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Abstract. The functions which describe relationship of more than one response variables
observed at several values of the predictor variables in which there are correlations among the
responses can be estimated by using a multi-response nonparametric regression model
approach. In this study, we discuss about how we estimate the regression function of the multi-
response nonparametric regression model by using both smoothing spline and kernel
estimators. The principal objective is determining the smoothing spline and kernel estimators
to estimate the regression function of the multi-response nonparametric regression model. The
obtained results show that the regression functions obtained by using smoothing spline and
kernel estimators are mathematically just distinguished by their smoother matrices. In addition,
they are linear in observation and bias estimators.

1. Introduction

Speaking about a function which draws relationship of more than one the response variables observed
at several values of the predictor variables, we cannot omit a common model called as a regression
model. In statistical analysis that applies the regression model approach, we always be faced to the
main statistical problem, i.e., how we estimate the regression function in the regression model. There
are two main regression model approaches in the regression analysis. We can apply parametric
regression model approach when the pattern of the regression function indicates the specific pattern,
for examples, linear, quadratic, cubic, etc. On the other hand, when it pattern does not indicate the
specific pattern, we must use the nonparametric regression model approach. The estimating of
regression function of the nonparametric regression model can be used some estimators, i.e., kernel
estimator, spline estimator, local polynomial estimator, wavelet estimator, etc. Spline is an estimator
that has the best flexibility in estimating the nonparametic regression function compared with the
others. Spline estimator used for estimating the regression function of the nonparametric regression
model has been discussed by many researchers. Estimation of regression function of the nonparametric
regression for smooth data by using original spline has been discussed by [1] and [2]. In [3] researcher
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compared between generalized cross validation (GCV) and generalized maximum likelihood (GML)
mehods for selecting the smoothing parameter in the generalized spline smoothing problem. The using
of M-type spline for overcoming outliers in the nonparametric regression has been proposed by [4]
and [5]. In [6] researcher used bayesian method for constructing the confidence interval for original
spline model. Relaxed spline and quantile spline estimators ware used by [7] and [8], respectively, for
estimating the regression functions. In [9] researchers estimated the regression function of
nonparametric regression model that has different variances of errors by using weighted spline
estimator. The smoothing spline estimator in the nonparametric regression models which have
correlation among their random errors was discussed by [10]. In [11] researcher used reproducing
kernel Hilbert spaces (RKHS) concept to create techniques to build spline statistical model. In [12]
researchers investigated the asymptotic properties of spline estimators of functional linear regression
with errors-in-variables. In [13] researchers estimated the variance functions by using smoothing
spline estimator. Besides that, there are some researches who have discussed about kernel estimator. In
[14] researcher pointed that the spline estimator is better than kernel estimator in estimating
nonparametric regression model of gross national product data. A weighted average to estimate the
regression function of the raw data was used by [15]. In [16] and [17] researchers used kernel
estimator for estimating the regression function and stated that kernel function should be symmetric.
Note that, researchers mentioned above discussed spline and kernel estimators just for single response
nonparametric regression models. They have not discussed the multi-responses nonparametric
regression model.

The model discussed in this study provides powerful tools to model the function that draws
relationship of more than one response variables observed at several values of predictor variables
where among responses are correlated. The nonparametric models of multi-response data have been
studied by some researchers. Algorithms of spline smoothing have been created by [ 18], [19] and [20].
The estimating of multivariate function by using smoothing spline and RKHS has been developed by
[21]. In [22] and [23] researchers estimated regression function of the nonparametric regression
models with serially and spatially correlated errors, respectively. In [24] researchers estimated
biresponse nonparametric regression function with equal correlation of errors by using spline
smoothing. In [25] and [26] researchers have determined spline estimators for estimating the multi-
response nonparametric regression model with equal and unequal correlations of errors, respectively.
In [27] researchers applied the multi-response nonparametric regression approach to design child
growth chart. In [28] researchers estimated the multi-responses nonparametric regression model that
has heteroscedastic variances by using spline estimator. Estimation of the homoscedastic multi-
responses nonparametric regression in which the number of observations were unbalance discussed by
[29]. Estimations of covariance matrix by using spline have been studied by [30] and [31]. But, these
rescarchers only discussed the using of spline estimator for estimating the multi-response
nonparametric regression model. They have not discussed the estimating of regression function by
using kernel estimator. In addition, although [14] has discussed about smoothing spline and kernel
regression estimation techniques, but [14] discussed them to estimate regression function of the
uniresponse nonparametric regression model only, and not in multi-response model.

In this study, we build the multi-response nonparametric regression model by developing the
biresponse nonparametric model proposed by [24] to the more than two responses model. Next, we
determine the smoothing spline and kernel estimators for estimating the regression function of the
multi-response nonparametric regression model.

2. Results and Discussion
In this section, we give results and discussion about estimation of regression function in the multi-

response nonparametric regression model by using smoothing spline and kernel estimators.

2.1. Estimation of Regression Function Using Smoothing Spline Estimator
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Firstly, we consider a paired data set (y,.r,)that follows a model called as the multi-response
nonparametric regression model as follows:

Ya=fulty ) ey, a<t,<b, i=1,2....n, k=12,...p (1)
where k repesents the number of response, and Fisfoseenf, AM€ unknown regression functions
assumed to be smooth in Sobolev space W,"[a,.b,]. &, are zero-mean independent random errors
with variance ofr. ([19]). The main objective of nonparametric regression analysis is estimate unknown
functions f, € W,"[a,,b,] in model (1). In the parametric regression model of the form y= f (1) +&,
where f is some known, smooth function, we must get the suitable form of f . In contrary, in the
nonparametric regression model, some of f is unknown, smooth function, and we are not specify it.

Next, suppose that y=(¥.¥y...y,). [f=(fi.fscrf,). £=(§.648,). and

L=(4 ’.{2"‘“"5))’ where Yy = (Vs Yeareos Vi)' o =) [ ) fil2,)

' r .
&, =(E1:E 2 2eaEpy) « B =(tyatysseaty,) . Therefore, for i=1,2,...,n

., and k=12..p, we can

write equation (1) in the following equation:

y=f+g (2)
where  E(g)=0, and Cow(g)=[W(g)I" =diag(W,(a}).W,(a;)...W,(g.)) (28] and [32]).
Estimating of the functions f in (2) by using smoothing spline estimator appears as a solution to the
penalized weighted least-square (PWLS) minimization problem, i.e., determine j that can make the
following PWLS minimum:

) I_Milndl__{finl)"fl', Wy )+t Oy = W, (0, — £+ fhfh (2 (0 dr +..A+,1‘,,j:’: (£ 2 ) diy (3)

for pre-specified value 4 =(4, ,}L,_,...,R,p)’ . Note that, in equation (3), the first term represents the sum

squares of errors and it penalizes the lack of fit. While, the second term which is weighted by A
represents the roughness penalty and it imposes a penalty on roughness. It means that the curvature of
Jf is penalized by it. In equation (3), A, (k =1,2,...,p) is called as the smoothing parameter. The
solution will be vary from interpolation to a linear model, if A, varies from 0 to +oo. So that, if
A, = +00, the roughness penalty will dominante in (3), and the smoothing spline estimate will be
forced to be a constant. If A — 0, the roughness penalty will disappear in (3), and the spline
estimate will interpolate the data. Thus, the trade-off between the goodness of fit given by:

Y G YW~ )+t (3, = FIW, (3, = 1)
and smoothness ofthe*::stimate given by:

»Lf: (2 @) dt +..+ Arj’ () de
is controlled by the smoothing parameter A, . The solution for minimization problem in (3) is a

smoothing spline estimator where its function basis is a ‘“natural cubic spline” with
fistyseent,, (k=1,2,..,p)as its knots. Based on this concept, a particular structured spline

interpolation that depends on selection of the smoothing parameter A4, value becomes a appropriate
approach of the functions f, (k=12...,p) in model (1). Let f=(f.f,..f,) where
Lo =) filt)sen fi(8,))'s k=12,....p, be the vector of wvalues of function
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fi (k=1,2,..., p) at the knot points ¢ ,t,,....t, (k=1,2,...,p). If we express the model of paired data
set into a general smoothing spline regression model, we will get the following expression:

Vo =L fi+&g. i=120n; k=12,.p (4)
where f, € #; (F; represents Hilbert space) is an unknown smooth function, and L e F is a

bounded linear functional.
Suppose €, can be decomposed into two subspaces U; and W, as follows:

Fo= U D Wr
where Ui L W, k=12,....p. Suppose that {uk],u“,.__,uml_} and {wk],ql,...,wbn_} are bases of
spaces Uy and Wy , respectively. Then, we can express every function f, € % (k=12,...,p) into the
following expression:

fi=8:+h
where g, € Uy and h, € Wy . Since {u“,u“,...,um} is basis of space U and {a)k],m“,...,a)m} is
basis of space Wy , then for every f, € Fu(k=12,...,p) follows:

iy, Hy,

" p— ' ! o . . =)
fe :de;”g +2%a’m =wd, +oc,: k=12,..p:d; €R; ¢, € R (%)
j=1 i=l
— r — r — r
where u, = (Hu’”u""’”m‘.) > d, _(dA]’de"‘“"dkml.) : @, = (@, 1By greees By ). and

G = (€41 5Cpasens Oy ). Furthermore, since L, is a function which is bounded and linear in #; , and
fi € #, k=12,...p then we have:

L fi=L (g +h)=8)+h(t,)=f,). (6)
Based on model (1), and by applying the Riesz representation theorem ([33]), and because of L e 56,
is bounded linear functional, then according to [33] there is a representer £ € % of L which
follows:

L f = L) = £0). ], € % ()
where (-,-) denotes an inner product. Based on (4) and by applying the properties of the inner
product, we get:

[ =G ud, + @ic) =(&u,d ) +(8,, @) - 8
Next, by applying equation (8), for k =1 we have:
Si,) =<, 115’41) +(&, 1@;£1> C =12

and for i =1,2.3,....n, we have:

Jf] )=/t )’-ﬁ(rll)""’-)ﬂ(r]rr, ) =Kid, +X¢, 9
where:
Gty Gty (;ls!ﬂ,,,__) (Er@y) (Sua@yn) o (gu’wlu,)
Kl _ <§12juu> <§12le2) Cé:lz"ulm._> s Z. _ <§|2’-wll> (§|2’-wl2 <§|2’-w|n]
@:lu._ ’Mu> <§m_ ’M12> o <§m_ ’Mlm._) (ém, @ |> <§|n, 0y (§IJ:, ’mm,>

d =(d,.d, "“‘7d]m| ), and ¢ =(¢, 22000y, )
In the similar process, we obtain: f,(t,) = K,d, +Z,c, ..., fp(.'p) =K d +% ¢ . Therefore, the

p~p p~p"

regression curve f(f) can be expressed as:
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FO=0f) (), [0, = (Kid,  Kyd,y,... K d ) + (206,250, ,..,2 €, )
= diag(K, K, oo K )dy sy esd ) +diag (.50 X NG 16 vene,) = Kd +c. (10)
In equation (10), K is a (NxM)-matrix and d is a vector of parameters with dimension(M x1)

ol
(where N = Z”ﬁ M = imf\ ) that are expressed as:

k=1 k=1
K =diag(K,.K,....K ). and d =(d|.d;,....d,)", respectively.
Also, X isa (N x N)-matrix, and ¢ is a (N x1)-vector of parameters which are expressed as:
L=diag(X,.%,....x,), and ¢= (¢ Chsnnnc')', respectively.
Therefore, we can write model in (2) as follows:
y= Kd+3c+¢.

We use the RKHS method to obtain the estimation of f , by solving the following optimization:

1 2 1 ’
Min {wz(af)g }— Min {Wz(cr:)(y—f) } (11)
fied, == fr e, e
k=12, _p k=120 p
with constraint:
["UA" GoTdy, <7 . 7,20 (12)
ay
To solve the optimization (11) with constraint (12) is equaivalent to solve the optimization PWLS:
)
Min {N_l(}’—f)'W(qz)(}’—f)“'Z%rJ[f,f"‘](f&)]zdf&}a (13)
Ly I R

where A, . k=12,..,p are smoothing parameters that control trade-off between goodness of fit

represented by: N_I(E*J:‘)'W(Q:)( y-1)
¢ 2 'b-" 1 2

and the roughness penalty measured by: Ajﬁlﬁ"’”(r])]-dr} +..+ ZPJ' If{f’ }(?,,)] drp .
) i,

To get the solution to (13), we first decompose the roughness penalty as follows:

j:’l'lf}""‘(flilzdn =PI = (Pf,.Pf) = (e @le) = cl(@@)g =g

It implies:

A[ AT d, = Az, (14)
Next, by similz!.r way, we get:

Afl F )P dt, = A8, .o 2, j'j Lf @ )Pdt, =2,e% ¢, . (15)
Based on (14) z-ind (15), we have penalty: IJ

il&f[ £t )Pdey =€ A% (16)

el

where A =diag(A1, A, ....A,1, ). We can express the goodness of fit in (13) as follows:
N (y= YW@ )y=f) = N'(y-Kd=Z)W(g®)(y- Kd-X¢).

If we combine the goodness of fit and the roughness penalty, we will have optimization PWLS:

Min {(y—Kd—=Xc)W(g")(y—Kd—2¢)+¢NAZc) = Min{0(c.d)}- (17)
ceR™ ~ ~ ceR™
der™ deR™
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To get the solution to (17), firstly we must take the partially differential of O(c,d) and then their
results are equaled to zeros as follows:

Red) o o i M WeHy-Kd) . (18)
oc -~
%ﬂ) = d=[KM'W(HK]'K'M 'W(g")y. (19)
C -
Next, if we substitute (19) into (18) , we obtain:
c=M"W(aHI-KKM 'W(cHK) ' K'M'W(a”)]y. (20)

Finally, based on (10), (19) and (20), we get the smoothing spline estimator which can be expressed as
follows:

4
&)

i::*,,
o T

= = Kd+ 3= H(2)y @)

1=

2 (2,)

where

H(A)=KIK'M ' W(Z K] KM 'W(g*)+EM W (g®) [ - K(K'M"'W(gHK) " KM W(g")]

and f,_(g) is smoothing spline with a natural cubic spline as a basis function with knots at
tislyst, (K=1,2,....p), for a fixed smoothing parameter 2>0. H(4) is a positive-definite
(symmetrical) smoother matrix that depends on smoothing parameter A and the knot points

(N SO (k=1,2,...,p). Yet, it does not depend on y . Further discussion about this estimator can
be obtained on [34] - [39].

2.2. Estimation of Regression Function Using Kernel Estimator
In the nonparametric regression, basically to estimate the regression function f based on kernel

estimator is by using a weighted average of the raw data. The weight is a decreasing function of
distance in the ¢-space. For uniresponse nonparametric regression model, [15] has proposed a weighted

average of the raw data scheme by associating it with observations y , for prediction at ¢; as follows:

K t—t;
V. = ( h ) _ K(u)
ij — n f—t. — n
K K (22)
; 5 ; ()

where K(u) is a decreasing function of u called as a kernel function, and i >0 is bandwidth or
smoothing parameter. K(u) should be symmetric that usually take a probability density function such
as a Gaussian ([16] and [17]).

Next, based on equation (22) and by considering model given in (1), we have the weight
associated with observations of £"-response, ¥,;» for prediction at 1, is given by:

Ly —ly
)

K, (
I hy I AC) k=172 (23)
(hyij - s =L2,..p-

. Iy

YK Y KW

k
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Based on equation (23), we obtain the kemel estimator to estimate the regression function in model (1)
at the any point of fit f,, as follows:

[

fi.- () =Yy = ZVU;W}’H :If.';f;yk s i=L2,..m, k=12,..p. (24)
j=1

Note that, every point of the # points is represented by a different weight wy, ., j= L,2,...,n, forany

point of fit 7,,. So, the equation (24) can be expressed as follows:

f=vy (25)
where V =diag(V,,.V,,....V,, ) . and
Vinr Yonz " Vs,

vV = Vg Vo 7 Vo,

ki

Vit Yiomz " or¥domn

In this case, we use matrix V' to denote a kernel hat matrix or a kernel smoother matrix that is used for
transform y ’s to the ¥,’s. It is similar to the hat matrix in ordinary least square. We may obtain the
kernel predictions at an any point #,, by using equation (25) and replacing the “ &i ™ by “ k1 ™. So

that, the kernel prediction at any point ¢,; is given as follows:

2 e k2
fo("‘m)—vu.}’x_(le11"'[“111---"/[“1"‘.) . |- (26)

Vi,
As discussed above, similarly to estimation the regression function based on smoothing spline
estimator given in (21), and by considering equations (24), (25) and (26), the kernel estimator to
estimate the regression function of the model (1) is given by:

LAY (v, 0 o 0)(n

. f 0 Vi, = 0 ||y

Jo=[ L& T Te T T @)
. o 0 .V, ;
Lp (fp ) o E "

3. Conclusion
Based on equations (21) and (27), both the smoothing spline estimator in (21) and the kernel estimator
in (27) are estimators which are linear in observations. By taking expected values of them, we will

obtain that E(f,)# f, and E(f)# f . It means that they are bias estimators for their regression
functions. The regression functions obtained by using smoothing spline and kernel estimators are

mathematically just distinguished by their smoother matrices. In smoothing spline estimator approach,
its smoother matrix is a matrix that is positive-definite (symmetrical) and depends on both A and the

knot points. While in the kemel estimator approach, its smoother matrix is a kernel hat matrix or a
kernel smoother matrix.
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