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Cassiarins C—E, Antiplasmodial Alkaloids from the Flowers of Cassia siamea

Shiori Oshimi,” Jun Deguchi,” Yusuke Hirasawa,” Wiwied Ekasari,* Aty Widyawaruyanti,* Tutik Sri Wahyuni,*

Noor Cholies Zaini,* Osamu Shirota,® and Hiroshi Morita*"

Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa, Tokyo 142-8501, Japan, Faculty of Pharmacy, Airlangga
University, Jalan Dharmawangsa Dalam, Surabaya 60286, Indonesia, and Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima

Bunri University, 1314-1 Shido, Sanuki City, Kagawa 769-2193, Japan

Received July 13, 2009

Three new alkaloids, cassiarins C—E (1—3), and a new chromone, 10,11-dihydroanhydrobarakol (4), which showed
moderate antiplasmodial activity against Plasmodium falciparum 3D7, were isolated from flowers of Cassia siamea,
and the structures of 1—4 were elucidated by 2D NMR analysis and chemical transformation. Cassiarin D (2) was a
dimeric compound consisting of 5-acetonyl-7-hydroxy-2-methylchromone and cassiarin C (1), and cassiarin E (3) was

a dimer of cassiarins A and C (1).

Cassia siamea Lam. (Leguminosae) has been used widely in
traditional medicine, particularly for treatment of periodic fever and
malaria in Indonesia.! Earlier we isolated cassiarin A, an alkaloid
with an unprecedented tricyclic skeleton and potent antiplasmodial
activity, and chrobisiamone A,’ a bischromone, from leaves of C.
siamea. We then reported an efficient total synthesis of cassiarin
A,* which also showed in vivo antimalarial activity.’ Our continuing
search for bioactive constituents of C. siamea has resulted in the
isolation of three additional new alkaloids, cassiarins C—E (1—3),
and a new chromone, 10,11-dihydroanhydrobarakol (4), from the
flowers of C. siamea. Also isolated were cassiarin A, anhydrobara-
kol (5),° and 5-acetonyl-7-hydroxy-2-methylchromone (6).” This
paper describes the isolation and structure elucidation of 1—4 and
their antiplasmodial activity against Plasmodium falciparum 3D7.

Cassiarin C (1), [o]p?® —70 (c 0.3, MeOH), had the molecular
formula C,3H;3NO,, which was determined by HRESITOFMS [m/z
216.1025, M + H)*, A +1.7 mmu]. IR absorptions implied the
presence of hydroxy and/or amino (3401 cm™!) functionalities. "H
and '’C NMR data are presented in Table 1. The *C NMR spectrum
revealed 13 signals due to six sp* quaternary carbons, three sp?
methines, one sp’ methine, one sp® methylene, and two methyl
groups. Among them, four quaternary carbons (dc 149.9, 153.6,
156.9, and 159.1) and one sp® methine (d¢ 73.7) were ascribed to
those bearing nitrogen or oxygen atoms. Two partial structures,

* To whom correspondence should be addressed. Tel: (03)5498-5778.
Fax: (03)5498-5778. E-mail: moritah@hoshi.ac.jp.

" Hoshi University.

* Airlangga University.

¥ Tokushima Bunri University.

10.1021/np9004213 CCC: $40.75

C-10 to C-12 and C-9 to C-3, were deduced from analysis of the
'H—'H COSY spectrum, which included a long-range coupling
from Hs-12 to H-10 of 1. The HMBC correlations of H-10 to C-4a
(0¢c 110.6) and C-5 (d¢ 139.1) and of Hy-3 to C-4 (¢ 153.6) and
C-4a indicated connectivity of two partial structures through a
nitrogen and C-4 atoms. Connection between the partial structure
and a benzene ring was determined by a HMBC correlation between
H-10 and C-6 (6¢ 100.0). The presence of an ether linkage between
C-2 (Oc 73.7) and C-8a (d¢ 156.9) to form a dihydropyran ring
was also evident. Thus, cassiarin C (1) was concluded to be a 2,3-
dihydrocassiarin A.

Cassiarin D (2), [a]p®® —10 (c 0.1, MeOH), had the molecular
formula CycH3NOg (by HRESITOFMS). IR absorptions implied
the presence of hydroxy and/or amino (3673 cm™') and carbonyl
(1713 and 1632 cm™') functionalities. '"H and '*C NMR data are
presented in Table 2. The 3C NMR spectrum revealed 26 signals
due to two carbonyl carbons, 11 sp? quaternary carbons, one sp’
quaternary carbon, three sp> methylenes, six sp® methines, and three
methyl groups. Among them, 10 quaternary carbons (d¢ 78.9, 152.4,
152.5, 154.9, 160.1, 162.5, 162.9, 163.1, 178.4, and 204.6) were
ascribed to those bearing nitrogen or oxygen atoms. The gross
structure of 2 consisted of two units, a chromone, and cassiarin C,
as deduced from extensive analyses of the two-dimensional NMR
data, including the "H—"H COSY and HMBC spectra in pyridine-
ds. The presence of an acetonyl group at C-5 was supported by
HMBC correlations of H3-13 (0y 2.37) to C-11 (d¢ 49.8) and C-12
(Oc 204.6) and Hy-11 (O 4.37) to C-5 (¢ 139.2), C-6 (O¢c 119.4),
and C-10 (6¢ 115.1). HMBC correlations of H,-14 (dy 2.83 and
2.96) to C-2 (¢ 163.1), C-2" (6¢ 78.9), C-3 (d¢ 114.0), and C-3’
(O¢ 42.3) and those of H3-9” (0y 1.42) to C-14 (¢ 42.9), C-2’, and
C-3” indicated connectivity of two units through C-14 and C-2".
Thus, cassiarin D (2) was concluded to be a unique dimeric
compound consisting of 5-acetonyl-7-hydroxy-2-methylchromone?
and cassiarin C (1).

Cassiarin E (3), [a]p?® —20 (c 0.3, MeOH), had the molecular
formula CycH»N,O4 (by HRESITOEMS). IR absorptions implied
the presence of hydroxy and/or amino (3743 cm™') and carbonyl
(1622 cm™") functionalities. The gross structure of 3 was elucidated
by analyses of 2D NMR data including '"H—'H COSY, HOHAHA,
HMQC, and HMBC spectra in pyridine-ds (Figure S3). Each pair
of observed 'H and '*C NMR signals seemed to be due to each
half moiety of a dimeric compound of cassiarin A.> Methylene
signals (g 2.79 and 2.90; Oc 43.1) were observed in place of a
methyl signal (C-12) in cassiarin A. Methylene signals (dy 3.38
and 3.52; O¢ 42.3) were observed as in the case of chrobisiamone
A2 The connection between the two units, C-9 to C-2’, was
provided by HMBC correlations of H-9 to C-2" (d¢ 79.1) and C-3’

© 2009 American Chemical Society and American Society of Pharmacognosy
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Table 1. 'H NMR Data [0y (J, Hz)] and '*C NMR Data [dc]
for Cassiarin C (1) and 10,11-Dihydroanhydrobarakol (4) in
CD;OD at 300 K“

1 4
position On ¢ On ¢

2 4.49 (1H, m) 73.7 165.3
3a 3.06 (1H, dd, 37.8  6.04 (1H, d, 0.6) 110.0

16.8, 10.9)
3b 3.13 (1H, dd,

16.8, 3.2)
4 153.6 160.2°
4a 110.6 111.8
5 139.1 143.0
6 6.57 (1H, d, 2.0) 100.0 6.70 (1H, d, 2.5) 118.1
7 159.1 180.5
8 6.48 (1H, d, 2.0) 103.1 6.71 (1H, d, 2.5) 110.9
8a 156.9 161.6°
9 1.56 (3H, d, 6.0) 19.9 2.34 (3H, d, 0.6) 18.4
10a 7.20 (1H, s) 115.6  3.05 (1H, dd, 12.4, 7.6) 43.9
10b 3.51 (1H, dd, 12.4, 4.4)
11 149.9  4.00 (1H, m) 68.2
12 253GHs) 221 122 GH, d, 6.4) 22

“¢ in ppm. * Interchangeable.

Table 2. 'H NMR Data [0y (J, Hz)] and *C NMR Data [d¢] of
Cassiarins D and E (2 and 3) in Pyridine-ds at 300 K“

2 3

position On Oc Oy Oc
2 163.1 158.0
3 6.24 (1H, s) 1140 6.44 (1H, 5) 110.0
4 178.4 150.7
4a 112.9
5 139.2 139.2
6 7.02 (1H, d, 1.5) 119.4 6.91 (1H, s) 101.6
7 162.9 162.2
8 7.04 (1H, d, 1.5) 102.7 6.91 (1H, s) 100.0
8a 155.9
9a 160.1 2.79 (1H, d, 14.2) 43.1
9b 2.90 (1H, d, 14.2)
10 115.1 6.84 (1H, s) 113.3
11 437 H, s) 49.8 153.9
12 204.6 2.50 (3H, s) 24.6
13 2.37 (3H, s) 30.1
14a 2.83 (1H, d, 14.2) 429
14b 2.96 (1H, d, 14.2)
2 78.9 79.1
3’a 3.32 (1H, d, 16.6) 42.3 3.38 (1H, d, 16.6) 42.3
3’b 3.42 (1H, d, 16.6) 3.52 (1H, d, 16.6)
4’ 152.5 152.7
4a 110.3 110.4
5 139.0 139.1
6 702 (1H,d, 1.0)  101.0  7.02 (1H, d, 2.0)  100.9
7 162.5 162.6
8’ 6.98 (1H, d, 1.0) 103.8 7.04 (1H, d, 2.0) 103.8
8a 154.9 155.2
9 1.42 (3H, s) 25.1 1.54 (3H, s) 25.2
10 7.17 (1H, brs) 115.8 7.19 (1H, s) 115.7
11 152.4 152.5
12 2.61 (3H, s) 24.4 2.62 (3H, s) 24.5
“¢ in ppm.

(Oc 42.3), and H3-9" (Oy 1.54) to C-9 and C-3". Thus, the gross
structure of cassiarin E (3) was assigned to be a unique dimeric
compound consisting of cassiarin A and cassiarin C (1).
Compound 4, 10,11-dihydroanhydrobarakol, [o]p* 447 (¢ 1.0,
MeOH), had the molecular formula C;3H;,O3, which was deter-
mined by HRESITOFMS. The IR spectrum implied the presence
of a carbonyl group (1652 cm™'). 'H and '*C NMR data are
presented in Table 1. The '3C NMR spectrum revealed 13 carbon
signals due to one carbonyl carbon, five sp? quaternary carbons,
three sp? methines, one sp* methine, one sp® methylene, and two
methyl groups. Among them, four quaternary carbons (¢ 160.2,
161.6, 165.3, and 180.5) and one sp® methine (dc 68.2) were

Notes

ascribed to those bearing an oxygen atom. Two partial structures,
C-10 to C-12, and C-9 to C-2 and C-3, were deduced from '"H—'H
COSY analysis of 4 in CD;0D. Connectivity of partial structures
through an oxygen and C-4 atoms in the tricyclic skeleton was
supported by HMBC correlations of H-3, H-6, H-8, and H-10 to
C-4a (O¢c 111.8). Connection between partial structure and the
dienone ring could be assigned by a HMBC correlation of H-10 to
C-6 (Oc 118.1). In addition, the presence of an ether linkage between
C-2 (6c 165.3) and C-8a to form a pyran ring was also indicated.

A plausible biogenetic pathway for cassiarins C—E (1—3) and
10,11-dihydroanhydrobarakol (4) was proposed as shown in Scheme
1, Supporting Information. Cassiarin C (1) could be derived through
an imine intermediate of 2,3-dihydro-5-acetonyl-7-hydroxy-2-
methylchromone followed by cyclization with the acetonyl group
as shown in Scheme 1, whereas 10,11-dihydroanhydrobarakol (4)
might be produced by way of anhydrobarakol (5) from 5-acetonyl-
7-hydroxy-2-methylchromone (6). On the other hand, cassiarins D
and E (2 and 3) could be derived by way of chrobisiamone A from
5-acetonyl-7-hydroxy-2-methylchromone (6), as shown in Scheme
1. Treatment of cassiarin D (2) with ammonium acetate as the
nitrogen source caused ring cyclization, giving cassiarin E (3) in
63% yield. This biomimetic transformation supports the biogenetic
pathway proposed for cassiarins D and E.

Cassiarins C—E (1—3) and 10,11-dihydroanhydrobarakol (4)
showed moderate in vitro antiplasmodial activity against Plasmo-
dium falciparum 3D7 (ICso 1: 24.2 uM; 2: 3.6 uM; 3: 7.3 uM; 4:
2.3 uM) and no cytotoxicity against HL-60 (human blood premy-
elocytic leukemia) cells (ICsy >100 uM for 1—4). Anhydrobarakol
(5)° and 5-acetonyl-7-hydroxy-2-methylchromone (6)” also showed
moderate antiplasmodial activity (ICsy 5: 4.7 uM; 6: 8.6 uM) and
no cytotoxicity against HL-60 cells (ICsy >100 uM for 5§ and 6).
Dimeric-type compounds such as cassiarins D (2) and E (3) were
less active than cassiarin A (ICso 0.023 uM), although they
contained the cassiarin A-type skeleton.? 10,11-Dihydroanhy-
drobarakol (4) showed activity similar to that of anhydrobarakol

(3).

Experimental Section

General Experimental Procedures. Optical rotations were measured
on a JASCO DIP-1000 automatic digital polarimeter. UV spectra were
obtained on an Ultrospec 2100 pro spectrophotometer, and IR spectra
were recorded on a JASCO FT/IR-4100 spectrophotometer. High-
resolution ESIMS were obtained on a LTQ Orbitrap XL (Thermo
Scientific). 'H and 2D NMR spectra were recorded on Bruker AV 400
and Inova 500 spectrometers, and chemical shifts were referenced to
the residual solvent peaks (dy 3.31 and Oc 49.0 for methanol-ds and
On 7.71 and d¢ 135.5 for pyridine-ds). Standard pulse sequences were
employed for the 2D NMR experiments. 'H—'H COSY, HOHAHA,
and NOESY spectra were measured with spectral widths of both
dimensions of 4800 Hz, and 32 scans with two dummy scans were
accumulated into 1K data points for each of 256 #; increments. NOESY
spectra in the phase-sensitive mode were measured with a mixing time
of 800 ms. For HMQC spectra in the phase-sensitive mode and HMBC
spectra, a total of 256 increments of 1K data points were collected.
For HMBC spectra with Z-axis PFG, a 50 ms delay time was used for
long-range C—H coupling. Zero-filling to 1K for /| and multiplication
with squared cosine-bell windows shifted in both dimensions were
performed prior to 2D Fourier transformation.

Material. Flowers of C. siamea were collected at Purwodadi
Botanical Garden in 2007. The botanical identification was made by
Ms. Sri Wuryanti, Purwodadi Botanical Garden, Indonesia. A voucher
specimen (no. PU080306) has been deposited at Purwodadi Botanical
Garden, Pasuruan, Indonesia.

Extraction and Isolation. Dried flowers of C. siamea (1.0 kg) were
extracted with MeOH, and the extract was partitioned between CHCl;
and H,O. CHCl;-soluble materials were subjected to a silica gel column
(CHCI3/MeOH, 1:0 — 0:1) to afford cassiarin A (0.04%),> anhy-
drobarakol (0.006%),% and 5-acetonyl-7-hydroxy-2-methylchromone
(0.007%).” A fraction eluted by CHCI3/MeOH (30:1) was further
separated on an ODS column (MeOH/H,O, 0:1 — 1:0) and on a silica
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gel column (CHCl3/MeOH, 1:0 — 0:1) to afford cassiarin C (1,
0.00007%). A fraction eluted by CHCI;/MeOH (25:1) was further
purified on a silica gel column (CHCI; saturated with NHs/MeOH, 1:0
— 0:1) to afford 10,11-dihydroanhydrobarakol (4, 0.00050%), and a
fraction eluted by CHCl;/MeOH (20:1) was dissolved in MeOH and
then centrifuged to afford cassiarin D (2, 0.0013%). The CHCl;/MeOH
(9:1)-soluble fraction was separated on a silica gel column (CHCl;
saturated with NH3/MeOH, 1:0 — 0:1) to afford cassiarin E (3,
0.00078%).

Cassiarin C (1): brown solid; [a]*°s —70 (c 0.3, MeOH); IR (KBr)
Vmax 3401, 2924, and 1618 cm™'; UV (MeOH) Ana 218 (¢ 16 000),
243 (21 000), 289 (sh, 4300), and 330 (4000) nm (e 13 000); 'H and
BC NMR data (Tables 1 and 2); ESIMS m/z 216 M + H)*;
HRESITOFMS m/z 216.1025 [(M + H)™] (caled for C;3HNO,,
216.1008).

Cassiarin D (2): brown solid; [a]*’s —10 (¢ 0.1, MeOH); IR (KBr)
Vmax 3673, 2992, 1713, 1632, and 1588 cm™;UV (MeOH) Ay 243 (€
24 000), 298 (6000), and 330 (3000) nm (e 2400); 'H and '3C NMR,
see Tables 1 and 2; ESIMS m/z 446 (M + H)*; HRESITOFMS m/z
446.1604 [(M + H)'] (caled for Co6Hp4NOg, 446.1611).

Cassiarin E (3): brown solid; [0]*°, —20 (¢ 0.3, MeOH); IR (KBr)
Vmax 3743, 2986, and 1622 cm™!; UV (MeOH) Anay 219 (¢ 10 000),
243 (11 600), and 338 (2400) nm; 'H and '*C NMR, see Tables 1 and
2; ESIMS m/z 427 (M + H)"; HRESITOFMS m/z 427.1648 [(M +
H)+] (calcd for C26H23N204, 427]658)

10,11-Dihydroanhydrobarakol (4): brown solid; [o]*’p +47 (¢ 1.0,
MeOH); IR (KBr) vpay 2924, 1652, and 1589 cm™'; UV (MeOH) A,.x
210 (e 11 200), 242 (8600), 250 (8500), and 290 (6000) nm; 'H and
13C NMR, see Tables 1 and 2; ESIMS m/z 217 (M + H)"; HRES-
ITOFMS m/z 217.0859 [(M + H)™] (caled for C;3H 303, 217.0862).

Conversion of Cassiarin D (2) to Cassiarin E (3). Ammonium
acetate (1.0 mg) was added to a solution of cassiarin D (2, 1.0 mg) in
AcOH (0.2 mL), and the mixture was kept at 60 °C for 24 h. After
evaporation, the residue was applied to a silica gel column (CHCls/
MeOH, 9:1) to give a compound (0.6 mg) whose spectroscopic data
and [a]p value were identical to those of natural cassiarin E (3).

Antiplasmodial Activity. Human malaria parasites were cultured
according to the method of Trager and Jensen.® The antimalarial activity
of the isolated compounds was determined by the procedure described
by Budimulya et al.” In brief, stock solutions of the samples were
prepared in DMSO (final DMSO concentrations of <0.5%) and were
diluted to the required concentration with complete medium (RPMI
1640 supplemented with 10% human plasma, 25 mM HEPES, and 25
mM NaHCO3) until the final concentrations of samples in culture plate
wells were 10, 1, 0.1, 0.01, and 0.001 ug/mL. The malarial parasite P.
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falciparum 3D7 clone was propagated in a 24-well culture plate. Growth

of the parasite was monitored by making a blood smear fixed with
MeOH and stained with Geimsa stain. The antimalarial activity of each
compound was expressed as an ICs, value, defined as the concentration
of the compound causing 50% inhibition of parasite growth relative to
an untreated control.

The percentage of growth inhibition was expressed according to the
following equation: Growth inhibition % = 100 — [(test parasitemia/
control parasitemia)] x 100. Chlorogine: ICsy 0.011 uM.
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Pathway of Cassiarins C—E (1—3) and 10,11-Dihydroanhydrobarakol
(4). 'H and '3C NMR spectra and 2D NMR correlations of 1—4. This
material is available free of charge via the Internet at http://pubs.acs.org.
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Figure S1. Selected 2D NMR Correlations for cassiarin C (1) in CD3;OD.
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