [, using
the controls uj and uj. the controls uj and wuf.
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5.4. Fourth scenario

In this scenario, all the controls (u,us and usz) are used to optimize the objective function .J.
The dynamics of the malaria infected, malaria-HIV co-infection, AIDS infection and mosquito
infected are given in Figure 17-20. For this strategy, we observed in Figure 17-18 that the
control strategies resulted in a decrease in the number of the malaria infected and HIV-malaria
co-infection compared to the number without control. A similar reduction is observed in Figure
19-20 for AIDS infected and mosquito infected in the control strategy, while an increased number
for the uncontrolled case resulted.

3000 120
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2500 o 3
) e ‘Without Cantrel
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1000 za o
o i rE— T o " " P— " . "
a 0s 1 15 2 25 3 is 4 45 5 o 0s 1 15 2 25 3 35 4 45 &
Tima [Years) Time (Years)
Figure 17. The dynamics of [,,, using Figure 18. The dynamics of I,
the controls u], u5 and uj. using the controls uj, uj and wuj.

The profiles of the optimal malaria prevention uj, anti-malaria treatment control uj and
ARV control u} of this scenario is given in Figure 21. To reduce HIV and malaria co-infection
in 5 vears, the malaria prevention should be given intensively almost 5 years hefore dropping
gradually until reaching the lower bound in the end 5th year. Meanwhile, anti-malaria treatment
should be needed intensive effort during 1.5 years before finally dropping to its lower bound.
While ARV treatment control decreases from 0.1 (10%) at the beginning time before finally
dropping to its lower bound at the end of the intervention.

Based on the numerical results, the optimal control scenarios are arranged from the least to
the costly based on the total cost function /. Table 4 shows the optimal values of the objective
function J in the four seenarios. From Table 4, we conclude that the combination of the malaria
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Table 4. Optimal values of the cost functional.

Scenario of the optimal control Total cost functional .J

i, and uj 1.0359 x 10°
up,us, and uj 1.1234 x 103
up, and wuj 1.1237 x 107
uy, and uj 4.5127 x 107

preventive (u7) and ARV treatment (u3) have the least cost function followed by combination
all controls (uj,u3, and u;‘;) to reduce the number of malaria infected, HIV-malaria co-infection,
AIDS infected and mosquito infected.

6. Conclusion

In this paper, we have developed a deterministic mathematical model for the spread of malaria
and HIV co-infection that incorporates malaria prevention, anti-malaria and ARV treatment as
optimal control strategies. For the model without controls, we ohtain two thresholds R, and
Ry, which are basic reproduction ratios for the malaria and HIV diseases respectively. These
ratios determine the existence and stability of the equilibria of the model. If the thresholds are
less than unity then the diseases free equilibrium is locally asymptotically stable. Finally, the
conditions for existence of optimal control is studied analytically using the Pontryagin Maximum
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Principle. From our numerical analysis of the optimal control indicates that the best strategy
is to combine the malaria prevention and ARV treatments followed by combination all controls
in order to reduce malaria and HIV co-infection.
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