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Abstract. Japanese encephalitis (JE) is a vector-borne disease that causes encephalitis mostly
children in Asia and livestock. A mathematical model can be used to predict JE spread in the
future. In this paper, we analysed a mathematical model of JE transmission. We also applied
several optimal control variables such as vaccination and treatment to the human population,
insecticide to mosquito population, and vaccination to pig population. Based on the analysis
results, we obtained two equilibriums, namely disease-free equilibrium and endemic
equilibrium. The existence and stability of the equilibriums depended on R, (basic
reproduction ratio). The disease-free equilibrium is locally asymptotically stable if Ry < 1,
while the endemic equilibrium is locally asymptotically stable if Ry > 1. Furthermore, we
determined the existence of the optimal control variables by Pontryagin Maximum Principle.
Numerical simulation showed that the control strategies are effective to minimize the number
of active JE in human, mosquito and pig population.

1. Introduction
Japanese encephalitis (JE) is an infectious disease that causes encephalitis mostly in children (under 15
years old) and livestock [1]. The disease is maintained in mosquitoes and vertebrate hosts life cycle.
Culex tritaeniorrhynchus is the most particular disseminator that generally lives in rice cultivation and
pig farming. Pig and wading birds serve as virus reservoirs. Humans are dead-end hosts of JE disease.
Furthermore, humans do not acquire high concentrations of JE virus in their bloodstreams to infect
feeding mosquitoes. JE disease may begin when the infected pig is bitted by Culex tritaeniorrthynchus,
then the mosquitoes can transmit JE virus to human or livestock [2]. The presence of JE is recognized
as a public health issue in the world, due to the number of cases that significantly increase. It is
estimated that among 68,000 JE cases every year, there are approximately 13,600 to 20400 death
cases caused by JE infection. JE is difficult to diagnose due to most JE infections are mild or without
obvious symptoms. The common symptoms are fever and headache. The case-fatality rate can be as
high as 30% among those with disease symptoms. For those who survive, JE disease can leave suffer
permanent intellectual, behavior or neurological problems such as paralyses, recurrent seizures or the
inability to speak [3].

JE is a mosquito-borne flavivirus and belongs to the same genus as dengue, yellow fever, and West
Nile viruses. It was firstly reported in Japan in 1871. Now, JE was being endemic in 24 countries in
South-East Asia and Western Pacific. It is estimated that more than 3 billion people risk of infection
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[3]. In Indonesia, the highest case was found in Bali in 2016 that approximately reached 226 from 326
cases. It was related with a number of wet rice field and pig farm around living place. especially in wet
season. Based on the most cases. JE primarily affects children. Nearly 85% of cases of JE in 2016
were reported to the children under 15-year-old [4]. Mostly adults in endemic areas have a natural
immunity that not infected again. This disease may affect individuals of any age, especially when the
virus enters a new area [3].

Until now, there is no cure for JE patients. However, supportive treatment can relieve symptoms
and stabilize the patient. The prime intervention of JE is vaccination, besides vector and environment
control. Although the number of JE-confirmed cases is low, vaccination could be considered as a
strategy to prevent the JE disease. All visitors to JE-endemic areas should take the vaccination to
prevent a risk of JE [4].

A mathematical modeling is a powerful tool to understand the dynamics of epidemic infection. In
recent years, there has been an increasing interest in JE transmission model. The authors in [5] have
developed a mathematical model for JE transmission in two populations, both human and vertebrate
reservoir. Then, they extend a model of JE in three populations include human, vertebrate reservoir
and vector [6]. The authors in [7] incorporate the environment factor to JE transmission model.
Recently, De et al [8] developed a JE spread model with various control. In [8], the authors presented
a JE model in nine compartments that arranged of human, mosquito and pig population. Furthermore,
De et al [8] applied for a vaccination, insecticide, and medicine as fixed and variable controls.

In this paper, we proposed the dynamic model of JE transmission that previously developed by De
et al in [8] with ignoring the vaccinated human and pigs compartment. We also incorporate several
control variables such as vaccination and medicine to the human, insecticide to the mosquito, and
vaccination to pig populations. The structure of the paper is arranged as follows. In section 2, we
introduce the description of the model formulation. In section 3, we analyze the stability of the
equilibriums of the model. In section 4, we carry out the solution of the optimal control problem. In
section 5, we show some numerical insight of the dynamic model with and without optimal control
variables. In the last section, we give a conclusion.

2. Model formulation
In this section, we propose a mathematical model of JE transmission. In this model, the population is

classified into three classes, namely the population of human, mosquito, and pig. Furthermore, the
human population is divided into three classes, namely susceptible human class (S,), infected human
class (I;) and recovered human class (Rp). The mosquito population is also classified into two
classes, namely susceptible mosquito class (S,,) and infected mosquito class (I,;;). Similarly, the pig
population is also partitioned into two class, namely susceptible pig class (.S‘p) and infected pig class
(Ip). Therefore, total of each population are Ny, = Sp + Iy + Ry, Nm = Sm + Im and Np = Sp + 1.

It is assumed that recruitment rate into susceptible humans (A), the total population of mosquito
(Np,) and the total population of pig (N, ) are constant. The transmission of JE disease occurs because
of the interaction among mosquitoes, humans, and pigs. The mosquitoes and pigs can transmit to each
other. While JE spread to human due to the susceptible human is bitten by the infected mosquitoes.
Recovery humans have temporary immunity so that they can return to being susceptible to JE.

We derive our model on transmission diagram as in Figure 1.

(5]
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The model is as follows:

ds I

2t = A= BBrn Sk = #nSh + (1 =TIy + aRy
dr Im

Gt = BBmn - Sn = nnlp = Hly = ¥In

% = —pRp — aRy +np71ly

Sy i

?:lumNm _ﬂmsm_cﬁpmw_zsm (1)
dim 1

ar Cﬁpmésm = Umlm

L8 = Ny — Cp 225, — 1S

a Ml mp iy, P Hpop

dl Im

Ef = CBmp N_psp — Hply

which Sy, I, Ry, Sy Iy Sp Iy = 0. All parameters in the model (1) are also assumed non-negative.
The description of parameters used in model (1) could be seen in Table 1.

3. Analysis of the model
In this section., we discuss the stability of the equilibriums of the model (1). The equilibriums are
obtained by equating all equations of the model (1) to zero. Model (1) has the disease-free equilibrium

Ep = (Sh,.'h,Rh.Sm. .'m.Sp,.'p) = (;—\.0.0. Np, 0, Np.O). It is noted that if the mortality rate due to
h
disease (y) is zero, then we have lim,_,, N, (t) = f
h

We determine the basic reproduction ratio (Rg) using the next-generation matrix method [9]. This
ratio describes the number of secondary case of a primary case during the infectious period due to the
infection [10]. For the next-generation matrix method [9], we have the infected
compartments (fh,fm,.'p). The Jacobian matrices [F (of the new infection terms) and V (of the

transmission term) evaluated at E,, are given, respectively, by:

0 B 0
P bl Mtunty 0 0
F=|0 0 pn,_p and V = 0 U 0
0 CBmp O 0 0 4
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Table 1. Description of parameters of model (1)

Parameter Description
A Recruitment rate of human population
Uy Natural death rate of human population
Hin Natural and death rate of mosquito population
iy Natural and death rate of pig population
Bump Disease transmission rate from I, to 5,
Bpm Disease transmission rate from I, to Sy,
Ty Natural recovered rate of human population
Y Mortality rate due to disease
B X\.’erage number of bites on human by mosquito
population per day
Bmn Disease transmission rate from [, to 5
N Recovery rate of human population
@ Immunity lose rate of human population
c Average number of bites on pig by mosquito
population per day

The basic reproduction ratio of model (1) is the spectral radius of the matrix Fy~ . Hence. we have

the basic reproduction ratio as
CZN,
RU — mﬁmpﬁpm.
Mm ip Np

The following theorem gives the stability of the disease-free equilibrium.

Theorem 1 The disease-free equilibrium Eqy is locally asymptotically stable if Ry <1 and it is
unstable if Ry > 1.

Proof. By linearizing model (1) at the disease-free equilibrium E, we find the following eigenvalues:
A=~ Az = —(upt @), 43 =—(Mp+ b +v), 4 = —l4y, s = —1, and the roots of quadratic
equation (112 + (it tp)d + (1 - TD)) =0, where T, = R,®. By applying Routh-Hurwitz
criteria, the quadratic equation will has negative roots or complex root with negative real part if
To < 1 or equivalently Ry < 1. It is obvious that all eigenvalues are negative or or complex
eigenvalues with negative real part if Ry < 1. Therefore the disease-free equilibrium E, is locally
asymptotically stable if Ry < 1. Otherwise, it is unstable.

The model (1) also has the endemic equilibrium E; = (Sy, Ih, Ry, Syl Sp, ). All of the
components of E; are non-zero and depend on equilibrium state Iy,. The equilibrium state I, is the
only positive root of quadratic equation al2, + bl,, + ¢ = 0 if Ry > 1. The coefficient a is always
positive, while the coefficient ¢ is equal to —‘ufnygNg(Tu— 1) where Ty = Ry>. Hence, the
coefficient ¢ has a negative value if Ry > 1. Therefore, model (1) has an endemic equilibrium if
Ry > 1. It is not easy to prove analytically the stability of the equilibrium E,. Numerical simulation of
the model (1), depicted in Figure 2, show that the equilibrium E; is locally asymptotically stable if
Rg > 1. The parameter values of the simulation are given in Table 2. In this case, the value of the
basic reproduction ratio is Ry = 2.0125 > 1. We use three different initial values for the simulation.
Those orbits converge to the same point as time evolves.
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Table 2. Parameters value for simulations
Parameter Value Ref.

A 150 (7]
Hn 1/65 [7]
o 03 (7]
Hp 0.1 [71

B 32 Assumed
Bmn 05 Assumed
M 0.2 Assumed

a 02 Assumed

C 0.9 [8]
Bmp 0.3 [8]
Bom 03 (8]
Npn 5000 Assumed
N, 3000 Assumed

Ty 0.5 [8]

Y 0.05 Assumed

4. Analysis of optimal control problem
In this section, we analyze the optimal control of the JE transmission model. The control variables to
be applied in this study are vaccination () and treatment (w5 ) to the human population, insecticide
to mosquito population (13) and vaccination to pig population (u,). The JE transmission model with
control variables are as following:
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d! I
p
- (1 u'l-)cﬁmp N_I;Sp - lup‘lp
The parameter & means the effectiveness of treatment, 7, represents the recovery rate of the
infected human due to the treatment, while @ denotes rate in which mosquito die by insecticide.

Furthermore, the objective cost function of JE transmission model with optimal control applies
followed as:

minj = jntf'[f,,(r) + I () + Ip(£) + 0.5(B1us? + Bauz® + Baus? + Byus?)| dt (3)
where 0 < u;(t) <1 for t €[0,tf], i = 1,2,3,4, while B,, B, B3, B, are positive constants for
vaccination effort of human, treatment of human, insecticide, and vaccination effort of pig,
respectively. The quadratic forms of the control cost are taken, stated in [11, 12]. The term
Byuy?, Bouy?, Byus?, and Byu,? describe the cost associated with the vaccination for human,
treatment for human. insecticide, and vaccination for pig, respectively.

In this section, necessary conditions for determining the optimal control u,",u,", u;" and u," that
satisfy the condition (3) with constrain model (2) will be solved by the Pontryagin’s Maximum
Principle [13]. The principle converts (2) and (3) into a problem of minimizing a Hamiltonian H, with
respect to (14q, Uy, Uz, Uy ) such that

= In(t) + Im () + Ip(¢) + 0.5(B1us? + Boua® + Bauz® + Bawa®) + X1, difi )
where f; is the right hand side of model (2) which is the i-th state variable equation. The variables
¢;, i =1,2,...,7 are called adjoint variables and they satisfy the following co-state equations:
. aH |
== =(¢2— (A - ul)ﬂhgﬁmhﬂ_ b1in
asy A

. dH
= — FIA o =1 (a1 — 1) + 12 (1 —72)) — po(n + tn + ¥ + Sux)+P3(MaTy + Supty)

. aH
¢z = “oR, dra — ¢a(un + ﬂ')
ba= 55 = (65— 00 CBym =~ Balim + O2) )

. oH Sh
s =——= (s — b)) - ul).uh Bﬁmh = s (ptm + Ouz) + (b7 — ) (1 —u)Chmp

e
Al N,

. aH
b =— 65 =(¢7— )1 - u4)CﬁmpN ‘i’sﬂp

p
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=
1
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Steps to obtain the optimal controls u = (uy*, uz", u3", u,") are as following [14].
S T . . . aH . -
1. Minimize the Hamiltonian function H with respect to u that is v 0 (stationary condition).
u
Here we found that
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If (2= 1 )upBBmplmSn <0

0 BiA
= (2 =1 )Un BBmhimSh if0 < (P2 'ﬁ'l)ﬂhsﬁmhfmsh( 1
r = By A By
1 if (o —1) 1ih BBmnIm Sy >1
BiA
0 if(¢z—¢1)5fh+(¢'1—¢'3)5fth <0
v _ ) (Pa=1)8Ipn+(P1—Pp3)ETaip Bz -
Uz = By if0 < (2= 1)8In+(Py—P3)87a1p <1
Bz
1 i POt O didrain
0 if (¢’15:r:+¢’5fm)9 <0
W (DaSm+Pslm)O 0 < M 1
3 =Y & By
B3 it{‘ﬁ'qsm‘“ﬁsfnr)‘g =1
1 B =
0 if@'?—ﬁbss)cﬁmpfmsp <0
~ 6 )CBrmplmS +Np
u4* = % if0 < (pr—epe)CBmplmSy <1
“1 P BNy
i (P7-¢e) CBmplnSp >1
BaNp
. . 0H L.
2. Solving the system X = 7% which is model (2), where x = (Sy, I, Ry, S I S p)
¢ = (¢4, ¢3, ..., P7) and initial condition x.
. ; aH . . -
3. Solving the co-state system ¢ = 0 which 1s system (5), with the end condition t;b(-(tf) =

0.i=12,..7.
Based on the steps above, the optimal control characterization (", 13", u3", u,") is given by

w* = min (l.max (0 ($2- m)maﬁmrmsh))l

BiA

(P2=p1) 81+ (py— ¢3)‘5Tth)
By ’

u;" = min (1, max (0,

(
uz" = min (1. max (0. 45’"+¢S!m)6)).

~6)CBmplmS
u," = min (l,max 0,(()57 $6)Chmp p))

ByNy

where ¢, i = 1,2,...,7 are the solutions of co-state system (5).

By substituting optimal controls (u;", u;", uz*, us*), which is obtained from state system (2) and
co-state system (5), we get the optimal system.

5. Numerical simulation
In this section, we give several numerical simulations of model (2) with and without control variables.
We use an iterative scheme for solving the optimal system. The forward and backward Runge-Kutta
methods of order 4 are adopted to solve the state and the co-state equations with the transversality
conditions [15].

Using various combinations of the three controls at a time and four controls at a time, we
investigate the following scenarios.
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1. Combination of 1,15 and ug

2. Combination of 1, Uy and 1,

3. Combination of u;,u3 and u,

4. Combination of u,, U3 and u,

5. Combination of uy, 15, Uz and u,
Parameters used in these simulations could be seen in Table 2. We use the initial condition 5, (0) =
7000, 1,(0) = 1000, Ry,(0) = 600, S,,, (0) = 2000, 1,,(0) = 800, 5,(0) = 500 and ,(0) = 250,
weighting constants B; = 0.2, B, = 0.8, B; = 0.5, and B, = 0.1 [8]. Here, we take 100 days for the
time horizon.

In the first scenario, we used a combination of vaccination to human (u, ), treatment to human (u;)
and insecticide (u3). Meanwhile, the vaccination to the pig (u4) is not used. The profile of optimal
controls of this scenario is plotted in Figure 3. It could be seen that in 100 days, both of the
vaccination to human and insecticide control should be done intensively during the time observed,
while the treatment to human should be done intensively for the first 25 days and then decreasing.

In the second scenario, we implemented a combination of vaccination to human (u,), treatment to
human (u,) and vaccination to the pig (u,). Meanwhile, the insecticide (u3) is not applied. Profile of
optimal controls of this scenario is plotted in Figure 4. It could be seen that in 100 days, both of the
vaccination to human and vaccination to pig controls should be done intensively for the first 90 days
and then decreasing, while the medicine to human takes 100% of the cost for the first 15 days and then
decreasing.

In the third scenario, we employed a combination of vaccination to human (u,), insecticide (u3)
and vaccination to the pig (u;). Meanwhile, the medicine control (u;) is not applied. Profile of
optimal control of this scenario is plotted in Figure 5. It could be seen that in 100 days, the vaccination
to human control should be done intensively for the first 85 days and then decreasing, while the
insecticide just takes 100% of the cost for the first 35 days and then decreasing. The similar act to the
vaccination to pig should be done intensively for 95 days at the first and then decreasing.

In the fourth scenario, a combination of medicine to human (). insecticide (1) and vaccination
to the pig (u,) control are implemented. Meanwhile, the vaccination to human (u;) is not used. The
profile of optimal controls of this scenario is plotted in Figure 6. The treatment control to human
should be done intensively for the first 45 days and then decreasing in 100 days, while the insecticide
takes 100% of cost longer for the first 65 days and then decreasing. The similar act to the vaccination
to pig should be done intensively for 95 days at the first and then decreasing.

In the last scenario, we used a combination of vaccination to human (u4), treatment to human ().,
insecticide (u3) and vaccination to the pig (u,) simultaneously. The profile of optimal control of this
scenario is plotted in Figure 7. It could be seen that in 100 days, each of the vaccination and treatment
to human should be done intensively for almost 85 and 15 days respectively and then decrease, while
the insecticide should be done intensively for the first 45 days and then decreasing. Similarly to the
vaccination to pig should be done 100% for 95 days and then decreasing.

The population dynamics of the infected human for different combinations of controls are shown in
Figure 8, while the infected mosquito and pig population are given in Figure 9 and 10, respectively.
From Figures 8-10, we observe that the various combinations of controls give a significant reduction
of the infected human, mosquito, and pig population compared without controls. At the end of
observation, all infected population tends to zero when the control strategies are applied to the system.
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The optimal cost regarding the five scenarios could be seen in Table 3. The last scenario as the
combination of all various controls gives the minimum cost.
Table 3. Optimal controls and their cost

Scenario Optimal controls Cost J
5 Uy, Uy, Uz and Uy 6236.5132
3 Uy, Uz and Uy 6852 0306
2 Uy, Uy and Uy 10470.3602
4 Uy, Uz and U, 11881.0154
1 Uq, Uy and us 14990.8107

10
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6. Conclusion

In this paper. we have derived a mathematical model for Japanese encephalitis transmission. From the
model, we found the basic reproduction ratios that determine the existence and stability of the
equilibriums. We also found that the disease-free equilibrium is locally asymptotically stable if the
ratio is less than one. It is contrast when the ratio is greater than one, then the disease will persist in the
population. Then, the conditions for optimal control existence are analytically studied using the
Pontryagin’s Maximum Principle. In the numerical simulation, we used the combination of three
controls at a time and the combination of four controls at a time to investigate and compare the effects
of control applies on Japanese encephalitis elimination. It indicates that the best strategy is
combination of the whole controls at one time.
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