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PREFACE 

 

The fifth International Conference on Research, Implementation, and Education of 

Mathematics and Science (ICRIEMS) is an annual conference organized by the Faculty of 

Mathematics and Natural Science, Yogyakarta State University, Yogyakarta, Indonesia and 

successfully held from 7  to 8 May, 2018. The theme of the 5th ICRIEMS is revitalizing research 

and education on mathematics and science for innovations and social development. The 

conference was a forum for researchers, educators, students, policy makers, and practitioners 

to achieve the innovation and social development through research and education on 

mathematics and science, as it is accentuated by the theme of this conference. The scope of this 

conference covers the area of mathematics, chemistry, physics, biology, mathematics 

education, chemistry education, physics education, and science education. This proceeding 

contains 157 that have been carefully peer reviewed and selected from 575 papers submitted 

to the conference. 

We would like to express our gratitude to the reviewers of these manuscripts, who 

provided constructive criticism and stimulated comments and suggestions to the authors. We 

are extremely grateful as organizers, technical program committee and editors and extend our 

most sincere thanks to all the participants of the conference for their fruitful work and their 

excellent contribution to the development of this conference proceedings. Our sincere gratitude 

also goes to the IOP Publishing editors and managers for their helpful cooperation during the 

preparation of the proceedings.  

 

On behalf of the Organizing Committee of the 5th ICRIEMS 

Agung Wijaya Subiantoro, Ed.D. 
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Estimation of Regression Function in Multi-Response 

Nonparametric Regression Model Using Smoothing Spline 

and Kernel Estimators 

B Lestari1, Fatmawati2, I N Budiantara3, and N Chamidah2 

1Department of Mathematics, Faculty of Mathematics and Natural Sciences,  

The University of Jember 

Jember 68121, Indonesia. 
2Department of Mathematics, Faculty of Sciences and Technology,  

Airlangga University 

Surabaya 60115, Indonesia. 
3Department of Statistics, Sepuluh Nopember Institute of Technology 

Surabaya 60111, Indonesia. 

fatmawati@fst.unair.ac.id 

Abstract. The functions which describe relationship of more than one response variables 

observed at several values of the predictor variables in which there are correlations among the 

responses can be estimated by using a multi-response nonparametric regression model 

approach. In this study, we discuss about how we estimate the regression function of the multi-

response nonparametric regression model by using both smoothing spline and kernel 

estimators. The principal objective is determining the smoothing spline and kernel estimators 

to estimate the regression function of the multi-response nonparametric regression model. The 

obtained results show that the regression functions obtained by using smoothing spline and 

kernel estimators are mathematically just distinguished by their smoother matrices. In addition, 
they are linear in observation and bias estimators. 

1.  Introduction 

Speaking about a function which draws relationship of more than one the response variables observed 

at several values of the predictor variables, we cannot omit a common model called as a regression 

model. In statistical analysis that applies the regression model approach, we always be faced to the 

main statistical problem, i.e., how we estimate the regression function in the regression model. There 

are two main regression model approaches in the regression analysis. We can apply parametric 

regression model approach when the pattern of the regression function indicates the specific pattern, 

for examples, linear, quadratic, cubic, etc. On the other hand, when it pattern does not indicate the 

specific pattern, we must use the nonparametric regression model approach. The estimating of 

regression function of the nonparametric regression model can be used some estimators, i.e., kernel 

estimator, spline estimator, local polynomial estimator, wavelet estimator, etc. Spline is an estimator 

that has the best flexibility in estimating the nonparametic regression function compared with the 

others. Spline estimator used for estimating the regression function of the nonparametric regression 

model has been discussed by many researchers. Estimation of regression function of the nonparametric 

regression for smooth data by using original spline has been discussed by [1] and [2]. In [3] researcher 

mailto:fatmawati@fst.unair.ac.id
http://creativecommons.org/licenses/by/3.0
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compared between generalized cross validation (GCV) and generalized maximum likelihood (GML) 

mehods for selecting the smoothing parameter in the generalized spline smoothing problem. The using 

of M-type spline for overcoming outliers in the nonparametric regression has been proposed by [4] 

and [5]. In [6] researcher used bayesian method for constructing the confidence interval for original 

spline model. Relaxed spline and quantile spline estimators ware used by [7] and [8], respectively, for 

estimating the regression functions. In [9] researchers estimated the regression function of 

nonparametric regression model that has different variances of errors by using weighted spline 

estimator. The smoothing spline estimator in the nonparametric regression models which have 

correlation among their random errors was discussed by [10]. In [11] researcher used reproducing 

kernel Hilbert spaces (RKHS) concept to create techniques to build spline statistical model. In [12] 

researchers investigated the asymptotic properties of spline estimators of functional linear regression 

with errors-in-variables. In [13] researchers estimated the variance functions by using smoothing 

spline estimator. Besides that, there are some researches who have discussed about kernel estimator. In  

[14] researcher pointed that the spline estimator is better than kernel estimator in estimating 

nonparametric regression model of gross national product data. A weighted average to estimate the 

regression function of the raw data was used by [15]. In [16] and [17] researchers used kernel 

estimator for estimating the regression function and stated that kernel function should be symmetric. 

Note that, researchers mentioned above discussed spline and kernel estimators just for single response 

nonparametric regression models. They have not discussed the multi-responses nonparametric 

regression model. 

The model discussed in this study provides powerful tools to model the function that draws 

relationship of more than one response variables observed at several values of predictor variables 

where among responses are correlated. The nonparametric models of multi-response data have been 

studied by some researchers. Algorithms of spline smoothing have been created by [18], [19] and [20]. 

The estimating of multivariate function by using smoothing spline and RKHS has been developed by 

[21]. In [22] and [23] researchers estimated regression function of the nonparametric regression 

models with serially and spatially correlated errors, respectively. In [24] researchers estimated 

biresponse nonparametric regression function with equal correlation of errors by using spline 

smoothing. In [25] and [26] researchers have determined spline estimators for estimating the multi-

response nonparametric regression model with equal and unequal correlations of errors, respectively. 

In [27] researchers applied the multi-response nonparametric regression approach to design child 

growth chart. In [28] researchers estimated the multi-responses nonparametric regression model that 

has heteroscedastic variances by using spline estimator. Estimation of the homoscedastic multi-

responses nonparametric regression in which the number of observations were unbalance discussed by 

[29]. Estimations of covariance matrix by using spline have been studied by [30] and [31]. But, these 

researchers only discussed the using of spline estimator for estimating the multi-response 

nonparametric regression model. They have not discussed the estimating of regression function by 

using kernel estimator. In addition, although [14] has discussed about smoothing spline and kernel 

regression estimation techniques, but [14] discussed them to estimate regression function of the 

uniresponse nonparametric regression model only, and not in multi-response model.  

In this study, we build the multi-response nonparametric regression model by developing the 

biresponse nonparametric model proposed by [24] to the more than two responses model. Next, we 

determine the smoothing spline and kernel estimators for estimating the regression function of the 

multi-response nonparametric regression model. 

2.  Results and Discussion 

In this section, we give results and discussion about estimation of regression function in the multi-

response nonparametric regression model by using smoothing spline and kernel estimators. 

2.1.  Estimation of Regression Function Using Smoothing Spline Estimator 
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Firstly, we consider a paired data set ),( kiki ty that follows a model called as the multi-response 

nonparametric regression model as follows: 

 kikikki )t(fy   ,   kkk bta  ,  1,2,..., ki n ,  pk ,...,2,1                         (1)   

where k  repesents the number of response, and 
pfff ,...,, 21
 are unknown regression functions  

assumed to be smooth in Sobolev space ],[2 kk

m baW . ki  are zero-mean independent random errors 

with variance 2

ki  ([19]). The main objective of nonparametric regression analysis is estimate unknown 

functions 
2 [ , ]m

k k kf W a b  in model (1). In the parametric regression model of the form ( )y f t   , 

where f  is some known, smooth function, we must get the suitable form of f . In contrary, in the 

nonparametric regression model, some of f  is unknown, smooth function, and we are not specify it.   

Next, suppose that 1 2( , ,..., )py y y y  , 1 2( , ,.., )pf f f f  , 
1 2( , ,..., )p     , and  

1 2( , ,..., )pt t t t   where 1 2( , ,..., )k k k kny y y y  , 1 2( ( ), ( ),..., ( ))k k k k k k knf f t f t f t  , 

1 2( , ,..., )k k k kn     , 1 2( , ,..., )k k k knt t t t  . Therefore, for 1,2,..., ki n   and  pk ,...,2,1 , we can 

write equation (1) in the following equation: 

  y f                                                                                                                  (2) 

where ( ) 0E   , and 2 1( ) [ ( )]Cov W  
2 2 2

1 1 2 2( ( ), ( ),..., ( ))p pdiag W W W    ([28] and [32]).  

Estimating of the functions f
 
in (2) by using smoothing spline estimator appears as a solution to the 

penalized weighted least-square (PWLS) minimization problem, i.e., determine f̂  that can make the 

following PWLS minimum: 

           
1 2 2

1

1 1 1 1 1
, ,...,

1

{( ) ( ) ( ) ... ( ) ( )
p

p

k p p p p p
f f f W

k

Min n y f W y f y f W y f




       
1

1

(2) 2 (2) 2

1 1( ( )) ... ( ( )) }
k

k

b b

p p
a a

f t dt f t dt                     (3) 

for pre-specified value 
1 2( , ,..., )p     . Note that, in equation (3), the first term represents the sum 

squares of errors and it penalizes the lack of fit. While, the second term which is weighted by   

represents the roughness penalty and it imposes a penalty on roughness. It means that the curvature of 

f  is penalized by it. In equation (3), k  ( 1,2,..., )k p  is called as the smoothing parameter. The 

solution will be vary from interpolation to a linear model, if k  varies from 0 to  . So that, if 

k  , the roughness penalty will dominante in (3), and the smoothing spline estimate will be 

forced to be a constant.  If 0k  , the roughness penalty will disappear in (3), and the spline 

estimate will interpolate the data. Thus,  the trade-off between the goodness of fit given by:  

                                  1

1 1 1 1 1

1

( ) ( ) ( ) ... ( ) ( )
p

k p p p p p

k

n y f W y f y f W y f



      
 

and smoothness of the estimate given by: 

                                   1

1

(2) 2 (2) 2

1 1( ( )) ... ( ( ))
k

k

b b

p p
a a

f t dt f t dt     

is controlled by the smoothing parameter k . The solution for minimization problem in (3) is a 

smoothing spline estimator where its function basis is a “natural cubic spline” with 

1 2, ,...,
knt t t ( 1,2,..., )k p as its knots. Based on this concept, a particular structured spline 

interpolation that depends on selection of the smoothing parameter k  value becomes a appropriate 

approach of the functions kf ( 1,2,..., )k p  in model (1). Let 1 2( , ,.., )pf f f f   where 

1 2( ( ), ( ),..., ( ))k k k k k k knf f t f t f t  , 1,2,...,k p , be the vector of values of function 



4

1234567890 ‘’“”

ICRIEMS 5 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1097 (2018) 012091  doi :10.1088/1742-6596/1097/1/012091

 

 

 

 

 

 

kf ( 1,2,..., )k p  at the knot points 
1 2, ,...,

knt t t ( 1,2,..., )k p . If we express the model of paired data 

set into a general smoothing spline regression model, we will get the following expression: 

     
kiktki fLy

k
 ,   1,2,..., ki n ; pk ,...,2,1                                                     (4) 

where kf Hk  (Hk represents Hilbert space) is an unknown smooth function, and 
kt

L   Hk  is a 

bounded linear functional.  

Suppose Hk can be decomposed into two subspaces  Uk  and  Wk  as follows: 

  Hk = Uk   Wk  

where Uk  Wk, pk ,...,2,1 . Suppose that 
1 2{ , ,..., }

kk k kmu u u  and 
1 2{ , ,..., }

kk k kn    are bases of 

spaces Uk and Wk , respectively. Then, we can express every function kf Hk ( pk ,...,2,1 ) into the 

following expression: 

    k k kf g h   

where kg   Uk  and kh  Wk . Since 
1 2{ , ,..., }

kk k kmu u u  is basis of space Uk and 
1 2{ , ,..., }

kk k kn    is 

basis of space  Wk , then for every kf   Hk ( pk ,...,2,1 ) follows:  

                   
1 1

k km n

k kj kj ki ki

j i

f d u c 
 

   k k k ku d c   ; pk ,...,2,1 ; 
kjd ℛ; kic  ℛ               (5) 

where 
1 2( , ,..., )

kk k k kmu u u u  , 
1 2( , ,..., )

kk k k kmd d d d  , 
1 2( , ,..., )

kk k k kn     , and 

1 2( , ,..., )
kk k k knc c c c  .  Furthermore, since 

kitL  is a function which is bounded and linear in  Hk , and 

kf   Hk , pk ,...,2,1  then we have: 

              ( )
ki kit k t k kL f L g h  ( ) ( )k ki k kig t h t  )( kik tf .                                                   (6) 

Based on model (1), and by applying the Riesz representation theorem ([33]), and because of 
kitL Hk 

is bounded linear functional, then according to [33] there is a representer ki   Hk  of 
kitL which 

follows: 

 , ( )
kit k ki k k kiL f f f t    , kf   Hk                                                                         (7) 

where  ,   denotes an inner product. Based on (4) and by applying the properties of the inner 

product, we get: 

            ( ) ,k ki ki k k k kf t u d c      , ,ki k k ki k ku d c         .                                             (8) 

Next, by applying equation (8), for 1k  we have: 

           1 1 1 1 1 1 1 1( ) , ,i i if t u d c         , 11,2,...,i n ; 

and for 11,2,3,...,i n  we have: 

          
11 1 1 11 1 12 1 1( ) ( ( ), ( ),..., ( ))nf t f t f t f t   1 1 1 1K d c  ,                                                    (9) 

where: 

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1

1

1 11 1 12 1 1

, , ,

, , ,

, , ,

m

m

n n n m

u u u

u u u
K

u u u

  

  

  

      
 
      

  
 
       

, 

1

1

1 1 1 1

11 11 11 12 11 1

12 11 12 12 12 1

1

1 11 1 12 1 1

, , ,

, , ,

, , ,

n

n

n n n n

     

     

     

      
 
      

   
 
       

, 

11 11 12 1( , ,..., )md d d d  ,  and  
11 11 12 1( , ,..., )nc c c c  .  

In the similar process, we obtain: 2 2 2 2 2 2( )f t K d c  ,…, ( )p p p p p pf t K d c  . Therefore, the 

regression curve ( )f t  can be expressed as: 
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1 2 1 2 1 2 1 2( , ,..., )( , ,..., ) ( , ,..., )( , ,..., )p p p pdiag K K K d d d diag c c c      Kd c  .                   (10) 

In equation (10), K  is a ( )N M -matrix and d  is a vector of parameters with dimension )1( M  

(where 
1

p

k

k

N n


 , 
1

p

k

k

M m


 ) that are expressed as:  

             
1 2( , ,..., )pK diag K K K ,  and  

1 2( , ,..., )pd d d d    , respectively. 

Also,  is a )( NN  -matrix, and c  is a )1( N -vector of parameters which are expressed as: 

              
1 2( , ,..., )pdiag     ,  and  1 2( , ,..., )c c c c    , respectively.  

Therefore, we can write model in (2) as follows: 

              y Kd c    . 

We use the RKHS method to obtain the estimation of f , by solving the following optimization: 

           

2 2
1 1

2 22 2

1,2,..., 1,2,...,

( ) ( )( )
k k k kf f

k p k p

Min W Min W y f  
 
 

      
    

      
H H

,                                                  (11) 

with constraint: 

 
k

k

b

a
kkk

m

k dttf 2)( )]([  , 0k .                                                                              (12) 

To solve the optimization (11) with constraint (12) is equaivalent to solve the optimization PWLS: 

           
2

1 2 ( ) 2

[ , ]
1

1,2,...,

( ) ( )( ) [ ( )]
k

m
kk k k

p
b

m

k k k k
af W a b

k
k p

Min N y f W y f f t dt 






 
   

 
  ,                                      (13) 

where k , pk ,...,2,1  are smoothing parameters that control trade-off between goodness of fit 

represented by:  1 2( ) ( )( )N y f W y f     

and the roughness penalty measured by:  
p

p

b

a
pp

m

pp

b

a

m dttfdttf 2)(

1

2

1

)(

11 )]([...)]([
1

1

 . 

To get the solution to (13), we first decompose the roughness penalty as follows: 

    11

2

11

2

1

)(

1 ,)]([
1

1

PfPfPfdttf
b

a

m

1 1 1 1 1 1 1 1, ( )c c c c      
1 1 1c c   

It implies:  

   
1

1

( ) 2

1 1 1 1 1 1 1 1[ ( )]
b

m

a
f t dt c c    .                                                                                            (14) 

Next, by similar way, we get: 

                
2

2

( ) 2

2 2 2 2 2 2 2 2[ ( )]
b

m

a
f t dt c c    , … , 

( ) 2[ ( )]
p

p

b
m

p p p p p p p p
a

f t dt c c     .                      (15) 

Based on (14) and (15), we have penalty: 

          })]([ 2)(

1




k

k

b

a
kk

m

k

p

k

k dttf  c c                                                                                          (16) 

where 
1 21 2( , ,..., )

pn n p ndiag I I I    . We can express the goodness of fit in (13) as follows: 

         
1 2( ) ( )( )N y f W y f    = 

1 2( ) ( )( )N y Kd c W y Kd c     . 

If we combine the goodness of fit and the roughness penalty, we will have optimization PWLS: 

                  2( ) ( )( )
pn

pm
c R

d R

Min y Kd c W y Kd c c N c 




       =  ( , )
pn

pm
c R

d R

Min Q c d




.                     (17) 

1 1 2 2 1 1 2 2 1 1 2 2( ) ( ( ), ( ),..., ( )) ( , ,..., ) ( , ,..., )p p p p p pf t f t f t f t K d K d K d c c c       
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To get the solution to (17), firstly we must take the partially differential of ( , )Q c d  and then their 

results are equaled to zeros as follows: 

( , )
0

Q c d

c





  1 2ˆ ( )( )c M W y Kd  .                                                                       (18) 

( , )
0

Q c d

d





   

1 2 1 1 2ˆ [ ( ) ] ( )d K M W K K M W y     .                                              (19) 

Next, if we substitute (19) into (18) , we obtain: 

        
1 2 1 2 1 1 2ˆ ( )[ ( ( ) ) ( )]c M W I K K M W K K M W y        .                                            (20) 

Finally, based on (10), (19) and (20), we get the smoothing spline estimator which can be expressed as 

follows:  

   

1

2

1, 1

2, 2

,

ˆ ( )

ˆ ( )ˆ ˆ ˆ( ) ( )

ˆ ( )
pp p

f t

f t
f t Kd c H y

f t











 
 
 
    
 
 
 
 

                                                                                 (21)                      

where 
1 2 1 1 2 1 2

~
( ) [ ( ) ] ( ) ( )H K K M W K K M W M W        

1 2 1 1 2[ ( ( ) ) ( )]I K K M W K K M W     , 

and ˆ ( )f t  is smoothing spline with a natural cubic spline as a basis function with knots at 

1 2, ,...,
knt t t ( 1,2,..., )k p , for a fixed smoothing parameter 0  .  ( )H   is a positive-definite 

(symmetrical) smoother matrix that depends on smoothing parameter   and the knot points 

1 2, ,...,
knt t t ( 1,2,..., )k p . Yet, it does not depend on y . Further discussion about this estimator can 

be obtained on [34] – [39].  

2.2. Estimation of Regression Function Using Kernel Estimator 

In the nonparametric regression, basically to estimate the regression function f  based on kernel 

estimator is by using a weighted average of the raw data. The weight is a decreasing function of 

distance in the t-space. For uniresponse nonparametric regression model, [15] has proposed a weighted 

average of the raw data scheme by associating it with observations 
jy , for prediction at it  as follows: 

        

1 1

( )
( )

( ) ( )

i j

n n
i j

j j

t t
K

K uh
ij t t

K K u
h



 




 
                                                                                   (22)   

where ( )K u  is a decreasing function of u called as a kernel function, and 0h   is bandwidth or 

smoothing parameter. ( )K u  should be symmetric that usually take a probability density function such 

as a Gaussian ([16] and [17]).  

Next, based on equation (22) and by considering model given in (1), we have the weight 

associated with observations of  kth-response,
kjy , for prediction at kit  is given by:  

 ( )

1 1

( )
( )

( ) ( )
k k

ki kj

k

k k
k ij n n

ki kj

k k

j jk

t t
K

h K u

t t
K K u

h



 



 


 
  ,   1,2,...,k p .                                                     (23) 
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Based on equation (23), we obtain the kernel estimator to estimate the regression function in model (1) 

at the any point of fit kit  as follows:                                                                                                                                      

  ( )

1

ˆ ˆ( )
kn

k ki ki k ij kj kj k

j

f t y y y 


    ,   1,2,..., ki n , 1,2,...,k p .                                  (24) 

Note that, every point of  the n points is represented by a different weight 
( )k ijw , 1,2,..., kj n  for any 

point of fit kit . So, the equation (24) can be expressed as follows: 

       f̂ Vy                                                                                                                            (25) 

where   1 2, ,...,
kk k knV diag V V V  , and 

       

( )11 ( )12 ( )1

( )21 ( )22 ( )2

( ) 1 ( ) 2 ( )

k

k

k k k k

k k k n

k k k n

ki

k n k n k n n

V

  

  

  

 
 
 

  
 
 
 

. 

In this case, we use matrix V to denote a kernel hat matrix or a kernel smoother matrix that is used for 

transform 
jy ’s to the ˆ

iy ’s. It is similar to the hat matrix in ordinary least square. We may obtain the 

kernel predictions at an any point kit  by using equation (25) and replacing the “ ki ”  by  “ k1 ”. So 

that, the kernel prediction at any point kit  is given as follows: 

      

1

2

1 1 ( )11 ( )12 ( )1
ˆ ( ) , ,...,

k

k

k

k

k k k k k k k n

kn

y

y
f t y

y

   

 
 
  
 
  
 

.                                                           (26) 

As discussed above, similarly to estimation the regression function based on smoothing spline 

estimator given in (21), and by considering equations (24), (25) and (26), the kernel estimator to 

estimate the regression function of the model (1) is given by: 

                      

1 1 11

222 2

ˆ ( ) 0 0

ˆ 0 0( )ˆ ( )

0 0ˆ ( ) k

k

k

kn p
p p

f t yV

yVf t
f t

V yf t

                              

.                                                        (27) 

3.  Conclusion 

Based on equations (21) and (27), both the smoothing spline estimator in (21) and the kernel estimator 

in (27) are estimators which are linear in observations. By taking expected values of them, we will 

obtain that  ˆ( )E f f   and ˆ( )E f f . It means that they are bias estimators for their regression 

functions. The regression functions obtained by using smoothing spline and kernel estimators are 

mathematically just distinguished by their smoother matrices. In smoothing spline estimator approach, 

its smoother matrix is a matrix that is positive-definite (symmetrical) and depends on both   and the 

knot points. While in the kernel estimator approach, its smoother matrix is a kernel hat matrix or a 

kernel smoother matrix. 
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