

Bioorganic & Medicinal Chemistry

THE OWNER OF THE OWNER

The Tetrahedron Journal for Research at the Interface of Oceanistry and Biology

Lifer or Chall CHEVRON WONG

Available ordere at ScienceDirect www.aciencederect.com Editor-in-Chief: Professor Chi-Huey Wong

Department of Chemistry, BCC 338, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA Facsimile: (1) 858 784 2409

American Regional Editor: Professor K. D. Janda, The Scripps Research Institute, Department of Chemistry, The Skaggs Institute for Chemical Biology, The Worm Institute of Research & Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA Fascimile: (1) 858 784 2595

Japanese Regional Editor: Professor Y. Hashimoto, Institute of Molecular & Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

Fascimile: (81) 3 5841 8495

European Regional Editor: Professor H. Waldmann, Department of Chemical Biology, Max-planck-Institut für Molekulare Physiologie, Otta-Hahn-Strasse 11, 44227 Dortmund, Germany Fascimile: (49) 231 133 2499

EXECUTIVE BOARD OF EDITORS FOR TETRAHEDRON PUBLICATIONS

Chairman: Professor H. Waldmann Editor Emeritus: Professor H. H. Wasserman

Professor D. L. Boger, Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA

Professor S. G. Davies, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK

Professor B. Ganem, Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA

Professor L. Ghosez, l'Institut Européen de Chimie et de Biologie (IECB) 33607 Pessac Cedex, France

Professor Lin Guo-Qiang, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

Professor Y. Hashimoto, Institute of Molecular & Cellular Biosciences, The University of Tokyo, III-Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan

Professor T. Hayashi, Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan

Professor K. Janda, Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA

Professor S. F. Martin, Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA

Professor W. B. Motherwell, Department of Chemistry, University College, 20 Gordon Street, London WC1H 0AJ, UK

Professor S. Neidle, The School of Pharmacy, Department of Pharmaceutical & Biological Chemistry, University of London, London WC1N 1AX, UK

Professor M. Shibasaki, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan **Professor R. J. K. Taylor,** Department of Chemistry, University of York, Heslington, York YO10 5DD, UK (Associate Editors, Dr. P. A. O'Brien and Dr. D. K. Smith)

Professor E. J. Thomas, Department of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL, UK (Associate Editor, Professor J. A. Joule)

Professor K. Tomioka, Graduate School of Pharmaceutical Sciences, Department of Synthetic Medicinal Chemistry, Kyoto University, Kyoto 606-8501, Japan

Professor H. Waldmann, Max-Planck-Institut für Molekulare, Physiologie, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany

Professor H. H. Wasserman, Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520 8107, USA

Professor R. M. Williams, Department of Chemistry, Colorado State University, Fort Collins, CO 80523

Professor C.-H. Wong, Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA

Professor J. Wood, Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872

Professor Y. Yamamoto, Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980-8578, Japan (Associate Editor, Professor M. Hirama)

Professor S. Z. Zard, Laboratoire de Synthèse Organique, Ecole Polytechnique, F-91128, Cedex, France

(Associate Editor, Dr. B. Sire)

BOARD OF CONSULTING EDITORS

P. S. Anderson, Wilmington, DE	A. R. Fersht, Cambridge	P. Krogsgaard-Larsen, Copenhagen	P. Seeberger, Zürich		
K-H. Altmann, Zürich	D. M. Floyd, Princeton, NJ	R. A. Lerner, La Jolla, CA	O. Seitz, Berlin		
P. G. Baraldi, Ferrara	G. I. Georg, Minneapolis, MN	H. Liu, Austin, TX	K. Shokat, San Francisco, CA		
C. F. Barbas, III, La Jolla, CA	A. Giannis, Leipzig	A. McKillop, Northumberland	R. Silverman, Evanston, IL		
J. K. Barton, Pasadena, CA	B. Giese, Basel	R. Metternich, Berlin	J. Stubbe, Cambridge, MA		
C. Bertozzi, Berkeley, CA	P. Gmeiner, Erlangen	S. Mignani, Vitry-sur-Seine	C. T. Supuran, Firenze		
R. C. Breslow, New York, NY	H. B. Gray, Pasadena, CA	L. A. Mitscher, Lawrence, KS	G. L. Verdine, Cambridge, MA		
T. C. Bruice, Santa Barbara, CA	G. L. Grunewald, Lawrence, KS	K. C. Nicolaou, La Jolla, CA	S. Walker, Cambridge, MA		
A. R. Chamberlin, Irvine, CA	P. Herrling, Basel	H. L. Pearce, Indianapolis, IN	C. T. Walsh, Boston, MA		
E. J. Corey, Cambridge, MA	D. Hilvert, Zürich	C. D. Poulter, Salt Lake City, UT	P. A. Wender, Stanford, CA		
B. Cravatt, La Jolla, CA	L. C. Hsieh-Wilson, Pasadena, CA	J. Rebek, Jr, La Jolla, CA	G. Whitesides, Cambridge, MA		
S. J. Danishefsky, New York, NY	W. L. Jorgensen, New Haven, CT	B. Samuelsson, Stockholm	R. V. Wolfenden, Chapel Hill, NC		
P. B. Dervan, Pasadena, CA	A. R. Katritzky, Gainesville, FL	J. Saunders, San Diego, CA			
A. Eschenmoser, Zürich	J. A. Katzenellenbogen, Urbana, IL	S. L. Schreiber, Cambridge, MA			
JM. Fang, Taipei	J. Kelly, La Jolla CA	P. G. Schultz, La Jolla, CA			

PUBLISHED TWICE MONTHLY

Orders, claims, and product enquiries: Please contact the Regional Sales Office nearest you. St. Louis: Elsevier, Customer Service Department, 11830 Westline Industrial Drive, St. Louis, MO 63146-3313, USA; phone: (877) 839 7126 [toll free within the USA]; (+1) (314) 453 7076 [outside the USA]; fax: (+1) (314) 523 5153; e-mail: JournalCustomerService-usa@elsevier.com. Amsterdam: Elsevier, Customer Service Department, PO Box 211, 1000 AE Amsterdam, The Netherlands; phone: (+31) (20) 4853457; fax: (+31) (20) 4853432; e-mail: JournalsCustomerServiceEMEA@elsevier.com. Tokyo: Elsevier, Customer Service Department, 4F Higashi-Azabu, 1-Chome Bldg., 1-9-15 Higashi-Azabu, Minato-ku, Tokyo 106-0044, Japan; phone: (+81) (3) 5561 5037; fax: (+81) (3) 5561 5047; e-mail: JournalsCustomerServiceJapan@ elsevier.com. Singapore: Elsevier, Customer Service Department, 3 Killiney Road, #08-01 Winsland House I, Singapore 239519; phone: (+65) 63490222; fax: (+65) 67331510; e-mail: JournalsCustomerService.apaC@elsevier.com.

Bioorganic & Medicinal Chemistry 17 (2009) 429-443

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Bioorganic & Medicinal Chemistry Vol. 17, No. 2, 2009

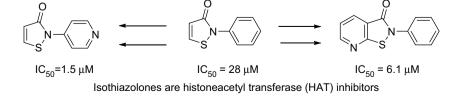
Contents

REVIEW

Current perspective of TACE inhibitors: A review Shirshendu DasGupta, Prashant R. Murumkar, Rajani Giridhar, Mange Ram Yadav*

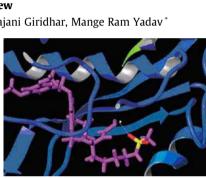
ARTICLES

Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones Frank J. Dekker^{*}, Massimo Ghizzoni, Nanette van der Meer, Rosalina Wisastra, Hidde J. Haisma


-Lvs-

| εNH₃⁺

Stephen Gorsuch, Vassilios Bavetsias, Martin G. Rowlands, G. Wynne Aherne, Paul Workman, Michael Jarman, Edward McDonald*


CI

pp 444-459

pp 460-466

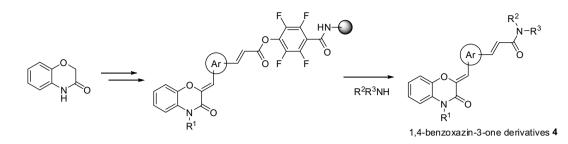
pp 467-474

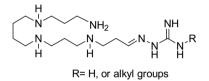
Histone acetyl transferase

Small molecule inhibitor

OMe

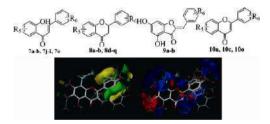
ò


έNH

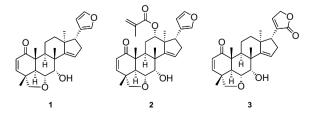


Synthesis of novel 1,4-benzoxazin-3-one derivatives as inhibitors against tyrosine kinases

Takahiro Honda^{*}, Takahiro Terao, Hiroyuki Aono, Masakazu Ban


Structure-activity relationships of lipopolysaccharide sequestration in guanylhydrazone-bearing lipopolyaminespp 709–715Wenyan Wu, Diptesh Sil, Michal L. Szostak, Subbalakshmi S. Malladi, Hemamali J. Warshakoon, Matthew R. Kimbrell,
Jens R. Cromer, Sunil A. David*pr 709–715

()+


pp 727-730

Synthesis, biological evaluation and quantitative structure-activities relationship of flavonoids as vasorelaxant agents pp 716–726 Xiaowu Dong, Tao Liu, Jingying Yan, Peng Wu, Jing Chen, Yongzhou Hu^{*}

A series of flavonoid derivatives were designed, synthesized as vasorelaxant agents. Some were found to possess potent vasorelaxant activity. CoMFA analysis was carried out, and a statistically reliable QSAR model (r^2 =0. 872 and q^2 =0. 496) was established.

Ceramicines B–D, new antiplasmodial limonoids from *Chisocheton ceramicus* **Khalit Mohamad, Yusuke Hirasawa, Marc Litaudon, Khalijah Awang, A. Hamid A. Hadi, Koichi Takeya, Wiwied Ekasari, Aty Widyawaruyanti, Noor Cholies Zaini, Hiroshi Morita^{*}**

437

COVER

Histone acetylation plays an important role in the regulation of gene transcription. Chromatin with a low histone acetylation level is condensed due to charge-charge interactions between the positively charged histones and the negatively charged DNA. Acetylation reduces the charge-charge interactions between the histones and the DNA and results in relaxation of the chromatin and activation of gene transcription. Recent discoveries indicate that multiple subtypes of histone acetyl transferases exist. Small molecule inhibitors of histone acetyl transferases provide tools for pharmacological studies and ultimately provide starting points for drug discovery. This issue reports studies by Dekker *et al.* and Gorsuch *et al.* on histone acetyl transferase inhibitors with an isothiazolones core structure. [Dekker, F. J.; Ghizzoni, M.; van der Meer, N.; Wisastra, R.; Haisma, H. J. *Bioorg. Med. Chem.* **2009**, *17*, 459; Gorsuch, S.; Bavetsias, V.; Rowlands, M. G.; Aherne, G. W.; Workman, P.; Jarman, M.; McDonald, E. *Bioorg. Med. Chem.* **2009**, *17*, 466.]

Available online at

www.sciencedirect.com

Indexed/Abstracted in: Beilstein, Biochemistry & Biophysics Citation Index, CANCERLIT, Chemical Abstracts, Chemistry Citation Index, Current Awareness in Biological Sciences/BIOBASE, Current Contents: Life Sciences, EMBASE/Excerpta Medica, MEDLINE, PASCAL, Research Alert, Science Citation Index, SciSearch, TOXFILE

ISSN 0968-0896

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Ceramicines B-D, new antiplasmodial limonoids from Chisocheton ceramicus

Khalit Mohamad ^{a,b}, Yusuke Hirasawa ^a, Marc Litaudon ^c, Khalijah Awang ^d, A. Hamid A. Hadi ^d, Koichi Takeya ^e, Wiwied Ekasari ^f, Aty Widyawaruyanti ^f, Noor Cholies Zaini ^f, Hiroshi Morita ^{a,*}

^a Faculty of Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo 142-8501, Japan

^b Department of Pharmacy, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia

^c Institut de chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette, France

^d Department of Chemistry, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia

^e Tokyo University of Pharmaceutical and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

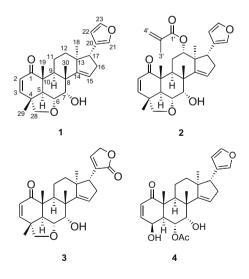
^f Faculty of Pharmacy, Airlangga University, Jalan Dharmawangsa Dalam, Surabaya 60286, Indonesia

ARTICLE INFO

Article history: Received 10 September 2008 Revised 15 November 2008 Accepted 18 November 2008 Available online 24 November 2008

Keywords: Limonoids Chisocheton ceramicus Ceramicines B-D Antiplasmodial activity

1. Introduction


Limonoids, highly oxidative unique secondary metabolites obtained from Meliaceae are produced by a unique biosynthetic route through tetranortriterpenoid nucleus.^{1,2} Insecticidal, insect antifeedant, antibacterial, antifungal, antimalarial, anticancer, and antiviral activities have been reported for many limonoids.³ Especially, malaria caused by parasites of the genus Plasmodium is one of the leading infectious diseases in many tropical and some temperate regions.⁴ The emergence of widespread chloroquine-resistant and multiple-drug-resistant strains of malaria parasites leads to the need for the development of new therapeutic agents against malaria.⁵

Recently, we have isolated cassiarin A with an unprecedented tricyclic skeleton and a potent antiplasmodial activity from the leaves of Cassia siamea.⁶ Previous investigations on limonoids from Meliaceae have led to the isolation of several unique tetranortriterpenoids.⁷ In continuation of our antiplasmodial research on Chisocheton ceramicus belonging to Meliaceae family, we have isolated three new limonoids, ceramicines B-D (1-3) together with ceramicine A (4),^{7b} which showed a moderate antiplasmodial activity. Herein, we report the structure elucidation and antiplasmodial activity of ceramicines B-D (1-3) from C. ceramicus.

ABSTRACT

Three new limonoids, ceramicines B-D (1-3), have been isolated from the bark of *Chisocheton ceramicus*. Structures and stereochemistry of 1-3 were fully elucidated and characterized by 2D NMR analysis. Ceramicines exhibited a moderate antiplasmodial activity.

© 2008 Elsevier Ltd. All rights reserved.

1.1. Structures of ceramicines B-D (1-3)

The crude ethanol extract of bark was partitioned between CHCl₃, n-BuOH, and water. Chromatographic purification of the chloroform soluble fraction by a silica gel column (hexane/EtOAc and toluene/EtOAc solvent system) led to isolation of three new limonoids, ceramicines B (1, 147.4 mg, 0.074% yield), C (2,

^{*} Corresponding author. Tel./fax: +81 3 5498 5778. E-mail address: moritah@hoshi.ac.jp (H. Morita).

^{0968-0896/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2008.11.048

44.4 mg, 0.022% yield), and D (3, 15.0 mg, 0.0075% yield), together with ceramicine A. $^{7\mathrm{b}}$

Ceramicine B {**1**, $[\alpha]_D^{20}$ +30 (*c* 1.0, CHCl₃)} was obtained as a colorless solid and was revealed to have the molecular formula C₂₆H₃₂O₄, by HRESITOFMS [*m*/*z* 409.2370 (M+H)⁺, Δ –0.9 mmu]. IR absorptions implied the presence of an α , β -unsaturated ketone (1669 cm⁻¹) and a hydroxyl (3535 cm⁻¹) groups. UV spectrum (219 nm) indicated the presence of an unsaturated carbonyl group. ¹H and ¹³C NMR data (Tables 1 and 2, respectively) revealed 26 carbon resonances due to one carbonyl, two sp² quaternary carbons, four sp³ quaternary carbons, six sp² methines, five sp³ methylenes, and four methyls. Among them, three sp³ carbons (δ_C 72.5, 73.8, and 79.8) and two sp² methines (δ_C 139.7 and 142.6) were ascribed to those bearing an oxygen atom.

Five partial structures **a** (from C-2 to C-3), **b** (from C-5 to C-7), **c** (from C-9, C-11 to C-12), d (from C-15 to C-17), and e (from C-22 to C-23) were deduced from ${}^{1}H{}^{-1}H$ COSY analysis of **1** in CDCl₃ (Fig. 1). The presence of an enone group in ring A was supported by HMBC correlations as shown in Figure 1. HMBC correlations for H-3 and H₃-19 of C-1 (δ_{C} 202.9), for H₃-29 of C-5 (δ_{C} 47.7), and for H-7, H₃-19, and H₃-30 of C-9 ($\delta_{\rm C}$ 35.9) gave rise to the connectivity of partial structures **a**, **b**, and **c** through C-4, C-8, and C-10 atoms. Connection between partial structures c and d could be assigned by HMBC correlations for H₃-18 of C-12 ($\delta_{\rm C}$ 33.1), C-13 ($\delta_{\rm C}$ 47.0), C-14 ($\delta_{\rm C}$ 159.8), and C-17 ($\delta_{\rm C}$ 51.9). The presence of a β -furyl ring at C-17 was also assigned by the HMBC correlations as shown in Figure 1. In addition, HMBC correlations for H-7 and H₂-28 of C-6 $(\delta_{\rm C}$ 73.8) indicated the presence of a tetrahydrofuran ring at C-4–C-6 and C-28. Thus, ceramicine B(1) was concluded to be a new limonoid possessing cyclopenta[*a*]phenanthren ring system with a β furyl ring at C-17 and a tetrahydrofuran ring.

The relative stereochemistry of **1** was elucidated by ROESY correlations as shown in computer-generated 3D drawing (Fig. 2). ROESY correlations of H-6/Hb-28, H₃-19, and H₃-30, H-7/H-15, and H-12/H-17 together with the ³*J* proton coupling constants (³*J*_{H-5/H-6} =12.4 Hz and ³*J*_{H-6/H-7} = 3.8 Hz) suggested that each of H-6, H-7, and H-17 adopts a β-configuration. Furthermore, the α configurations of H-5 and H-9 was indicated by ROESY correlation of H-5/H-9.

Table 1 1 H NMR data [δ_{H} (J, Hz)] of ceramicines B–D (1–3) in CDCl3 at 300 K

	1	2	3
2	5.83 (d, 9.6 Hz)	5.82 (d, 9.6 Hz)	5.73 (d, 9.6 Hz)
3 5	6.95 (d, 9.6 Hz)	6.95 (d, 9.6 Hz)	6.91 (d, 9.6 Hz)
	2.73 (d, 12.4 Hz)	2.69 (d, 12.4 Hz)	2.59 (d, 12.4 Hz)
6	4.28 (dd, 12.4, 3.8 Hz)	4.28 (dd, 12.4, 3.8 Hz)	4.19 (dd, 12.4, 3.8 Hz)
7	4.23 (d, 3.8 Hz)	4.25 (d, 3.8 Hz)	4.10 (d, 3.8 Hz)
9	2.40 m	2.61 m	2.26 m
11a	2.52 m	2.48 m	2.40 m
11b	1.80 m	2.29 m	1.69 m
12a	1.89 m	5.13 m	1.81 m
12b	1.60 m		1.60 m
15	5.59 br s	5.69 m	5.47 br s
16a	2.55 m	2.57 m	2.53 m
16b	2.40 m	2.43 m	2.25 m
17	2.85 m	3.04 m	2.76 m
18	0.82 s	1.08 s	0.79 s
19	1.17 s	1.16 s	1.07 s
21	7.25 s	7.14 s	
22	6.29 (d, 1.6 Hz)	6.23 (d, 1.6 Hz)	7.21 (dd, 1.8, 1.8 Hz)
23	7.37 (d, 1.6 Hz)	7.28 (d, 1.6 Hz)	4.77 (br s)
28a	3.63 (d, 7.3 Hz)	3.63 (d, 7.3 Hz)	3.54 (d, 7.3 Hz)
28b	3.79 (d, 7.3 Hz)	3.79 (d, 7.3 Hz)	3.69 (d, 7.3 Hz)
29	1.34 s	1.33 s	1.25 s
30	1.13 s	1.13 s	1.03 s
3′		1.76 s	
4′		5.86, 5.47 (s)	

Tabl	e

2

¹³C NMR data (δ_{C}) of ceramicines B–D (**1–3**) in CDCl₃ at 300 K

	1	2	3
1	202.9	202.4	203.3
2	130.2	130.0	129.8
3	151.0	151.9	151.2
4	41.9	41.8	41.7
5 6	47.7	47.6	47.4
	73.8	73.7	73.7
7	72.5	72.0	72.1
8	47.2	46.5	46.9
9	35.9	36.5	35.3
10	47.2	47.1	47.1
11	17.7	26.8	17.4
12	33.1	77.8	32.7
13	47.0	51.6	47.1
14	159.8	156.5	158.9
15	120.4	122.7	120.0
16	34.3	36.5	33.8
17	51.9	50.6	50.6
18	21.5	16.0	21.3
19	14.3	14.1	14.0
20	124.5	124.3	133.5
21	139.7	140.3	174.8
22	111.0	111.7	147.1
23	142.6	141.2	70.3
28	79.8	79.8	79.5
29	20.1	20.1	19.8
30	26.0	26.5	25.9
1′		167.1	
2′		136.4	
3′		18.0	
4′		125.9	

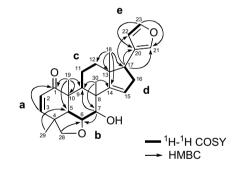


Figure 1. Selected 2D NMR correlations for ceramicine B (1).

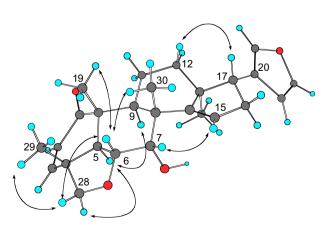


Figure 2. Selected ROESY correlations for ceramicine B (1).

HRESITOFMS data [m/z 515.2397 (M+Na)⁺, Δ –1.3 mmu] of ceramicine C {**2**, [α]_D²⁰ +47 (*c* 1.0, CHCl₃)} established the molecular

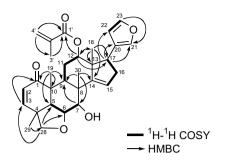


Figure 3. Selected 2D NMR correlations for ceramicine C (2).

formula to be $C_{30}H_{36}O_6$, which was larger than that of ceramicine B (1) by a $C_4H_4O_2$ unit. ¹H and ¹³C NMR data (Tables 1 and 2) of **2** were analogous to those of **1**, although H-12 (δ_H 5.13) and C-12 (δ_C 77.8) bearing an oxygen atom were observed for **2**. The presence of methacrylic acid (δ_H 1.76, 5.47, and 5.86; δ_C 18.0, 125.9, 136.4, and 167.1) at C-12 was confirmed by HMBC correlations for H₃-3' and H-12 of C-1' (δ_C 167.1) and H₂-4' of C-1' and C-3' (δ_C 18.0).

The gross structure of **2** was elucidated by 2D NMR (${}^{1}H{-}^{1}H$ COSY, HMQC, and HMBC) data shown in Figure 3. Analysis of ROESY spectrum (Fig. 4), suggested that the relative stereochemistry of H-12 and H-17 to be β through correlations among H-12, H-17, and H₃-30.

Ceramicine D (**3**), colorless amorphous solid, $[\alpha]_D^{20}$ +38 (*c* 1.0, CHCl₃), was shown to have the molecular formula of C₂₆H₃₂O₅ by HRESITOFMS [*m*/*z* 425.2306, (M+H)⁺, \varDelta –2.2 mmu], which was lar-

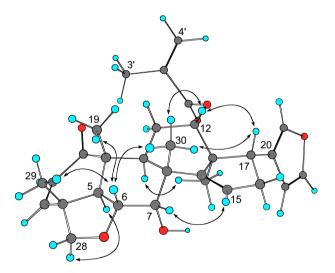


Figure 4. Selected ROESY correlations for ceramicine C (2).

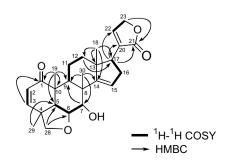


Figure 5. Selected 2D NMR correlations for ceramicine D (3).

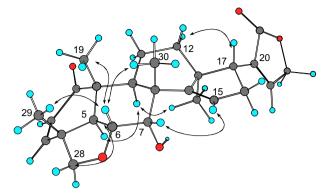


Figure 6. Selected ROESY correlations for ceramicine D (3).

ger than that of ceramicine B by 16 mmu. ¹H and ¹³C NMR data of **3** were analogous to those of ceramicine B, although the β -furyl ring signals for ceramicine B were lacking for **3**. The presence of an α , β -unsaturated- γ -lactone ring instead of the β -furyl ring at C-17 was deduced by the ¹H [δ_{H} 4.77 (br s, H-23) and 7.21 (dd, *J* = 1.8, 1.8 Hz, H-22)] and ¹³C [δ_{C} 133.5 (C-20), 174.8 (C-21), 147.1 (C-22), and 70.3 (C-23)] signals.^[8] HMBC correlations for H-17 of C-20, C-21, and C-22 indicated the presence of β -substituted- γ -lactone ring (Fig. 5). The gross structure of **3** was elucidated by 2D NMR (¹H–¹H COSY, HMQC, and HMBC) data, and the relative stereo-chemistry of **3** was assigned as the same as that of ceramicine B by ROESY correlations shown in Figure 6.

1.2. Antiplasmodial activity

Malaria caused by parasites of the genus Plasmodium is one of the leading infectious diseases in many tropical and some temperate regions.⁴ The emergence of widespread chloroquine-resistant and multiple-drug-resistant strains of malaria parasites leads to the need for the development of new therapeutic agents against malaria.⁵ Ceramicine B (1) showed a potent in vitro antiplasmodial activity against Plasmodium falciparum 3D7 (IC₅₀ 1: 0.23 µg/ml),⁹ whereas ceramicines C (2) and D (3) did a moderate activity and ceramicine A (4) did a weak activity (IC₅₀ 2, 2.38 μ g/ml; 3, 2.15 µg/ml; 4, 44.22 µg/ml). Ceramicines B-D (1-3) showed a weak cytotoxicity on P388 cells (IC_{50} 15 µg/ml for 1; 5.5 µg/ml for **2**; 27 μ g/ml for **3**). These compounds belong to two groups with a tetrahydrofuran ring at C-4-C-6 and C-28 and without this function. In comparison of antiplasmodial activity among these compounds, ceramicines B (1)-D (3) with a tetrahydrofuran ring showed a potent activity, whereas ceramicine A (4) without this function exhibited a relatively weak activity.

2. Experimental

2.1. General methods

¹H and 2D NMR spectra were recorded on a 400 MHz spectrometers at 300K, while ¹³C NMR spectra were measured on a 100 MHz spectrometer. Each NMR sample of ceramicines B–D (**1–3**) were prepared by dissolving 3.0 mg in 250 µl of CDCl₃ in 2.5 mm micro cells (Shigemi Co., Ltd) and chemical shifts were reported using residual CDCl₃ ($\delta_{\rm H}$ 7.21 and $\delta_{\rm C}$ 77.0) as an internal standard. Standard pulse sequences were employed for the 2D NMR experiments. ¹H–¹H COSY, HOHAHA, and ROESY spectra were measured with spectral widths of both dimensions of 4800 Hz, and 32 scans with two dummy scans were accumulated into 1 K data points for each of 256 t_1 increments. ROESY and HOHAHA spectra in the phase sensitive mode were measured with a mixing time of 800 and 30 ms, respectively. For HMQC spectra in the phase sensitive mode and HMBC spectra, a total of 256 increments of 1 K data points were collected. For HMBC spectra with *Z*-axis PFG, a 50 ms delay time was used for long-range C–H coupling. Zero-filling to 1K for F_1 and multiplication with squared cosine-bell windows shifted in both dimensions were performed prior to 2D Fourier transformation.

2.2. Material

The barks of *C. ceramicus* were collected at Pahang, Malaysia in 1996. The botanical identification was made by Mr. Teo Leong Eng, Faculty of Science, University of Malaya. Voucher specimens are deposited in the Herbarium of Chemistry Department, University of Malaya.

2.3. Extraction and isolation

The dried ground barks of *C. ceramicus* (200 g) were extracted successively with ethanol and the extract (10.5 g) was partitioned with 10% aq MeOH and CHCl₃. The CHCl₃-soluble materials were subjected to a silica gel column (hexane/EtOAc, $1:0 \rightarrow 0:1$), in which a fraction eluted with hexane/EtOAc (7:3) was further purified on a silica gel column with toluene/EtOAc (4:1) to afford ceramicine B (**1**, 147.4 mg, 0.074% yield) as colorless solids. The fraction eluted with hexane/EtOAc (3:2) was purified on a silica gel column with toluene/EtOAc (4:1) to obtain ceramicine C (**2**, 44.4 mg, 0.022% yield). The fraction eluted with hexane/EtOAc (2:3) was purified on a silica gel column with toluene/EtOAc (3:2) to give ceramicine D (**3**, 15 mg, 0.0075% yield).

2.3.1. Ceramicine B (1)

Colorless solid; $[\alpha]_D^{20}$ +30 (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3535, 3457, 2969, 2927, 2862, 1720, 1669, 1457, 1387, and 1247 cm⁻¹; UV (MeOH) λ_{max} 219 (ε 9300) nm; CD (MeOH) λ_{max} 340 (θ –3300) and 220 nm (θ +30,800); ¹H and ¹³C NMR data (Tables 1 and 2); HRESITOFMS *m/z* 409.2370 (M+H; calcd for C₂₆H₃₂O₄, 409.2379).

2.3.2. Ceramicine C (2)

Colorless solid; $[\alpha]_D^{20}$ +47 (*c* 1.0, CHCl₃); IR (KBr) v_{max} 3448, 2932, 1711, 1677, 1451, 1389, 1248, and 1160 cm⁻¹; UV (MeOH) λ_{max} 219 (ε 9400) nm; CD (MeOH) λ_{max} 334 (θ –2700) and 220 nm (θ +29600); ¹H and ¹³C NMR data (Tables 1 and 2); HRESITOFMS *m*/ *z* 515.2397 (M+Na; calcd for C₃₀H₃₆O₆Na, 515.2410).

2.3.3. Ceramicine D (3)

Colorless solid; $[\alpha]_D^{20}$ +38 (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3435, 2929, 1750, 1677, 1459, 1388, and 1249 cm⁻¹; UV (MeOH) λ_{max} 222 (ε 10,000) nm; CD (MeOH) λ_{max} 338 (θ –2100) and 223 nm (θ +17,900); ¹H and ¹³C NMR data (Tables 1 and 2); HRESITOFMS *m*/*z* 425.2306 (M+H; calcd for C₂₆H₃₂O₅, 425.2328).

2.4. Antiplasmodial activity

Human malaria parasites were cultured according to the method by Trager et al.⁹ The antimalarial activity of the isolated compounds was determined by the procedure described by Budimulja et al.¹⁰ In brief, Stock solution of the samples were prepared in DMSO (final DMSO concentrations of <0.5%) and were diluted to the required concentration with complete medium (RPMI-1640 supplemented with 10% human plasma, 25 mM Hepes and 25 mM NaHCO₃) until the final concentration of samples at well culture plate are: 10, 1, 0.1, 0.01, 0.001 µg/ml. The malarial parasite *P. falciparum* 3D7 clone was propagated in a 24-well culture plate in the presence of a wide range of concentrations of each compound. The growth of the parasite was monitored by making a blood smear fixed with MeOH and stained with Geimsa stain. The antimalarial activity of each compound was expressed as an IC_{50} value, defined as the concentration of the compound causing 50% inhibition of parasite growth relative to an untreated control.

The percentage of growth inhibition was expressed according to following equation: Growth inhibition% = $100 - [(\text{test parasita-emia/control parasitemia}) \times 100$. Chloroqine: IC₅₀ = $0.0061 \mu \text{g/ml}$.

2.5. Cytotoxicity

P-388. murine leukemia cells were maintained in RPMI-1640 medium supplemented with 5% fetal calf serum and kanamycin (100 µg/ml). The cells (3×10^3 cells/well) were cultured in Corning disposable 96-well plates containing 100 µl of growth medium per well and were incubated at 37 °C in a humidified atmosphere of 5% CO₂. Various drug concentrations (10 µl) were added to the cultures at day one after the transplantation. At day three, 20 µl MTT solution (5 mg/ml) per well was added to each cultured medium. After a further 4 h of incubation, 100 ml of 10% SDS–0.01 N HCl solution was added to each well and the formazan crystals in each well were dissolved by stirring with a pipette. The optical density measurements were made using a micropipette reader (Tohso MPR-A4i) with a two wavelength system (550 and 700 nm). In all experiments, three replicate wells were used to determine each point.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and grants from Tokyo Biochemical Foundation, The Open Research Center Project in Hoshi university, ScienceFund 12-02-03-2034, Ministry of Science and Technology, Malaysia, Scientific grant from Institut de chimie des Substances Naturelles, CNRS, France, and Assessment Service Unit, Faculty of Pharmacy, Airlangga University.

References and notes

- (a) Taylor, D. A. H.. In Herz, W., Grisebach, H., Kirby, G. W., Eds.; Progress in the Chemistry of Organic Natural Products; Springer: New York, 1984; Vol. 45, (b) Mulholland, D.; Parel, A.; Coombes, P. H. *Curr. Org. Chem.* 2000, 4, 1011.
- (a) Yin, S.; Wang, X. N.; Fan, C. Q.; Liao, S. G.; Yue, J. M. Org. Lett. **2007**, *9*, 2353;
 (b) Zhang, C. R.; Yang, S. P.; Liao, S. G.; Fan, C. Q.; Wu, Y.; Yue, J. M. Org. Lett. **2007**, *9*, 3383;
 (c) Di, Y. T.; He, H. P.; Liu, H. Y.; Yi, P.; Zhang, Z.; Ren, Y. L.; Wang, J. S.; Sun, Q. Y.; Yang, F. M.; Fang, X.; Li, S. L.; Zhu, H. J.; Hao, X. J. J. Nat. Prod. **2007**, *70*, 1352.
- (a) Zhang, H.; Wang, X.; Chen, F.; Androulakis, X. M.; Wargovich, M. J. *Phytother. Res.* **2007**, *21*, 731; (b) Roy, A.; Saraf, S. *Biol. Pharm. Bull.* **2006**, *29*, 191; (c) Bray, D. H.; Warhurst, D. C.; Connolly, J. D.; O'Neill, M. J.; Phillipson, J. D. *Phytother. Res.* **1990**, *4*, 29.
- Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. Angew. Chem. Int. Ed. 2003, 42, 5274.
- (a) Gelb, M. H.; Hol, W. G. Science 2002, 297, 343; (b) De Smet, P. A. G. N. Drugs 1997, 54, 801.
- Morita, H.; Oshimi, S.; Hirasawa, Y.; Koyama, K.; Honda, T.; Ekasari, W.; Indrayanto, G.; Zaini, N. C. Org. Lett. 2007, 9, 3691.
- (a) Awang, K.; Lim, C. S.; Mohamad, K.; Morita, H.; Hirasawa, Y.; Takeya, K.; Thoison, O.; Hadi, A. H. A. *Bioorg. Med. Chem.* **2007**, *15*, 5997; (b) Mohamad, K.; Hirasawa, Y.; Lim, C. S.; Awang, K.; Hadi, A. H. A.; Takeya, K.; Morita, H. *Tetrahedron Lett.* **2008**, *49*, 4276.
- Krief, S.; Martin, M.-T.; Grellier, P.; Kasenene, J.; Sevenet, T. Antimicrob. Agents Chemother. 2004, 3196.
- 9. Trager, W.; Jensen, J. B. Science 1976, 193, 673.
- Budimulja, A. S.; Syafruddin, T. P.; Wilairat, P.; Marzuki, S. Mol. Biochem. Parasitol. 1997, 84, 137.

	C 10					also	developed by scimago		ISTITUTIONS RANKINGS
	SJR	Scimago Journal & Country		rnal Rankings	Country Rankings	Viz Tools Help	Enter Journ	al Title, ISSN or Publisher	Name Q
	B	ioorganic and M	edicinal C	hemistry	y				
Bioorganic and Medicinal Chemistry		COUNTRY		SUBJECT AREA A			PUBLISHER	H-INDEX	
Q2 Drug Discovery		United Kingdom	•	Biochemis	ochemistry Biology Medicine	cular Biology	Elsevier Ltd.	171	
SJR 2021	•	PUBLICATION TYPE		- Drug Disco	y, Toxicology and Pl overy sutical Science	harmaceutics	COVERAGE	INFORMATION	
0.6 powered by scimagojr.com	1	Journals		09680896, 1464	43391		1993-2021	Homepage How to publish this journal Contact	i in
Scopus Preview			Q	Author Se	earch Sour	rces ⑦	<u>命</u> Cre	ate account	Sign in
Source details							Feed	lback 🗲 Compa	are sources >
Bioorganic and Medicina Scopus coverage years: from 1993 to		ry					CiteScore 6.5	2021	0
Publisher: Elsevier ISSN: 0968-0896 E-ISSN: 1464-3 Subject area: (Pharmacology, Toxicology and		naceutical Science) (Chemis	stry: Organic Che	mistry			sjr 2021 0.598		0
(Pharmacology, Toxicology and (Biochemistry, Genetics and M (Biochemistry, Genetics and M	olecular Biology: Clini	cal Biochemistry Biochem			: Biochemistry) iiology: Molecular	Medicine	SNIP 2021 0.903		0
Source type: Journal View all documents > Set document ale		source list Source Home							
CiteScore CiteScore rank & trend	Scopus cont	ent coverage							
i Improved CiteScore methodo CiteScore 2021 counts the citations papers published in 2018-2021, and	eceived in 2018-20								×
CiteScore 2021	1	CiteScoreTracke	r 2022 🛈						
$6.5 = \frac{12,621 \text{ Citations 2018}}{1,932 \text{ Documents 2018}}$ Calculated on 05 May, 2022		5.0 =	Citations to c ocuments to Updated monthly						
CiteScore rank 2021 ①	Percentile								
Category Rank Pharmacology, Toxicology and Pharmaceutics #35/171 Pharmaceutical Science		*							
Chemistry Organic Chemistry #43/192	77th								
Pharmacology, Toxicology and Pharmaceutics #41/154 — Drug Discovery	73rd								
Biochemistry, Genetics and Molecular Biology #139/425 — Biochemistry	67th								
Biochemistry, Genetics and Molecular Biology #39/115 — Clinical Biochemistry	66th								
Biochemistry, Genetics and Molecular Biology #65/167 — Molecular Medicine	61st								
Biochemistry, Genetics and Molecular Biology #164/386 — Molecular Biology	57 th	×							