1. Molecular characterization and pathological identification of a novel strain of delta papillomavirus-4 (bovine papillomavirus-2) in Egypt
Veterinary World, 14(9): 2296-2305

2. Antifungal and antitoxin effects of propolis and its nanoemulsion formulation against Aspergillus flavus isolated from human sputum and milk powder samples
Alshimaa A. Hassanien, Eman M. Shaker, Eman E. El-Sharkawy and Walaa M. Elsherif
Veterinary World, 14(9): 2306-2312

3. Screening of in vitro antimicrobial effects of Helicteres isora extract against Staphylococcus aureus
Sunisa Sirimongkolvorakul and Anusorn Jasancheun
Veterinary World, 14(9): 2313-2316

4. Assessing hygiene indicators in two dairies in Algeria in producing pasteurized milk
Regguem Souad, Hamdi Taha Mossadak and Bouayad Leila
Veterinary World, 14(9): 2317-2324

5. Erythrocyte sedimentation rate, C-reactive protein, and interleukin-6 as inflammatory biomarkers in dogs naturally infected with Ehrlichia canis
Thanaporn Asawapattanakul, Tanagorn Pintapagung, Supawadee Piratae, Siriluck Juntautsa and Pawarat Chancharoen
Veterinary World, 14(9): 2325-2331

6. Body weight prediction using different data mining algorithms in Thalli sheep: A comparative study
Ansar Abbas, Muhammad Aman Ullah and Abdul Waheed
Veterinary World, 14(9): 2332-2338

7. Prevalence and risk factors associated with Eimeria species infection in cattle of different geographical regions of Indonesia
Fitriane Ekawasti, Raden Wisnu Nurcahyo, Lintang Winantya Firdausy, April Hari Wardhana, Dyah Haryuningtyas Sawitri, Joko Prastowo and Dwi Priyowidodo
Veterinary World, 14(9): 2339-2345
8. The first isolation and detection of Ornithobacterium rhinotracheale from swollen head syndrome-infected broiler flocks in Iraq
Baraa Akeel Al-Hasan, Abdullah O. Alhatami, Husam Muhsen Abdulwahab, Ghadeer Sabah Bustani and Eman Abdul Wahab Alkuwaity
Veterinary World, 14(9): 2346-2355

9. Fertility restoration of racing mare with persistent corpus luteum
Tjok Gde Oka Pemayun, Imam Mustofa, Laba Mahaputra, Herry Agoes Hermadi, Ngakan Made Rai Wijaya, Sri Mulyati, Suzanita Utama, Tjuk Imam Restiadi and Rimayanti Rimayanti
Veterinary World, 14(9): 2356-2361

10. Tuberculosis prevalence in animals and humans in the Republic of Kazakhstan
Kairat Altynbekovich Turgenbayev, Assiya Madenovna Borsynbayeva, Aleksandr A. Plazun and Rauan K. Turgenbayev
Veterinary World, 14(9): 2362-2370

11. Abandonment of dogs in Latin America: Strategies and ideas
Daniel Mota-Rojas, Néstor Calderón-Maldonado, Karina Lezama-García, Leonardo Sepiurka and Rita de Cassia Maria Garcia
Veterinary World, 14(9): 2371-2379

12. First report on detection of Babesia spp. in confiscated Sunda pangolins (Manis javanica) in Thailand
Rungrueang Yodsheewan, Manakorn Sukmak, Bencharong Sangkharak, Nongnid Kaolim, Raveewan Ploypan and Wallaya Phongphaew
Veterinary World, 14(9): 2380-2385

13. Molecular detection of Toxoplasma gondii in aborted fetuses of goats in Chattogram, Bangladesh
Tanjila Hasan, Abdul Mannan, Delower Hossain, Azizunnesa Rekha, Md. Monir Hossan, Mohammad Abdul Alim and AHM Musleh Uddin
Veterinary World, 14(9): 2386-2391

14. Seasonal effect of milk yield and blood metabolites in relation to ketosis of dairy cows fed under a high ambient temperature
Sumpun Thammacharoen, Sapon Semsirmboon, Somchai Chanponsang, Narongsak Chaiyabutr, Pawai Surachiyasomboonying, Paveenut Khundamrongkul, Peeravit Puchongmart and Worapruch Wichachai
Veterinary World, 14(9): 2392-2396

15. Characterization and functional properties of gelatin from goat bone through alcalase and neutrase enzymatic extraction
Dellen Naomi Matulessy, Yuny Erwanto, Nurliyani Nurliyani, Edi Suryanto, Mohammad Zainal Abidin and Thoyib Rohman Hakim
Veterinary World, 14(9): 2397-2409

16. Molecular characterization of Escherichia coli isolated from milk samples with regard to virulence factors and antibiotic resistance
Waleed Younis, Sabry Hassan and Hams M.A. Mohamed
Veterinary World, 14(9): 2410-2418

17. Endocrine, energy, and lipid status during parturition and early lactation in indigenous goats native to the Algerian Sahara
Kamilia Henna, Sofiane Boudjellaba, Farida Khammar, Zaina Amirat, Didier Chesneau and Salima Charallah
Veterinary World, 14(9): 2419-2426
Research (Published online: 20-09-2021)
18. Effects of hydrolyzable tannin extract obtained from sweet chestnut wood (Castanea sativa Mill.) against bacteria causing subclinical mastitis in Thai Friesian dairy cows
Tipwadee Prapaiwong, Wuttikorn Srakaew, Chalong Wachirapakorn and Chaiwat Jarassaeng
Veterinary World, 14(9): 2427-2433

Review (Published online: 20-09-2021)
19. Coronavirus disease 2019 and future pandemics: Impacts on livestock health and production and possible mitigation measures
Veterinary World, 14(9): 2434-2443

Research (Published online: 21-09-2021)
João Victor Goulart Consoni Passareli, Felipe Franco Nascimento, Giovana José Garcia Estanho, Claudia Lizandra Ricci, Glauzia Prada Kanashiro, Rogério Giuffrida and Silvia Franco Andrade
Veterinary World, 14(9): 2444-2451

Research (Published online: 21-09-2021)
21. Effects of dietary supplementation of Vitamins E and C on oxidative stress induced by a Nigerian velogenic strain of the Newcastle disease virus (KUDU 113) in the brain and bursa of Fabricius of broiler chickens
Obianuju Nkiruka Okoroafor, Temitope Mofoluso Ogunniran, Nkechi Harriet Ikenna-Ezeh, Ikechukwu John Udani, Jacinta Ngozi Omeke, Wilfred Sunday Ezema and Boniface Anene
Veterinary World, 14(9): 2452-2461

Research (Published online: 22-09-2021)
22. Zoonotic diseases appeared to be a major hurdle to successful deer farming in Bangladesh
Sajeda Sultana, Nazneen Sultana, Mahmuda Islam, Munmun Pervin, Md. Ariful Islam Khan and Mohammad Abu Hadi Noor Ali Khan
Veterinary World, 14(9): 2462-2472

Research (Published online: 23-09-2021)
23. The potential of sperm bovine protamine as a protein marker of semen production and quality at the National Artificial Insemination Center of Indonesia
Berlin Pandapotan Pardede, Tulus Maulana, Ekayanti Mulyawati Kaiin, Muhammad Agil, Ni Wayan Kurniani Karja, Cece Sumantri and Iman Supriatna
Veterinary World, 14(9): 2473-2481

Research (Published online: 23-09-2021)
24. Sparganosis (Spirometra spp.) in Asian Water Monitor (Varanus salvator): A medical implications for veterinarians, breeders, and consumers
Aditya Yudhana, Ratih Novita Praja and Anjani Marisa Kartikasari
Veterinary World, 14(9): 2482-2487

Research (Published online: 23-09-2021)
25. Measuring the sustainability of beef supply chain with rapid appraisal for beef supply chain
Aries Susanty, Ratna Purwaningsih, Haryo Santoso, Anggun Novi Arista and Benny Tjahjono
Veterinary World, 14(9): 2488-2507

Research (Published online: 24-09-2021)
26. Investigation of serum beta-defensin-1 levels in bovine trichophytosis cases
Aynur Simsek
Veterinary World, 14(9): 2508-2511

Research (Published online: 24-09-2021)
27. Follicle-stimulating hormone mediates the consumption of serum-derived glycogen by bovine cumulus-oocyte complexes during in vitro maturation
Ludymila F. Cantanhêde, Cristiane T. Santos-Silva, Marcelo T. Moura, José C. Ferreira-Silva, Júnior M. B. Oliveira, Daniel N. A. Gonçalves, Álvaro A. C. Teixeira, Valéria Wanderley-Texeira and Marcos A. L. Oliveira
Veterinary World, 14(9): 2512-2517
| Research (Published online: 25-09-2021) | 28. Knowledge, attitudes, and practices toward rabies in three provinces of Indonesia
Saifur Rehman, Fedik Abdul Rantam, Abdul Rehman, Mustofa Helmi Effendi and Aamir Shehzad
Veterinary World, 14(9): 2518-2526 |
| Research (Published online: 26-09-2021) | 29. First report from Bangladesh on genetic diversity of multidrug-resistant Pasteurella multocida type B:2 in fowl cholera
Otun Saha, M. Rafiu Islam, M. Shaminur Rahman, M. Nazmul Hoque, M. Anwar Hossain and Munawar Sultana
Veterinary World, 14(9): 2527-2542 |
| Research (Published online: 27-09-2021) | 30. Effectiveness of cauda epididymal plasma-2 and lecithin based diluents to minimize abnormality of sexing albumin spermatozoa during cold storage
Frediansyah Firdaus and Dian Ratnawati
Veterinary World, 14(9): 2543-2548 |
| Research (Published online: 27-09-2021) | 31. Assessment of chicken peripheral blood mononuclear cells isolated from freshly drawn blood versus 24 h refrigerated blood
Chananphat Tantikositruj, Anchalee Buadkhunthod, Jatuporn Rattanasrisomporn, Warangkana Kitpipit and Chaivat Boonkaewwan
Veterinary World, 14(9): 2549-2553 |
| Research (Published online: 27-09-2021) | 32. Awareness and control methods of gastrointestinal parasites of merino sheep among farmers from different agro-ecological zones of Lesotho
Mots’elisi Aloycia Mahlehla, Setsumi Mots’oene Molapo, Mpho Wycliiffe Phofoolo, Puleng Agathah Matebesi, Moeketsi Phalatsi and Morai Johannes Moloa
Veterinary World, 14(9): 2554-2560 |
| Research (Published online: 28-09-2021) | 33. Clinical, histopathological, and molecular characterization of Mycoplasma species in sheep and goats in Egypt
Veterinary World, 14(9): 2561-2567 |
| Research (Published online: 29-09-2021) | 34. Effects of pressure- and volume-controlled ventilation on the work of breathing in cats using a cuffed endotracheal tube
Nutawan Niyatiwatchanchai and Naris Thengchaisri
Veterinary World, 14(9): 2568-2573 |
| Research (Published online: 29-09-2021) | 35. The first report of seroprevalence of Q fever in water buffaloes (Bubalus bubalis) in Phatthalung, Thailand
Kamchai Kidsin, Decha Panjai and Sumalee Boonmar
Veterinary World, 14(9): 2574-2578 |
Fertility restoration of racing mare with persistent corpus luteum

Tjok Gde Oka Pemayun1, Imam Mustofa2, Laba Mahaputra3,4, Herry Agoes Hermadi4, Ngakan Made Rai Wijaya5,6, Sri Mulyati7,8, Suzanita Utama9,10, Tjuk Imam Restiadi10 and Rimayanti Rimayanti10

1. Laboratory of Veterinary Reproduction, Faculty of Veterinary Medicine, Udayana University, Jl. PB Sudirman, Denpasar, Bali 80233 Indonesia; 2. Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia; 3. Head Section of Health and Husbandry of the Indonesian Equestrian Association, East Java Region, Kampus C Mulyorejo, Surabaya 60115, Indonesia; 4. Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo, Surabaya 60115, Indonesia.

Co-authors: TGO: oka_pemayun@unud.ac.id, LM: n.k.l.mahaputra@gmail.com, HAH: herry-a-h@fkh.unair.ac.id, NMRW: n.m.r.wijaya@gmail.com, SM: srirmulyati_s3unair@yahoo.co.id, SU: susanitautama@hotmail.com, TIR: tjukir@yahoo.com, RR: rimayanti@fkh.unair.ac.id

Received: 05-05-2021, Accepted: 02-08-2021, Published online: 08-09-2021

Abstract

Background and Aim: Persistent corpus luteum (PCL) causes anestrus in mares. This study aimed to determine the effect of intrauterine prostaglandin F2α (PGF2α) treatment on PCL of racing mares to restore fertility.

Materials and Methods: Twelve racing mares suspected with PCL were diagnosed using transrectal palpation and confirmed by serum progesterone (P4) concentration measurement. PGF2α was infused intrauterine, followed by serum collection at 24, 48, and 72 h after. Estrous symptoms were monitored, and mating was conducted on day 3 of estrus with an earlier injection of 8.4 µg gonadotropin-releasing hormone twice a day. Transrectal palpation was performed on days 21-30 to observe the corpus luteum. Pregnancy diagnosis was performed rectally on 40-45 days post-mating and confirmed using Doppler ultrasound scanning.

Results: Eleven of the 12 mares had PCL. There was a dramatic reduction in the P4 concentration following PGF2α treatment of mares with PCL. All mares exhibited estrus 2.6±0.55 days post-treatment with a P4 concentration of 0.12±0.12 ng/mL. Rectal palpation and P4 concentration on 21-30 days after estrous onset showed that all mares were ovulating. The evaluation of P4 concentration on days 40-45 post-mating showed that all mares were still in the luteal phase. However, the pregnancy rate was only 54.5% based on rectal palpation and Doppler ultrasound scanning.

Conclusion: Treatment of PCL in racing mares with an intrauterine infusion of PGF2α restored the estrous cycle and induced ovulation and pregnancy.

Keywords: estrus, fertility, good health and well-being, ovulation, progesterone, racing mare.

Introduction

Horses are seasonally polyestrous, and the fertility traits of mares are affected by environmental factors [1]. The estrous cycle of mares differs between 18 and 22 days, with an average of 21 days [2]. The corpus luteum (CL) is relapsed by prostaglandin F2α (PGF2α) secreted by endometrial around days 13-16 post-estrus in non-pregnant mares. The mares in good health and well-being are expected to reach a reproductive efficiency of one foal per year if there is no persistent corpus luteum (PCL). All mares exhibited estrus 2.6±0.55 days post-treatment with a P4 concentration of 0.12±0.12 ng/mL. Rectal palpation and P4 concentration on 21-30 days after estrous onset showed that all mares were ovulating. The evaluation of P4 concentration on days 40-45 post-mating showed that all mares were still in the luteal phase. However, the pregnancy rate was only 54.5% based on rectal palpation and Doppler ultrasound scanning.

Therefore, this study aimed to determine the effect of intrauterine PGF2α treatment in racing mares with PCL to restore fertility.

Materials and Methods

Ethical approval

The experimental procedure was approved by No. 266/HRECC.FODM/VI/2019, by the Animal

Copyright: Pemayun et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Care and Use Committee, Universitas Airlangga, Surabaya, Indonesia.

Study period and location

This study was conducted from July to November 2020 at Trawas stable, Mojokerto, and Kenjeran stable, Surabaya, East Java. Trawas stable is located at latitude S 7° 39’ 59.3568”, longitude E 112° 35’ 15.8316”, and altitude +837 meters above sea level (ASL). The climate of Trawas is wet tropical with significant rainfall most months and a short dry season. The relative humidity is 63.91-90.15 %, and temperature is ±20.6 °C, yearly rainfall is about ±3089 mm, and ±210 rainy days per year. Kenjeran Stables is located at latitude S 7° 14’ 57.01”, longitude E 112° 45’ 2.99”, and altitude one meter ASL. Surabaya is a dry tropical climate with humidity 68%-84%, average temperature ±28°C, and yearly rainfall is about ±848 mm, and ±174 rainy days per year. Meanwhile, serum progesterone measurement was conducted at Sub Laboratory of Endocrinology, Laboratory of Veterinary Obstetrics, Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga.

Animals

Twelve mares (after 2-5 years as racing horses) were used for this study. The mares were bred in Trawas stable, Mojokerto and Kenjeran Stables, Surabaya, East Java, Indonesia. These mares were the patients of the Health and Husbandry Section of Horse Race Club, East Java Region.

PCL diagnosis

The mares were diagnosed with PCL based on behavioral observation and history of non-cycling and non-return to estrus 2-4 months post-mating. The rectal palpation was performed for the presence of CL and confirmed by the measurement of serum P4 concentration before treatment [8].

Serum collection and P4 concentration measurement

Mares’ blood samples (5 mL) were obtained from the jugular vein before treatment, at 24, 48, and 72 h post-treatment; 21-30 days post-estrus; and 40-45 days post-mating. P4 was measured using an enzyme-linked immunosorbent assay (ELISA Kit, GBC, Taiwan).

Treatment, estrus detection, mating, and pregnancy diagnosis

The PCL mares were treated using 5 mg PGF2α (Lutalyse, Upjohn) dissolved in 3 mL aqua dest and then infused into the uterine lumen using a 24G Foley catheter. Estrus detection was based on visual observation and intravaginal examination. The mare in standing heat exhibited vulvar winking followed by urination, a clinical manifestation which was absent in other mammals. The intravaginal examination was performed using a vaginoscopy (Polansky, MediTools Pty Ltd, Australia) two days after treatment to detect cervical dilation and the presence of cervical discharge. The mare did not exhibit cervical dilatation nor cervical discharge on day 2; estrus detection was repeated on day 3. The estrous mares were confirmed the day after with a teaser stallion [9,10].

Natural mating was conducted on day 3 of standing heat by previously providing an intramuscular injection of 8.4 µg synthetic gonadotropin-releasing hormone (GnRH) (Buserelin acetate, Concepts, AgroVet market, Peru) twice a day. Transrectal palpation was conducted on days 21-30 after mating to palpate the presence of the CL on the ovaries and to determine the position of CL in the left or right ovary. Pregnancy diagnosis through transrectal palpation was conducted on 40-45 days post-mating and confirmed using a Doppler ultrasound [9,11] BT-200 scanner (Bistos, South Korea).

Statistical analysis

Statistical analyses were conducted at a 95% significance level using Statistical Package for the Social Sciences version 23.0 (IBM Corp., Armonk, NY, USA). Data of progesterone concentrations on days 0, 4, 48, and 72 were studied using a general linear model repeated measures [12]. Meanwhile, analysis of data frequency of estrus and pregnancy of mare were studied using Chi-square test [13].

Results

Transrectal palpation diagnosis of PCL suspected mares based on clinical manifestations showed that all mares had CL in their ovaries. Furthermore, examination showed that 91.7% (11/12) of the mares were PCL positive with a range of serum P4 concentrations of 2.6-9.5 ng/mL (average 5.03±2.68 ng/mL) on day 0 (before treatment). Meanwhile, 8.3% (1/12) was negative for PCL with a P4 concentration of 0.5 ng/mL.

A quarter decrease in serum P4 concentration was noticed from pre-treatment to 24 h post-treatment (p<0.01), 1/8 reduction from pre-treatment to 48 h post-treatment (p<0.01), and a reduction by half from 24 to 48 h post-treatment (p<0.05). Meanwhile, there was no significant (>0.05) decrease in serum P4 concentration 48-72 h after PGF2α treatment (Table-1).

All PCL diagnosed mares exhibited estrous signs after PGF2α treatment with serum P4 concentrations <0.2 ng/mL. The estrous rate was 36.4% (4/11) at 48 h and 63.6% (7/11) at 72 h after PGF2α treatment, with 2.6±0.5 days average (Table-2). All mares were ovulating based on the finding of CL in their ovaries in the transrectal examination on 21-30 days after estrous onset, P4 concentration was higher than 1 ng/mL. Those CLs’ distribution was 72.7% (8/11) in the right ovary and 27.3% (3/11) in the left ovary. The average P4 concentrations of mares on 40-45 days post-mating were 2.80±0.59 ng/mL in the range of 1.9-3.6 ng/mL. The P4 concentration of mares based on the position of CL was 2.82±0.65 ng/mL in the right ovary and 2.7 ng/mL in the left (Table-3). The pregnancy rate was 54.5% (6/11), given at the right uterine horn was 45.5% (5/11), and at the left uterine horn was 9%
Table-1: Serum P4 concentrations (ng/mL) before and after PGF2α treatments.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Before (Day 0)</th>
<th>Hours after PGF2α treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>24</td>
</tr>
<tr>
<td>Decreased concentration (%)</td>
<td>5.03±2.68</td>
<td>1.33±1.01</td>
</tr>
<tr>
<td></td>
<td>2.6-9.5</td>
<td>0.1±2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.56</td>
</tr>
</tbody>
</table>

Different superscripts in the same row were significantly different (p<0.05) in general linear model repeated measure test. PGF2α=Prostaglandin F2α

Table-2: Estrous responses and P4 concentration at estrus after PGF2α treatment.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hours after PGF2α treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Estrous mares</td>
<td>0</td>
</tr>
<tr>
<td>P4 concentration at estrus (ng/mL)</td>
<td>0.075±0.096</td>
</tr>
</tbody>
</table>

Different superscripts in the same row were significantly different (p<0.05) in the Chi-square test. PGF2α=Prostaglandin F2α

Table-3: The fertility of mares after PGF2α treatment.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Right ovaries/ horns</th>
<th>Left ovaries/ horns</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing CL (%)</td>
<td>72.7% (8/11)</td>
<td>27.3% (3/11)</td>
<td>100% (11/11)</td>
</tr>
<tr>
<td>P4 averages (ng/mL)</td>
<td>2.82±0.65</td>
<td>2.7</td>
<td>2.80±0.59</td>
</tr>
<tr>
<td>Pregnancy rate</td>
<td>45.5% (5/11)</td>
<td>9.0% (1/11)</td>
<td>54.5% (6/11)</td>
</tr>
</tbody>
</table>

Different superscripts in the same row were significantly different (p<0.05) in the Chi-square test. PGF2α=Prostaglandin F2α

(1/11). Doppler ultrasound scanning showed two digital wave groups: 59-73 beats per minute (bpm) and 181-210 bpm.

Discussion

The CL is a pivotal structure for controlling the estrous cycle and maintaining pregnancy [14]. The CL is formed after ovulation and usually works for 14-15 days in non-pregnant mares. It is then regressed because of the prostaglandin release from the endometrium. A sudden and complete reduction in P4 concentration in PCL formed using intrauterine infusion of PGF2αααα, available as natural or synthetic, has a unique function of destroying the CL [5]. Sudden decreases of P4 concentration follow the regression of CL. The P4 basal concentration causes the loss of negative feedback to the hypothalamus, the release of GnRH followed by the release of follicle-stimulating hormone (FSH) from the anterior pituitary. The FSH induces follicle development, but when the estrogen derived from the follicles is quantitatively enough in the bloodstream, clinical symptoms of estrus are shown [2].

Mares with PCL have a good tone of the cervix and uterus on transrectal palpation [15], and P4 concentrations of >1.0 ng/mL, indicating luteal activity [16].

P4 concentrations before and after PGF2αα treatment

PGF2αα is widely used in practice to control heat cycles in the mare. PGF2αα, available as natural or synthetic, has a unique function of destroying the CL [5]. The CL is formed after ovulation and usually works for 14-15 days in non-pregnant mares. It is then regressed because of the prostaglandin release from the endometrium. A sudden and complete reduction in P4 concentration in PCL formed using intrauterine infusion of PGF2αα, available as natural or synthetic, has a unique function of destroying the CL [5]. Sudden decreases of P4 concentration follow the regression of CL. The P4 basal concentration causes the loss of negative feedback to the hypothalamus, the release of GnRH followed by the release of follicle-stimulating hormone (FSH) from the anterior pituitary. The FSH induces follicle development, but when the estrogen derived from the follicles is quantitatively enough in the bloodstream, clinical symptoms of estrus are shown [2].

Hormone concentrations are highly vital to the reproductive efficiency of mares [17]. Here, serum P4 concentrations were reduced from day 0 to 24 and 48 h following PGF2αα treatment and stabilized in 48-72 h. The reduction in the P4 percentage was getting more significant daily (Table-1). The average P4 concentration on day 0 was 5.03±2.68 ng/mL, which means that the mares were positive for PCL. Previously, a report showed that at the beginning of luteolysis, the P4 concentration in PCLs was 5.0±0.5 ng/mL [4].

In this study, the mare’s PCL treatment was performed using intrauterine infusion of PGF2αα. The PGF2αα travels to the ovary and CL as the target. The luteal cell membranes are highly efficient in capturing the PGF2αα molecules [5]. Luteolysis caused the loss of lutein cells steroidogenic capacity by apoptotic or non-apoptotic mechanisms due to disintegration of the CL [2]; thereby P4 concentration reduced fast and was subsequently followed by folliculogenesis and estrus [18].

Estrous responses after PGF2αα treatment

Mares with PCL possessed a defect in PGF2αα secretion [7]. Therefore, the administration of PGF2αα could be used to prompt luteolysis and allow a subsequent return to estrus [6]. Here, all mares showing estrous signs, including excitement, sweating, and mild colic symptoms following PGF2αα treatment, were confirmed by blood serum P4 concentrations of <0.2 ng/mL (Table-2). Moreover, an earlier study [19]...
reported that following 20-35 min PGF2α administration, the mares exhibited restless, sweating, spasm of pelvic muscle, and mild colic symptoms. The percentage of mares that showed estrous signs on day 2 was 36.36% (4/11), and those on day 3 were 63.63% (7/11), on an average of 2.6±0.5 days post-PGF2α treatment (Table-2). The onset of mare estrus after PGF2α was 2.5 days [20], and ovulation occurred 8.4 days following PGF2α treatment [6].

Fertility of mares after PGF2α treatment

Indicator of mare fertility, among others, is the development of CL following estrus and ovulation. Once ovulation occurs, granulosa and theca cells undergo functional and structural changes; they form CL and produce P4 [21,22]. All of the mares with PCL treated with PGF2α followed by buserelin (synthetic GnRH) injection on day 2 of estrous signs in this study revealed ovulation, indicated by the finding of CL on transrectal palpation, and confirmed by P4 concentration (Table-3). Single injection of buserelin in delayed estrus of a mare effectively induces ovulation [10].

The distribution of CL formation was 72.7% (8/11) in the right ovary and 27.3% (3/11) in the left ovary. This is because the mare’s right ovary is more active than the left ovary. Follicle density, pre-antral follicles per ovarian fragment, and area of ovary structure (antral follicles and CL) of the right ovary of the mare were higher than that of the left ovary [23]. This result differed from the previous study [24], which reported that the relationship between follicle development and regressed CL was 8% ipsilateral, and 24% was contralateral [7]. These differences can be resulted from the small number of data in this study.

All mares treated in this study showed a <0.5 ng/mL P4 concentration during the estrus (Table-2) and 2.80±0.59 ng/mL with a range of 1.9-3.6 ng/mL on 40-45 days post-mating (Table-3). The low concentration of P4 at estrus followed by a higher P4 concentration starting 4 days after the onset of estrus indicated ovulation followed by CL development [25]. The CL was detected rectally in the ovaries of mares on 21-30 days post-estrus.

Although all treated mares with PCL ovulated, unfortunately, the pregnancy rate was 54.5% (6/11) only. The pregnancy rate in this study was lower than those in Arabian mares (74%) [9], although the breeding in this study was performed using natural mating. The sperm concentration, total number of sperm, and percentage of progressively motile sperm in the ejaculate were higher in natural mating than in artificial insemination [26]. A low-quality ovum obtained from the restoration of the ovarian function following PCL may cause the pregnancy failure. A study reported that P4 concentration at the beginning of luteolysis in mares with PCL was lower than those in cycling mares [4], resulting in embryos with a lower quality grade, smaller diameter, and earlier embryo stage compared to normal embryos [27].

Embryo development can be hampered following improper progestin supply when the embryo reaches the uterus [21]. Adequate P4 concentrations are vital mediators of the appropriate embryo-maternal environment during early pre-implantation embryo development [28,29]. The 45.45% of mares may fail to become pregnant in this study because of inadequate P4 concentration during post-mating. All those mares have a P4 concentration of 1.9-3.6 ng/mL on 40-45 days. The endogenous P4 concentrations of >4.0 ng/mL are considered adequate to maintain pregnancy. Mares with P4 concentrations <4.0 ng/mL were at risk of pregnancy loss [20]. The high P4 concentrations were vital for inhibiting myometrium contraction [30] because the connection between the trophoblast layer of the allantochorion and the endometrium’s luminal epithelium was less stable before day 40 of pregnancy [31].

Here, mares’ pregnancy diagnosis was performed by transrectal palpation and confirmed using Doppler ultrasound scanning. Transrectal palpation accurately determined 40-45 days of mare pregnancy, based on the finding of a round-shaped amnion sac (6-10 cm in diameter) [32]. On Doppler ultrasound scanning, there were two groups of digital waves. The digital wave of 59-73 bpm was the uterine artery pulse and 181-210 bpm was the fetal heartbeat. The 1st time fetal heart beat could be monitored on day 24 of the pregnancy period [33] and can reach >150 bpm at the subsequent pregnancy periods [34]. Meanwhile, the lower digital wave was defined as a uterine artery pulse, slightly different between early and later pregnancy but not found in non-pregnant mares [35].

There are few pharmacological methods to improve the function of the CL to sustain the pregnancy of the mares [14]. The progestin injection [21] or human chorionic gonadotropin promised increased pregnancy rates and reduced pregnancy loss [15]. The demerits of this study are that it did not administer the addition of hormones to maintain the pregnancy. The injection of GnRH that was conducted before mating improved the ovulation rate. Its effects were only for a short time and theoretically would not improve CL function. Post-mating treatment to ensure P4 concentration adequacy in circulation should concern future PCL treatment of mares.

Conclusion

The intrauterine PGF2α treatment on racing mares with PCL restored estrous cycle, ovulation, and pregnancy after mating. However, the pregnancy rate was low (54.5%).

Authors’ Contributions

TGOP, LM, and IM: Conception and design of the study. TGOP, LM, HAH, NMRW, and TIR: Acquisition of data. IM, SM, SU, and RR: Analysis and interpretation of data. TGOP, LM, and RR: Drafted the manuscript. IM, SU, and TIR: Critical
review/revision. SU and SM: ELISA. All authors read and approved the final manuscript.

Acknowledgments

This research was supported by funding from the Laboratory of Veterinary Obstetrics, Universitas Airlangga, Indonesia (Grant number: 104/UN3.1.6/LOG/2020). The authors are also grateful to the owners of the horses from the stables in Mojokerto and Kenjeron that were used in this study. The authors also thank the owner horse in Trawas Stables and Kenjeron Stables, East Java, Indonesia.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Veterinary World remains neutral with regard to jurisdictional claims in published institutional affiliation.

References

30. Yin, Z., Li, Y., He, W., Li, D., Li, H., Yang, Y., Shen, B.,
