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CAM-B3LYP (with long-range correction), M06-2X, and

B3LYP and CAM-B3LYP with the D3 version of Grimme’s

dispersion. The results showed that for the case of O—H

dissociation in two member of phenyl groups, namely

phenol and catechol, the dispersion correction’s effect is

negligible but the long-range correction’s effect is signif-

icant. The significant effect was shown by the increas-

ing of energy barrier and the shortening of O—H in-

teratomic distance in the transition state. Therefore,

we suggest one should consider the long-range correc-

tion in modeling hydrogen bond dissociation in phenolic

compounds, namely phenol and catechol.

Keywords O—H and C—H dissociations · non-

phenyl and phenyl groups · density functional theory ·
dispersion correction · long-range correction

1 Introduction

Hydrogen atom transfer is one important reaction that

occurs in various environments: the biological systems,

the atmosphere, and the industry. In biological systems,

the reaction takes place in lipid peroxidation formation

[1,2] and its prevention, [3–8] as well as in free radi-

cals formation [9]. In the atmosphere, the reaction in-

volves hydroxyl radical (OH) and organic or inorganic

materials [10,11]. Meanwhile in industry, one way the

reaction occurs is in the presence of a catalyst [12,13].

Overall, the reaction has been a subject of experimen-

tal and computational studies. However, there is still

a need to understand how the current computational

methods can model hydrogen bond dissociation. This

understanding will help to achieve a comprehensive in-

sight into the hydrogen atom transfer reaction.

Numerous publications have reported the usage of

computational methods based on density functional the-
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2 L.S.P. Boli et al.

ory (DFT) to investigate hydrogen bond dissociation.

One quantity describing the hydrogen bond dissocia-

tion is bond dissociation energy (BDE). In 1999, Bar-

ckholtz et al. reported the use of one DFT functional,

B3LYP, to predict C H BDE of small aromatics. The

predictions were in agreement with the available exper-

imental values [14]. In the following years, the func-

tional was used to predict the BDE of various bonds in

small and large molecules [15–17]. On the other hand,

other publications showed that B3LYP has low accu-

racy [18–20] but is reliable to predict the substituent

effect such as in alkyl and peroxyl radicals [18]. In 2008,

Zhao and Truhlar introduced DFT functional from the

Minnesota family, M06-2X. This functional has much-

improved accuracy in predicting BDE [21]. M06-2X is

reliable for various cases, such as predicting substituent

effects on O C and C C BDE of lignin [22] and pre-

dicting BDE of polyphenols in various solvents [23]. The

DFT used for the above prediction was unrestricted [15,

22]. In addition to B3LYP and M06-2X, Du et al. used

CAM-B3LYP, which includes a long-range correction to

B3LYP, in their calculations. They found that CAM-

B3LYP underestimates O CH3 BDE relative to exper-

imental values. However, this functional has better per-

formance for aromatic molecules than for non-aromatic

molecules [24]. Even though many references have re-

ported the use of various DFT functionals for predict-

ing BDE, there is still limited references reported about

the path taken by hydrogen atom during the bond dis-

sociation. The use of functionals to model the path is

necessary to gain insight into the hydrogen atom trans-

fer reactions. Thus, the present work investigates the

effect of dispersion and long-range corrections in O H

and C H bond dissociation. The corrections have been

integrated into DFT functional. Therefore, it is neces-

sary to use DFT to identify the effect of dispersion and

long-range correction on O H and C H bond dissoci-

ation.

This work aims to study the effects of dispersion and

long-range corrections on the O-H and C-H bond dis-

sociation computationally. We utilize DFT with three

functionals combined with the D3 version of Grimme’s

dispersion. The combination is five methods: B3LYP

that has been used for chemical computation, CAM-

B3LYP that includes a long-range correction, B3LYP-

GD3 and CAM-B3LYP-GD3 which includes Grimme’s

dispersion, and M06-2X that has a good performance

for noncovalent interactions [25–28]. The dissociation is

designed to occur at O-H and C-H bonds of six non-

phenyl and three phenyl groups. The phenyl groups

containing O-H bonds are chosen to represent the phe-

nolic compounds. To achieve the goal, we calculate bond

dissociation energy and build hydrogen dissociation path-

ways using two techniques: a relaxed scan calculation

and a geometry optimization in the ground and transi-

tion states. We have used these two techniques to study

other chemical reactions [29–32]. This study will answer

the following question: What are the effects of the dis-

persion and long-range corrections on the O-H and C-H

dissociations of non-phenyl and phenyl groups?

2 Computational models

2.1 Reaction model

Scheme 1 presented our model for the hydrogen dis-

sociation. The reactant was R H′ possessing O H, or

C H, bond; the products were R and a hydrogen atom.

There were nine molecules of interest for R H′, which

were (a) hydroxyl, (b) methylidyne, (c) water, (d) methane,

(e) methanol, (f) ethane, (g) toluene, (h) phenol, and

(i) catechol. Figure 1 presented the Kekulé structure of

these molecules.

R H′

[in.]

R + H′

[fi.]

Scheme 1: The initial state [in.] and the final state [fi.]

of the reaction model.

[Fig. 1 about here.]

2.2 DFT calculations

We performed computational techniques with the basis

of DFT [33,34]. We used 6-311++G(d,p) basis set with

three different XCs; they were (1) B3LYP, (2) CAM-

B3LYP, and (3) M06-2X which were implemented in

Gaussian 16 software [35]. The first XC has been a stan-

dard functional for a geometry structure study, while

the second XC has improved the long-range interaction

of the first XC. The third XC has been parameterized,

such that noncovalent interactions take into account.

We applied the D3 version of Grimme’s dispersion to

accommodate the dispersion effect along the dissocia-

tion pathways. We combined the XCs and the disper-

sion into five different methods, as shown in Table 1. In

addition to DFT, we used Natural Bond Orbital (NBO)

calculations for the natural hybrid orbital and charge

population analysis [36].

[Table 1 about here.]

The procedure for DFT calculations is as follows.

First, we validated that the three XCs were capable to
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O—H and C—H bond dissociations in non-phenyl and phenyl groups 3

obtain the spin-state and the geometry in the ground

state. For this purpose, we chose hydroxyl and phenol

because they represented molecules with odd and even

number of electrons and because their experimental re-

sults were available. Second, we performed a geometry

optimization to obtain the geometry of all molecules of

interest in the ground state using the five calculation

methods. To obtain bond dissociation energy (BDE) of

hydrogen, we coupled DFT with frequency calculations.

It resulted in the total electronic energy with thermal

correction to enthalpy at 298.15 K in the ground state.

BDE was the enthalpy difference between the final and

the initial states in Scheme 1. Third, we constructed

the hydrogen dissociation pathways.

We employed two different computational techniques

for the third DFT calculations procedure. The first tech-

nique was a relaxed scan calculation, where one hydro-

gen atom (with prime mark in Figure 1) left oxygen or

carbon atom of R and let R relaxed. The increments

were set to be 0.2 Å for all methods. The second one

was based on the geometry optimization in the ground

and transition states. We applied the first technique to

the selected non-phenyl and phenyl groups. The value

of BDE that was affected and was not affected by dis-

persion and/or long-range corrections became the re-

striction in selecting molecules in the first technique.

The first technique resulted in potential energy curve

(PEC) and the dissociation pathway was visualized us-

ing a polar coordinate. We emphasized that the path-

way that led to other than hydrogen dissociation would

not be discussed further. The PEC that was affected

by dispersion and/or long-range corrections became the

restriction to select molecules in the second technique.

The second technique yielded a dissociation pathway in

energy level diagrams (ELD). We have successfully ap-

plied both techniques in our previous studies for bigger

molecules [29–32].

We excluded PEC results from M06-2X in the cur-

rent study because it produced unreasonable results.

We also noted that Mardirossian and Head-Gordon [37]

reported a similar case, where M06-2X poorly predicted

the bond length of krypton dimer and benzene-silane

dimer through their potential energy curves.

3 Results and discussion

3.1 The ground state structures

Spin-state and geometry The geometry optimization us-

ing the three XCs obtained the doublet and singlet as

the lowest in energy level for hydroxyl and phenol, re-

spectively. On average, the doublet was 4.6 eV lower

than the quartet (in hydroxyl); while the singlet was 4.2

eV lower than the triplet (in phenol). The doublet and

the singlet were more stable compared to the quartet

and the triplet. The results agree with the ground spin-

states of hydroxyl and phenol reported in references [38,

39]. Furthermore, the selected geometrical parameters

of hydroxyl and phenol in those spin-states were less

than 0.017 Å and 1.4 degrees (see Table 2). The val-

ues were within the accuracy limit for DFT calculations

[40]. Therefore, the three XCs were capable to obtain

the correct ground state structure of the molecules with

odd or even number of electrons. Based on these results,

the same XCs were used to obtain the ground spin-state

of other molecules with an odd and even numbers of

electrons which were doublet and singlet, respectively.

[Table 2 about here.]

The dispersion and long-range corrections Table 3 presents

O H′ and C H′ bond lengths of the obtained ground

state geometry of all molecules of interest. The Carte-

sian coordinates of the ground state geometry were given

in Table S1-S9 of Supplementary Information (SI). Cal-

culation using the method with dispersion correction

(M2 and M4) obtained the same bond length as the

method without the correction (M1 and M3). The method

with the long-range correction (M3) and the method

parameterized with dispersion-like interaction (M5) ob-

tained slightly shorter bond lengths (the negative val-

ues) than the method without the correction (M1). The

results suggest the dispersion and the long-range cor-

rections do not alter the ground state O H′ and C H′

bond lengths of our molecules of interest.

[Table 3 about here.]

3.2 The bond dissociation energy

Table 4 presents the discrepancy of D◦ between the

calculated and experimental values. Among all meth-

ods, the M5 method obtained D◦ the closest to the ex-

perimental values for molecules with singlet spin-state.

The results support the work of Zhao and Truhlar [21],

which suggest using the M5 method for D◦ calculations

of molecules with singlet spin-state. Therefore, M06-2X

functional is suitable for dealing with the hydrogen dis-

sociation energy of molecules with singlet spin-state.

[Table 4 about here.]

The discrepancy of D◦ obtained by each method

varied compared to the discrepancy obtained by M1

method. In hydroxyl and methylidyne [Table 4(a) and

(b)], M1, M2, M3, and M4 methods resulted in simi-

lar discrepancy of D◦. It indicates that the dispersion
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4 L.S.P. Boli et al.

and the long-range corrections produce similar D◦ of

molecules with doublet spin-state. In other molecules

[Table 4(c)-(i)], results of M2 and M4 methods devi-

ated on average of 1.1 and 0.8 kJ/mol, respectively

higher than that of M1 method. While results of M3

method deviated on average of 4.4 kJ/mol higher than

that of M1 method. The last deviation is significant,

which implies that the long-range correction is the rea-

son for the increasing in D◦ of molecules with singlet

spin-state. Thus, the long-range correction plays a role

in increasing D◦ of molecules with singlet spin-state but

not the molecules with doublet spin-state.

Other variation was the increasing on the discrep-

ancy of D◦ of O H′ and C H′ bonds obtained by M3

method relative to M1 method. In molecules with sin-

glet spin-state, the average increasing on the discrep-

ancy of O H′ and C H′ bonds were 5.7 kJ/mol and 2.8

kJ/mol, respectively. The increasing on the discrepancy

of O H′ bonds is significant. The increasing was not

accompanied by the ground state O H′ bond lengths

alteration. However, the increasing was accompanied by

a significant alteration of O H′ bond orbitals, mainly

in (spλ)O hybrid orbitals (see Table S10 of the SI).

The NBO calculations showed, the average percentage

of alteration at (spλ)O hybrid orbitals was 33 times

more than that at (spλ)C hybrid orbitals. Therefore,

the long-range correction plays a role in altering the

electron density in the O H′ bond orbitals; hence D◦

of O H′ bond increases.

3.3 The potential energy curve

Figure 2 shows the PECs of four selected molecules

together with their respective polar coordinates. All

methods yielded two types of PEC profile. The first

type was a PEC-like of dissociation diatomic molecules;

region I described the dissociation process and region

II described H′ was already a free atom. All methods

agreed one to each other. Methane and toluene [Fig-

ure 2(a)left and Figure 2(b)left] were in this type of

PEC profile, where there was no disagreement among

the methods. The second type was somewhat challeng-

ing to explain since not all methods agreed. There was

region III that contained barriers. Methanol had one

barrier and phenol had at least three barriers [Fig-

ure 2(c)left and Figure 2(d)left]. On the other hand,

the hydrogen dissociation pathways in the polar coor-

dinates [Figure 2(a)right–Figure 2(d)right] showed that

all methods only agreed for methane. It implies that the

corrections (long-range and dispersion) significantly af-

fect the pathway in real space rather than in the PEC

profile.

[Fig. 2 about here.]

Overall, the PEC profiles of methanol and phenol

in region III were explained as follows. For the case of

methanol [Figure 2(c)left], the four calculation meth-

ods yielded two types of profile. The first type, with one

barrier at 2.2 Å, was obtained by methods without long-

range correction (M1 and M2). The second type, with

six times higher barrier than that in the first type, was

obtained by methods with long-range correction (M3

and M4). Thus, the dispersion correction (M2 and M4)

did not alter the profile but the long-range correction

did. However, this was not the case for phenol [Fig-

ure 2(d)left]. M1 and M2 obtained three barriers, while

M3 and M4 obtained four barriers. At the first barrier,

M3 and M4 obtained a barrier (B1b) at a shorter O H′

distance than that in M1 and M2 (B1a). At the second

barrier (labelled with B2), M3 obtained higher barrier

than M1. At the third barrier (labelled with B3), M3

and M4 obtained almost similar barrier to M1 and M2.

The results imply that the long-range correction plays

a more significant role than dispersion correction in the

PEC profiles of O H′ dissociation.

In detail, the PEC profile of phenol was accompa-

nied by the variation of dissociation pathways in polar

coordinate [Figure 2(d)right]. The profile showed that

the barriers were formed when the H′ atom dissociated

from O H′ bond and migrated to the next three con-

secutive carbon atoms (2, 3, and 4) before leaving the

phenyl ring (see the illustration in Figure S1 of the SI).

An exception occurred at the barrier between B1a and

B2. Here, the H′ atom migrated toward a hydrogen

atom instead of a carbon atom. Hence, there was a

probability for the H H′ to dissociate as a hydrogen

molecule. At the O H′ distances where the barriers

formed, the polar coordinates showed various deviation

in 2–1–O H′ angle. This deviation caused the inter-

atomic distances between H′ and its nearest atom vary.

At B1b, B2, and B3, M3 and M4 obtained the O H′,

2–H′, 3–H′ and 4–H′ interatomic distances in the range

of 1.5–2.2 Å (Table S11 in the SI) which were in non-

covalent region. Kamiya et al. [43] reported that in a

system interacting through a noncovalent interactions

(which was van der Waals interactions), XCs with long-

range correction constantly obtained different profiles

from XCs without correction. Thus, the different pro-

files obtained by the long-range correction (M3) may

be due to the presence of noncovalent interactions, par-

ticularly at the region with barriers. Therefore, in line

with its role in O H′ BDE, the correction might play

a role in energy barrier of O H′ dissociation.

M1 and M3 obtained different interatomic distances

along the pathways (see Table S11 of the SI). At B1b,

M3 obtained the O H′ interatomic distance of 2.0 Å or
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O—H and C—H bond dissociations in non-phenyl and phenyl groups 5

0.4 Å shorter than M1 did. At B2, M3 obtained 2 H′

was shorter than 3 H′, while M1 obtained otherwise.

Our results indicate that the long-range correction is

the reason for the alteration of the O H′ and C H′

(where C is 2 or 3) interatomic distances. Therefore,

the correction plays a role both in the energy barrier

and the interatomic distances.

The alteration in the interatomic distances after the

introduction of long-range correction was accompanied

by the alteration in atomic charges. The NBO calcula-

tions showed that O, 2, and 3 were negatively charged

while H′ was positively charged. At B1b, M3 obtained

an increase of negative charge on O and the positive

charge on H′ by 0.10 and 0.12 electrons, respectively.

It implies that the Coulombic attraction between more

negative O and more positive H′ is the reason for the

shortening of the O H′ interatomic distance. At B2,

M3 obtained the charge of 2 was more negative than

the charge of 3; while M1 obtained otherwise. It indi-

cates that the Coulombic attraction between more neg-

atively charged 2 and positively charged H′ is the reason

for the shortening of the 2–H′. Therefore, the Coulom-

bic interactions play a role in the interatomic distance

alteration.

3.4 The dissociation pathway

Figure 3 shows the O H′ dissociation pathways of two

selected molecules, phenol and catechol, in an ELD. For

the case of phenol [Figure 3(a)], each pathway had three

transition states (TS) and three intermediate states (IS)

as predicted earlier in Figure 2(d)left; while for the case

of catechol [Figure 3(b)], each pathway had two TSs and
two ISs. The experiment has observed the presence of

IS1 in a photochemical reaction [44]. While a theoreti-

cal study reported IS1 and IS3 as two isomers of phenol

[45]. Another theoretical study reported the first step

in decomposition of catechol lead to IS4 [46]. The simi-

larity between the molecules in the intermediate states

with the previous studies indicate the possibility of hy-

drogen migration before O H′ dissociation occurred.

[Fig. 3 about here.]

The dissociation pathways showed that in each TS,

all methods obtained the same order of relative elec-

tronic energy for the case of phenol and catechol. The

order for both cases from the lowest to the highest was

M1 ≈ M2 < M3 ≈ M4 < M5. For the case of phenol,

the average difference between the energy obtained by

methods with long-range correction (M3 and M4) and

methods without the correction (M1 and M2) was 0.16

eV. Similarly, for the case of catechol, the average dif-

ference was 0.14 eV. The differences are significant. It

was aligned with the difference in the PEC profile [Fig-

ure 2(d)left], particularly at region with barriers, after

the long-range correction was introduced. Since differ-

ent profiles formed at region where the noncovalent in-

teraction may be present, the results imply that the

long-range correction predicts the dissociation is more

difficult at this region. Therefore, the correction indeed

plays a role in energy barrier of O H′ dissociation.

Methods with long-range correction obtained shorter

interatomic distance than the methods without the cor-

rection did in the TS structures. For the case of phenol,

the O H′ and 3 H′ interatomic distances shortened by

0.01 Å on average. The shortening was also similar for

the case of catechol. The 0.01 Å was significant com-

pared to the shortening in the O H′ bond of the ground

state phenol and catechol which was only 0.002 Å [Ta-

ble 3(h) and (i)]. The shortening in the transition state

structures confirmed the shortening of interatomic dis-

tance along the dissociation pathway discussed in Sub-

section 3.3. For this reason, the long-range correction

indeed plays a role in the interatomic distance in the

transition state.

Methods with the long-range correction (M3 and

M4) obtained similar relative electronic energy to M5

in the TSs. The average differences of relative electronic

energy obtained by those methods were 0.07 for phenol

and 0.06 for catechol. These values are very small which

indicate the similarity of transition state according to

those methods. Therefore, CAM-B3LYP and M06-2X

predicts comparable transition state of O H′ dissocia-

tion.

Overall, all methods show consistent performances

on the BDE calculations and O H′ dissociation path-

ways prediction. For the BDE calculations, the meth-

ods obtained the O H′ BDE of non-phenyl and phenyl

groups which increase in the following order: M1 ≈ M2

< M3 ≈ M4 < M5. Compared to B3LYP (M1), the

long-range correction in CAM-B3LYP (M3) increased

BDE of the O H′ bond. The increasing was in agree-

ment with the study by Chan et al. [47] when using

CAM-B3LYP to calculate O H′ BDE of various small

molecules. For the pathway prediction, the methods

predicted different pathways in the case of O H′ dis-

sociation of phenyl groups, which are phenol and cat-

echol. The different pathways were identified by differ-

ent energy barriers and O H′ interatomic distances.

The methods obtained the energy barriers which in-

crease in the same order as the increase of the O H′

BDE. This result validates the study by Peach et al. [48]

that showed the increasing of barrier height when us-

ing CAM-B3LYP compared to B3LYP. The increasing

of energy barriers were accompanied by the shortening

of the O H′ interatomic distances as follow: M1 ≈ M2
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> M3 ≈ M4. The shortening in the interatomic dis-

tance due to the long-range correction is in agreement

with our previous study [31]. The results show the sig-

nificance of this research, that is the use of long-range

correction in CAM-B3LYP affects the O H′ dissocia-

tion in two member of phenyl groups. On the other

hand, the M06-2X used in this study predicted the high-

est BDE and energy barrier. The BDE was similar to

the experimental observation. The M06-2X developer

suggests the functional for applications involving main

group thermochemistry, kinetics, and noncovalent in-

teractions [21,28].

4 Conclusion

We have studied the effects of dispersion and long-

range corrections on O H and C H dissociations of

non-phenyl and phenyl groups. The effects were identi-

fied through bond dissociation energy and dissociation

pathways. We summarized that the dispersion correc-

tion had negligible effects on the O H and C H bond

dissociation energies as well as the dissociation path-

ways of non-phenyl and phenyl groups. While, the long-

range correction in CAM-B3LYP had a minor effect on

the O H bond dissociation energy and a significant ef-

fect on theO H dissociation pathways. We found that

the long-range correction increased the bond dissocia-

tion energy of the O H bond of non-phenyl and phenyl

groups in their singlet states by 5.7 kJ/mol. We argued

that the increasing was due to the alteration of elec-

tron density in the O H bond orbitals. However, the

dissociation energy was still far from the experimental

results. The significant effects of the long-range correc-

tion on the O H dissociation pathways occurred in two

member of phenyl groups, namely phenol and catechol,

were identified as follow. First, the correction shortened

the O H interatomic distances in the transition states.

The shortening was 0.01 Å, on average, which was sig-

nificant compared to the shortening of the O H bond

in the ground state due to the correction (only 0.002

Å, on average). Second, the correction increased the

energy barrier by 0.16 eV for phenol and 0.14 eV for

catechol, on average. Overall, our results support other

theoretical studies on the increasing of energy barrier

due to the long-range correction. Accordingly, we sug-

gest that one should consider the long-range correction

when studying hydrogen bond dissociation in phenolic

compounds, such as phenol and catechol.
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10 FIGURES

(a) PEC (left) and polar coordinate (right) of methane.

(b) PEC (left) and polar coordinate (right) of toluene.

(c) PEC (left) and polar coordinate (right) of methanol.

(d) PEC (left) and polar coordinate (right) of phenol.

Fig. 2 PECs of C H′ and O H′ bond dissociations with their respective polar coordinates. The I, II, and III
represented three different regions based on the similarity of events at each region. Angles in the polar coordinate
were H C H′ in methane, 2–1–C H′ in toluene, H C O H′ in methanol, and 2–1–O H′ in phenol (see Figure 1).
The initial angle was at zero degree, then deviated clockwise or counterclockwise. Particularly in methane, the
clockwise represented inward deviation. B1a, B1b, B2, and B3 in (d) represented first barrier obtained by M1 and
M2, first barrier obtained by M3 and M4, Second barrier and third barrier obtained by all four methods, respectively
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FIGURES 11

(a) O H′ dissociation pathways of phenol

(b) O H′ dissociation pathways of catechol

Fig. 3 Energy level diagram for O H′ dissociation pathways of two selected molecules. R1, R2, P1 and P2 represent
phenol, catechol, product of phenol dissociation, and product of catechol dissociation. While TS and IS stand for
transition state and intermediate state. The TSs were shown with the selected interactomic distances (unit in Å)
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TABLES 13

Table 1 List of methods used in the manuscript

M1 B3LYP
M2 B3LYP + GD3
M3 CAM-B3LYP
M4 CAM-B3LYP + GD3
M5 M06-2X
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Table 2 The discrepancy of calculated geometrical parameters of hydroxyl and phenol by (1) B3LYP, (2) CAM-
B3LYP, and (3) M06-2X with respect to the experimental values [41]. The parameters were bond length (R, in Å)
and bond angle (A, in degree). The parameter in (i) belongs to hydroxyl; while others belong to phenol

Parameter Expr. (1) (2) (3)
(i) R(O,H′) 0.970 +0.006 +0.005 +0.003
(ii) R(O,H′) 0.956 +0.007 +0.005 +0.005
(iii) R(C,C)av 1.397 -0.003 -0.009 -0.006
(iv) R(1,O) 1.364 +0.006 0.000 -0.001
(v) R(4,H) 1.082 +0.001 +0.001 0.000
(vi) R(5,H) 1.076 +0.008 +0.008 +0.008
(vii) R(6,H) 1.084 +0.002 +0.001 +0.002
(viii) A(1,O,H′) 109.0 +0.8 +1.0 +0.8
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Table 3 The difference of calculated O H′ and C H′ bond lengths from M1 (Å). The label referred to Figure 1

Molecule Bond M1 M2 M3 M4 M5

(a) Hydroxyl O H’ 0.976 0.000 -0.002 -0.002 -0.004

(b) Methylidyne C H’ 1.127 0.000 -0.003 -0.003 -0.007

(c) Water O H’ 0.962 0.000 -0.001 -0.001 -0.003

(d) Methane C H’ 1.091 0.000 -0.001 -0.001 -0.002

(e) Methanol O H’ 0.961 0.000 -0.002 -0.002 -0.003

(f) Ethane C H’ 1.094 0.000 -0.001 -0.001 -0.002

(g) Toluene C H’ 1.094 0.000 -0.002 -0.002 -0.002

(h) Phenol O H’ 0.963 0.000 -0.002 -0.002 -0.002

(i) Catechol O H’ 0.962 0.000 -0.002 -0.002 -0.002
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Table 4 The discrepancy of calculated D◦ with respect to the experimental values (kJ/mol) [41,42]. The label referred
to Figure 1

Molecule Bond Expr. M1 M2 M3 M4 M5

(a) Hydroxyl O H’ 429.73 -1.1 -1.1 -0.8 -0.8 -9.2

(b) Methylidyne C H’ 338.4 +1.8 +1.8 -2.2 -2.2 -8.1

(c) Water O H’ 497.32 -17.1 -17.1 -14.0 -14.0 -11.7

(d) Methane C H’ 439.3 -8.3 -8.2 -7.1 -7.0 -6.1

(e) Methanol O H’ 440.2 -26.4 -25.2 -21.1 -20.3 -11.5

(f) Ethane C H’ 420.5 -8.9 -7.6 -6.8 -6.0 -3.4

(g) Toluene C H’ 375.5 -10.8 -9.1 -5.8 -4.7 +2.9

(h) Phenol O H’ 362.8 -16.0 -14.6 -9.6 -8.6 +6.7

(i) Catechol O H’ 342.3 -32.0 -29.9 -24.0 -22.5 -9.8
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consider the long-range correction in modeling hydrogen bond dissociation in phenolic
compounds, namely phenol and catechol.

Response to Reviewers: We are grateful for the reviewer's constructive concerns about our manuscript. Here
we respond to the reviewer's comments point by point. We revise the manuscript
majorly to address the reviewer's concern. We use blue color for the revised and new
sentences, while red color to emphasize our explanation.

We hope that our revised manuscript meets the reviewer's expectations.
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BEGIN

It is not clear that exactly H′ means. It is neutral atom, radical or positively
charged particle?

Question 1

We did address the explanation about what H′ was in the caption of Figure 1. The
“prime sign” on the H is not the sign for radicalness or charge. It is to mark the H
atom that goes under the dissociation.

O H′

(a) Hydroxyl, OH
C H′

(b) Methylidyne, CH
HO H′

(c) Water, H2O

H3C H′

(d) Methane, CH4

H3C O H′

(e) Methanol, CH3OH

CH3 CH2 H′

(f) Ethane, C2H6

C

H′

1
2

3

4

5

6

(g) Toluene, C6H5CH3

H′

O

1
6

5

4

3

2

(h) Phenol, C6H5OH

H′

O

1
6

5

4

3

2
O

(i) Catechol, C6H4(OH)2

Fig. 1 Kekulé structure of the molecule of interest. The primed H was the dissociated
hydrogen atom. For clarity in molecules (g) – (i), only dissociated hydrogen atom
was shown, and carbon atoms were replaced by numbers

Especially in the case of O H group dissociation also the simplest case - direct
dissociation should be presented.

Question 2

We appreciate the reviewer’s suggestion. We have presented other direct dissociation
cases, except catechol, in the form of a potential energy curve (PEC).

1
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There are four other cases of O H and C Hdirect dissociation added to this manuscript.
They are the dissociation in hydroxyl, methylidyne, water, and ethane. Their PECs
are in Figure S1 of the Supporting Information (SI). It is because they are the support-
ive results for cases in Figure 2 in explaining two types of PEC. The case of catechol
is excluded since its dissociation leads to a hydrogen molecule instead of a hydrogen
atom as a product.

To accommodate the addition of Figure S1, we have revised the first paragraph of
“3.3. The potential energy curve”. The paragraph is now as follows.

Figure 2 shows the PECs of four selected molecules together with their re-
spective polar coordinates. All methods yielded two types of PEC profiles.
The first type was a PEC-like of dissociation diatomic molecules [Figure
2(a)–(b) left]. Region I described the dissociation process, and region II
described H′ was already a free atom. All methods agreed one to each
other. The second type was somewhat challenging to explain since not
all methods agreed [Figure 2(c)–(d) left]. There was region III that con-
tained barriers. PEC profiles in methylidyne and ethane were supportive
results to the first type, while PEC profiles in hydroxyl and water were
supportive results to the second type. Hence, they were placed in Sup-
porting Information [Figure S1(a)–(b) and S1(c)–(d) left]. On the other
hand, the polar coordinates show that the hydrogen dissociation pathways
in methane [Figure 2(a) right] are different from those in other molecules
[Figure 2(b)–(d) right and Figure S1(c)–(d) right of the SI]. All methods
were only agreed for methane. It implies that the corrections (long-range
and dispersion) significantly affect the pathway in real space rather than
in the PEC profile.

In the manuscript
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Figure S1 PECs of O H′ (S1a and S1c) and C H′ (S1b and S1d) bond dissociations.
PECs in S1c and S1d were presented with their respective polar coordinates. The re-
gion I, II, and III in the PEC represented three different regions based on the similarity
of events. Angle in the polar coordinate of water was H O H′ [see Figure 1(c) in
the manuscript] that deviated inward or outward. Angles in the polar coordinate of
ethane was H C C H′ [see Figure 1(f) in the manuscript] that deviated clockwise
or counterclockwise. The initial angle was at zero degree

3



(a) PEC (left) and polar coordinate (right) of methane.

(b) PEC (left) and polar coordinate (right) of toluene.

(c) PEC (left) and polar coordinate (right) of methanol.

(d) PEC (left) and polar coordinate (right) of phenol.

Fig. 2 PECs of C H′ and O H′ bond dissociations with their respective polar coordi-
nates. The I, II, and III represented three different regions based on the similarity of
events at each region. Angles in the polar coordinate were H C H′ in methane, 2–1–
C H′ in toluene, H C O H′ in methanol, and 2–1–O H′ in phenol (see Figure 1).
The initial angle was at zero degree, then deviated clockwise or counterclockwise.
Particularly in methane, the clockwise represented inward deviation. B1a, B1b, B2,
and B3 in (d) represented first barrier obtained by M1 and M2, first barrier obtained
by M3 and M4, second and third barrier obtained by all four methods, respectively
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The discussion related to Figure 2 should bemademore clear and reader friendly.

Question 3

We realize that our writing was unclear. To address this issue, we have revised all five
paragraphs in section “3.3. The potential energy curve” subsection majorly. The first
paragraph is as shown in our response to Question 2, while the other four paragraphs
are now as follows.

Overall, the PEC profiles of methanol and phenol [Figure 2(c)–2(d) left]
were explained as follows. In region III, methanol and phenol had barriers;
methanol had one, and phenol had at least three barriers. In both cases,
M2 yielded a similar barrier height to M1 did. So did M4 and M3. It means
the dispersion correction does not alter the PEC profile of O H′ dissocia-
tion. However, in both cases, M3 yielded a different barrier height than M1
did. The results indicate that the long-range correction does alter the PEC
profile of O H′ dissociation. Therefore, the long-range correction plays a
more significant role than the dispersion correction in the PEC profiles of
O H′ dissociation.

In detail, for phenol [Figure 2(d)], the variation of PEC profiles was accom-
panied by the variation of dissociation pathways in the polar coordinate.
Both variations occurred only at a certain O H′ distance (rO H′) range.
The PEC profile variation range was around 1.8–3 Å; while the pathway
variation range was around 2–4 Å. In those ranges, M3 yielded a different
profile and pathway than M1 did. Kamiya et al.[43] also obtained different
profiles when using XCs with long-range correction in a system interacting
through a van der Waals interaction (noncovalent interaction). Thus, the
different profiles obtained by the long-range correction (M3) may be due
to the presence of noncovalent interactions, particularly at a region with
barriers. Therefore, in line with its role in O H′ BDE, the long-range cor-
rection may play a role in the energy barrier of O H′ dissociation.

In the manuscript
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Along the phenol dissociation pathway, M1 and M3 obtained different r
at B1a, B1b, and B2 (See Table S11 of the SI). At B1a and B1b, atom H′

was located around atom O [See Figure S2 of the SI]. Here, M3 obtained
shorter rO H′ at B1a than M1 did at B1b. Different than at B1a and B1b,
at B2 atom H′was located between atom 2 and atom 3. Here, M3 obtained
shorter r2 H′ and longer r3 H′ than M1 did. The results indicate that the
shortening and lengthening of r are due to the long-range correction.

The r alteration after the introduction of long-range correction was accom-
panied by atomic charges alteration. The NBO calculations showed that
atoms O, 2, and 3 [See Figure 1(h)] were negatively charged while atom
H′ was positively charged. At B1a, M3 yielded greater positive charge on
atom H′ and greater negative charge on atom O than M1 did. It implies
that the increasing coulombic attraction between atom O and H′ is the rea-
son for the shortening of rO H′ at B1a. At B2, M3 obtained lesser positive
charge on atom H′ and greater negative charge on atom 2 than M1 did. It
indicates that the increasing coulombic attraction between atom 2 and H′

is the reason for the shortening of the r2 H′. At this location, M3 obtained
lesser negative charge on atom 3 than M1 did. It implies the increasing
coulombic repulsion between atom 3 and H′ is the reason for the lengthen-
ing of the r3 H′. Therefore, the Coulombic interactions play a role in the
alteration of r.

In the manuscript

Following the revision in the “3.3. The potential energy curve” subsection, we also
have rewritten some sentences in paragraph two and three of “3.4. The dissociation
pathways” subsection,
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The dissociation pathways in phenol and catechol showed that all methods
obtained the same relative electronic energy order in each TS. The order
for both cases was M1 ≈ M2 < M3 ≈ M4 < M5. For the case of phe-
nol, the average difference between the energy obtained by methods with
long-range correction (M3 and M4) and methods without the correction
(M1 and M2) was 0.16 eV. Similarly, for the case of catechol, the average
difference was 0.14 eV. The differences are significant. It was aligned with
the PEC profile difference [Figure 2(d)left] after the long-range correction
was introduced, particularly at the region with barriers. The results imply
that the long-range correction predicts the dissociation is more difficult at
a region where the noncovalent interaction may be present. Therefore, the
correction indeed plays a role in the energy barrier of O H′ dissociation.

Methods with long-range correction (M3 and M4) obtained shorter r than
methods without the correction did in the TS structures. For the case of
phenol, the rO H′ and r3 H′ shortened by 0.01 Å on average. The short-
ening was also similar to the case of catechol. The 0.01 Å is significant
compared to the O H′ bond length shortening in the ground state of phe-
nol and catechol [Table 4(h) and (i)]. Thus, the shortening confirms the
shortening of r along the dissociation pathway discussed in Subsection 3.3.
For this reason, the long-range correction indeed plays a role in r in the
transition state.

In the manuscript

paragraph five of “3.4. The dissociation pathways” subsection,
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Overall, all methods showed consistent performances on the BDE calcu-
lations and O H′ dissociation pathways prediction. For the BDE calcula-
tions, the methods obtained D◦ of O H′ in all molecules increased in the
following order: M1 ≈ M2 < M3 ≈ M4 < M5. The increase of D◦ after
the presence of long-range correction in CAM-B3LYP (M3) was in agree-
ment with the study by Chan et al. [47] For the pathways prediction, the
methods obtained variation of pathways in phenol and catechol dissoci-
ation. The variations were identified by the alteration in energy barriers
and rO H′ in the TS. The energy barrier increased in the same order as
the increase in D◦ of O H′. This result validates the study by Peach et al.
[48] that showed increasing barrier height when using CAM-B3LYP com-
pared to B3LYP. The increasing energy barriers was accompanied by the
shortening of rO H′ as follows: M1 ≈ M2 > M3 ≈ M4. The shortening
due to the long-range correction (M3) was in agreement with our previous
study [31]. The results show the significance of this research: the use of
long-range correction in CAM-B3LYP affects the rO H′ in TS. On the other
hand, the M06-2X used in this study predicted the highest D◦ and energy
barrier. The D◦ was similar to the experimental observation. The M06-2X
developer suggested the functional for applications involving main group
thermochemistry, kinetics, and noncovalent interactions [21,28].

In the manuscript

and section “4. Conclusion”.
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We have studied the effects of dispersion and long-range corrections on
O H and C H dissociations of non-phenyl and phenyl groups. The effects
were identified through bond dissociation energy and dissociation path-
ways. We summarized that the dispersion correction had negligible effects
on the O H and C H bond dissociation energies and the non-phenyl and
phenyl groups dissociation pathways. While the long-range correction in
CAM-B3LYP had a minor effect on the O H bond dissociation energy and
a significant effect on the O H dissociation pathways. We found that the
long-range correction increased the bond dissociation energy of the O H
bond of non-phenyl and phenyl groups in their singlet states by 5.7 kJ/mol.
We argued that the increase was due to the alteration of electron density
in the O H bond orbitals. However, the dissociation energy was still far
from the experimental results. The significant effects of the long-range
correction on the O H dissociation pathways occurred in two members of
phenyl groups, namely phenol and catechol. The effects were identified as
follows. First, the correction shortened the O H distances in the transition
states by 0.01 Å, on average. Second, the correction increased the energy
barrier by 0.16 eV (in phenol) and 0.14 eV (in catechol), on average. Over-
all, our results support other theoretical studies on the increasing energy
barrier due to the long-range correction. Accordingly, we suggest that one
should consider the long-range correction when studying hydrogen bond
dissociation in phenolic compounds, such as phenol and catechol.

In the manuscript

As seen from Table 4, the deviations from the experimentally determined values
are larger in some of the cases for all used methods. Explanation is needed.

Question 4

Thank you for pointing out this issue. We purposely did not provide an explanation
because it was not in line with the goal of this manuscript.

In Table 4 (now become Table 5), we do not compare the discrepancy (we use this
term, instead of deviation, to refer to the difference between calculation and experi-
mental results) to know how small or how large they are. Instead, we compare them

9



to determine their alteration among methods used. It is to achieve the manuscript’s
goal that we have stated in the first sentence of the last paragraph of the “1. Intro-
duction” section.

However, we are aware that our discussion in the second and the third paragraphs of
“3.2. The bond dissociation energy” subsection does not emphasize our goal clearly.
Thus, we have rewritten the paragraphs and split the third paragraph into two. The
subsection has four paragraphs now. The second to the fourth paragraphs are as
follows.

The discrepancy obtained by M2, M3, and M4 were varied compared to
that obtained by M1. In all molecules [Table 5 (a)-(i)], M2 obtained 0.9
kJ/mol (in average) discrepancies higher than M1 did. Moreover, M4 ob-
tained 0.6 kJ/mol (in average) discrepancies higher than M3 did. The re-
sults indicate that the dispersion correction does not alter the calculatedD◦

of molecules with singlet and doublet spin-states. In hydroxyl and methyli-
dyne [Table 5 (a) and (b)], M3 obtained 1.9 kJ/mol (on average) discrep-
ancies lower than M1 did. Meanwhile, in other molecules [Table 5 (c)-(i)],
M3 obtained 4.4 kJ/mol (in average) discrepancies higher than M1 did.
The 4.4 kJ/mol is significant, which implies that the long-range correction
is the reason for D◦ alteration of molecules with singlet spin-state. Thus,
the long-range correction plays a role in altering D◦ of molecules with sin-
glet spin-state but not the molecules with doublet spin-state.

Among seven molecules in Table 5 (c)-(i), the alteration of discrepancies
fromM1 toM3 on O H′ bond differed from that on C H′ bonds. The seven
molecules were in their singlet spin-state. For four molecules with O H′

bonds, the discrepancies increased by 5.7 kJ/mol (in average) from M1
to M3. However, for three molecules with C H′ bonds, the discrepancies
only increased by 2.8 kJ/mol (in average) from M1 to M3. The increase on
O H′ bonds is more significant than on C H′ bonds. It indicates that the
long-range correction alters the calculated D◦ on O H′ bond more than
that on C H′ bond of molecules with singlet spin-state.

In the manuscript
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The increase in the discrepancy on O H′ bonds was not accompanied by
bond length alteration but by O H′ bond orbitals alteration. As discussed
in section 3.1, from M1 to M3, the ground state O H′ bond length only al-
tered by 0.002 Å. However, fromM1 to M3, the O H′ bond orbitals altered
mainly in (spλ)O hybrid orbitals (see Table S10 of the SI). According to the
NBO calculations, the average percentage of alteration at (spλ)O hybrid
orbitals was 33 times more than that at (spλ)C hybrid orbitals. Therefore,
the long-range correction plays a role in altering the electron density in the
O H′ bond orbitals; hence the calculated D◦ of O H′ bond increases.

In the manuscript

The text has to be corrected in respect of (1) typos and (2) jargons (for instance
XCs in part 2.2).

Question 5

We apologize for this problem.

(1) We have corrected the typos as we revised questions 2 to 4. We also have cor-
rected and added the missing verbs/noun/preposition.

(2) XC is not jargon. It is an acronym widely used.[1, 2]

To assist readers in getting familiar with the symbols and acronyms used through-
out the manuscript, we have provided a list of symbols and acronyms in Table
2. We also corrected the sentences related to the acronyms and symbols.

To accommodate the addition of Table 2, we revised the last paragraph of “2.2.
DFT Calculations” as follows.
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We excluded PEC results from M06-2X in the current study because it pro-
duced unreasonable results. We also noted that Mardirossian and Head-
Gordon [37] reported a similar case. They highlighted that M06-2X poorly
predicted the bond length of krypton dimer and benzene-silane dimer through
their potential energy curves. We listed the symbols and acronyms in Table
2 to assist readers in getting familiar with them.

In the manuscript

Table 2 List of symbols and acronyms used throughout the manuscript

Symbol/acronym Description

D◦ Bond dissociation energy
r Distances between atoms
BDE Bond dissociation energy
DFT Density functional theory
ELD Energy level diagram
IS Intermediate state
NBO Natural Bond Orbital
PEC Potential energy curve
TS Transition state
XC Exchange-correlation
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Abstract Hydrogen atom transfer is one important re-

action in biological system, in industry, and in atmo-

sphere. The reaction is preluded by hydrogen bond dis-

sociation. To gain a comprehensive understanding on

the reaction, it is necessary to investigate how the cur-

rent computational methods model hydrogen bond dis-

sociation. As a starting point, we utilized density func-

tional theory-based calculations to identify the effect

of dispersion and long-range corrections on O—H and

C—H dissociations in non-phenyl and phenyl groups.

We employed five different methods, namely B3LYP,
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CAM-B3LYP (with long-range correction), M06-2X, and

B3LYP and CAM-B3LYP with the D3 version of Grimme’s

dispersion. The results showed that for the case of O—H

dissociation in two member of phenyl groups, namely

phenol and catechol, the dispersion correction’s effect

was negligible but the long-range correction’s effect was

significant. The significant effect was shown by the in-

creasing of energy barrier and the shortening of O—H

interatomic distance in the transition state. Therefore,

we suggest one should consider the long-range correc-

tion in modeling hydrogen bond dissociation in phenolic

compounds, namely phenol and catechol.

Keywords O—H and C—H dissociations · non-

phenyl and phenyl groups · density functional theory ·
dispersion correction · long-range correction

1 Introduction

Hydrogen atom transfer is one important reaction that

occurs in various environments: the biological systems,

the atmosphere, and the industry. In biological systems,

the reaction takes place in lipid peroxidation formation

[1,2] and its prevention, [3–8] as well as in free radi-

cals formation [9]. In the atmosphere, the reaction in-

volves hydroxyl radical (OH) and organic or inorganic

materials [10,11]. Meanwhile in industry, one way the

reaction occurs is in the presence of a catalyst [12,13].

Overall, the reaction has been a subject of experimen-

tal and computational studies. However, there is still

a need to understand how the current computational

methods can model hydrogen bond dissociation. This

understanding will help to achieve a comprehensive in-

sight into the hydrogen atom transfer reaction.

Numerous publications have reported the usage of

computational methods based on density functional the-

Manuscript Click here to access/download;Manuscript;manuscript.tex
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2 L.S.P. Boli et al.

ory (DFT) to investigate hydrogen bond dissociation.

One quantity describing the hydrogen bond dissocia-

tion is bond dissociation energy (BDE). In 1999, Bar-

ckholtz et al. reported the use of one DFT exchange-

correlation (XC) functional, B3LYP, to predict C H

BDE of small aromatics. The predictions were in agree-

ment with the available experimental values [14]. In the

following years, the XC was used to predict the BDE of

various bonds in small and large molecules [15–17]. On

the other hand, other publications showed that B3LYP

has low accuracy [18–20] but is reliable to predict the

substituent effect such as in alkyl and peroxyl radicals

[18]. In 2008, Zhao and Truhlar introduced XC from

the Minnesota family, M06-2X. This XC has much-

improved accuracy in predicting BDE [21]. M06-2X is

reliable for various cases, such as predicting substituent

effects on O C and C C BDE of lignin [22] and pre-

dicting BDE of polyphenols in various solvents [23]. The

DFT used for the above prediction was unrestricted

[15,22]. In addition to B3LYP and M06-2X, Du et al.

used CAM-B3LYP, which includes a long-range correc-

tion to B3LYP, in their calculations. They found that

CAM-B3LYP underestimates O CH3 BDE relative to

experimental values. However, this XC has better per-

formance for aromatic molecules than for non-aromatic

molecules [24]. Even though many references have re-

ported the use of various DFT XCs for predicting BDE,

there is still limited references reported about the path

taken by hydrogen atom during the bond dissociation.

The use of XCs to model the path is necessary to gain

insight into the hydrogen atom transfer reactions. Thus,

the present work investigates the effect of dispersion

and long-range corrections in O H and C H bond dis-

sociations. The corrections have been integrated into

DFT XCs. Therefore, it is necessary to use DFT to

identify the effect of dispersion and long-range correc-

tion on O H and C H bond dissociations.

This work aims to study the effects of dispersion and

long-range corrections on the O-H and C-H bond dis-

sociations computationally. We utilize DFT with three

functionals combined with the D3 version of Grimme’s

dispersion. The combination is five methods: B3LYP

that has been used for chemical computation, CAM-

B3LYP that includes a long-range correction, B3LYP-

GD3 and CAM-B3LYP-GD3 which includes Grimme’s

dispersion, and M06-2X that has a good performance

for noncovalent interactions [25–28]. The dissociation is

designed to occur at O-H and C-H bonds of six non-

phenyl and three phenyl groups. The phenyl groups

containing O-H bonds are chosen to represent the phe-

nolic compounds. To achieve the goal, we calculate bond

dissociation energy and build hydrogen dissociation path-

ways using two techniques: a relaxed scan calculation

and a geometry optimization in the ground and transi-

tion states. We have used these two techniques to study

other chemical reactions [29–32]. This study will answer

the following question: What are the effects of the dis-

persion and long-range corrections on the O-H and C-H

dissociations of non-phenyl and phenyl groups?

2 Computational models

2.1 Reaction model

Scheme 1 presents our model for the hydrogen dissocia-

tion. The reactant was R H′ possessing O H, or C H,

bond; the products were R and a hydrogen atom. There

were nine molecules of interest for R H′, which were

(a) hydroxyl, (b) methylidyne, (c) water, (d) methane,

(e) methanol, (f) ethane, (g) toluene, (h) phenol, and

(i) catechol. Figure 1 presents the Kekulé structure of

these molecules.

R H′

[in.]

R + H′

[fi.]

Scheme 1: The initial state [in.] and the final state [fi.]

of the reaction model.

[Fig. 1 about here.]

2.2 DFT calculations

We performed computational techniques with the basis

of DFT [33,34]. We used 6-311++G(d,p) basis set with

three different XCs; they were (1) B3LYP, (2) CAM-

B3LYP, and (3) M06-2X which were implemented in

Gaussian 16 software [35]. The first XC has become

a standard functional for a geometry structure study,

while the second XC has improved the long-range inter-

action of the first XC. The third XC has been param-

eterized, such that noncovalent interactions take into

account. We applied the D3 version of Grimme’s dis-

persion to accommodate the dispersion effect along the

dissociation pathways. We combined the XCs and the

dispersion into five different methods, as shown in Ta-

ble 1. In addition to DFT, we used Natural Bond Or-

bital (NBO) calculations for the natural hybrid orbital

and charge population analysis [36].

[Table 1 about here.]

The procedure for DFT calculations is as follows.

First, we validated that the three XCs were capable to

obtain the spin-state and the geometry in the ground
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state. For this purpose, we chose hydroxyl and phenol

because they represented molecules with odd and even

number of electrons and because their experimental re-

sults were available. Second, we performed a geometry

optimization to obtain the geometry of all molecules

of interest in the ground state using the five calcula-

tion methods. To obtain BDE (D◦) of hydrogen, we

coupled DFT with frequency calculations. It resulted

in the total electronic energy with thermal correction

to enthalpy at 298.15 K in the ground state. D◦ was

the enthalpy difference between the final and the initial

states in Scheme 1. Third, we constructed the hydrogen

dissociation pathways.

We employed two different computational techniques

for the third DFT calculations procedure. The first tech-

nique was a relaxed scan calculation, where one hydro-

gen atom (with prime mark in Figure 1) left oxygen or

carbon atom of R and let R relaxed. The increments

were set to be 0.2 Å for all methods. The second one

was based on the geometry optimization in the ground

and transition states. We applied the first technique to

the selected non-phenyl and phenyl groups. The value

of D◦ that was affected and was not affected by dis-

persion and/or long-range corrections became the re-

striction in selecting molecules in the first technique.

The first technique resulted in potential energy curve

(PEC) and the dissociation pathway was visualized us-

ing a polar coordinate. We emphasized that the path-

way that led to other than hydrogen dissociation would

not be discussed further. The PEC that was affected

by dispersion and/or long-range corrections became the

restriction to select molecules in the second technique.

The second technique yielded a dissociation pathway in

energy level diagrams (ELD). We have successfully ap-

plied both techniques in our previous studies for bigger

molecules [29–32].

We excluded PEC results from M06-2X in the cur-

rent study because it produced unreasonable results.

We also noted that Mardirossian and Head-Gordon [37]

reported a similar case. They highlighted that M06-

2X poorly predicted the bond length of krypton dimer

and benzene-silane dimer through their potential en-

ergy curves. We listed the symbols and acronyms in

Table 2 to assist readers in getting familiar with them.

[Table 2 about here.]

3 Results and discussion

3.1 The ground state structures

Spin-state and geometry The geometry optimization us-

ing the three XCs obtained the doublet and singlet as

the lowest in energy level for hydroxyl and phenol, re-

spectively. On average, the doublet was 4.6 eV lower

than the quartet (in hydroxyl); while the singlet was 4.2

eV lower than the triplet (in phenol). The doublet and

the singlet were more stable compared to the quartet

and the triplet. The results agree with the ground spin-

states of hydroxyl and phenol reported in references [38,

39]. Furthermore, the selected geometrical parameters

of hydroxyl and phenol in those spin-states were less

than 0.017 Å and 1.4 degrees (see Table 3). The val-

ues were within the accuracy limit for DFT calculations

[40]. Therefore, the three XCs were capable to obtain

the correct ground state structure of the molecules with

odd or even number of electrons. Based on these results,

the same XCs were used to obtain the ground spin-state

of other molecules with an odd and even numbers of

electrons which were doublet and singlet, respectively.

[Table 3 about here.]

The dispersion and long-range corrections Table 4 presents

O H′ and C H′ bond lengths of the obtained ground

state geometry of all molecules of interest. The Carte-

sian coordinates of the ground state geometry were given

in Table S1-S9 of Supplementary Information (SI). Cal-

culation using the method with dispersion correction

(M2 and M4) obtained the same bond length as the

method without the correction (M1 and M3). The method

with the long-range correction (M3) and the method

parameterized with dispersion-like interaction (M5) ob-

tained slightly shorter bond lengths (the negative val-

ues) than the method without the correction (M1). The

results suggest the dispersion and the long-range cor-

rections do not alter the ground state O H′ and C H′

bond lengths of our molecules of interest.

[Table 4 about here.]

3.2 The bond dissociation energy

Table 5 presents the discrepancy of D◦ between the

calculated and experimental values. Among all meth-

ods, the M5 method obtained D◦ the closest to the ex-

perimental values for molecules with singlet spin-state.

The results supported the work of Zhao and Truhlar

[21], which suggested using the M5 method for D◦ cal-

culations of molecules with singlet spin-state. There-

fore, M06-2X functional is suitable for dealing with the

hydrogen dissociation energy of molecules with singlet

spin-state.

[Table 5 about here.]
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The discrepancies obtained by M2, M3, and M4

were varied compared to that obtained by M1. In all

molecules [Table 5 (a)-(i)], M2 obtained 0.9 kJ/mol

(in average) discrepancies higher than M1 did. More-

over, M4 obtained 0.6 kJ/mol (in average) discrepan-

cies higher than M3 did. The results indicate that the

dispersion correction does not alter the calculated D◦

of molecules with singlet and doublet spin-states. In

hydroxyl and methylidyne [Table 5 (a) and (b)], M3

obtained 1.9 kJ/mol (in average) discrepancies lower

than M1 did. Meanwhile, in other molecules [Table 5

(c)-(i)], M3 obtained 4.4 kJ/mol (in average) discrep-

ancies higher than M1 did. The 4.4 kJ/mol is signif-

icant, which implies that the long-range correction is

the reason for D◦ alteration of molecules with singlet

spin-state. Thus, the long-range correction plays a role

in altering D◦ of molecules with singlet spin-state but

not the molecules with doublet spin-state.

Among seven molecules in Table 5 (c)-(i), the alter-

ation of discrepancies from M1 to M3 on O H′ bonds

differed from that on C H′ bonds. The seven molecules

were in their singlet spin-state. For four molecules with

O H′ bonds, the discrepancies increased by 5.7 kJ/mol

(on average) from M1 to M3. However, for three molecules

with C H′ bonds, the discrepancies only increased by

2.8 kJ/mol (in average) from M1 to M3. The increase on

O H′ bonds is more significant than on C H′ bonds. It

indicates that the long-range correction alters the cal-

culated D◦ on O H′ bond more than that on C H′

bond of molecules with singlet spin-state.

The increase in the discrepancy on O H′ bonds

was not accompanied by bond length alteration but by

O H′ bond orbitals alteration. As discussed in section

3.1, from M1 to M3, the ground state O H′ bond length

only altered by 0.002 Å. However, from M1 to M3, the

O H′ bond orbitals altered mainly in (spλ)O hybrid

orbitals (see Table S10 of the SI). According to the

NBO calculations, the average percentage of alteration

at (spλ)O hybrid orbitals was 33 times more than that

at (spλ)C hybrid orbitals. Therefore, the long-range cor-

rection plays a role in altering the electron density in

the O H′ bond orbitals; hence the calculated D◦ of

O H′ bond increases.

3.3 The potential energy curve

Figure 2 shows the PECs of four selected molecules

together with their respective polar coordinates. All

methods yielded two types of PEC profiles. The first

type was a PEC-like of dissociation diatomic molecules

[Figure 2(a)–2(b) left]. Region I described the dissocia-

tion process, and region II described H′ was already a

free atom. All methods agreed one to each other. The

second type was somewhat challenging to explain since

not all methods agreed [Figure 2(c)–2(d) left]. There

was region III that contained barriers. PEC profiles in

methylidyne and ethane were supportive results to the

first type, while PEC profiles in hydroxyl and water

were supportive results to the second type. Hence, they

were placed in Supporting Information [Figure S1(a)–

(b) and S1(c)–(d) left]. On the other hand, the polar co-

ordinates show that the hydrogen dissociation pathways

in methane [Figure 2(a) right] are different from those

in other molecules [Figure 2(b)–2(d) right and Figure

S1(c)–(d) right of the SI]. All methods were only agreed

for methane. It implies that the corrections (long-range

and dispersion) significantly affect the pathway in real

space rather than in the PEC profile.

[Fig. 2 about here.]

Overall, the PEC profiles of methanol and phenol

[Figure 2(c)–2(d) left] were explained as follows. In re-

gion III, methanol and phenol had barriers; methanol

had one, and phenol had at least three barriers. In both

cases, M2 yielded a similar barrier height to M1 did.

So did M4 and M3. It means the dispersion correction

does not alter the PEC profile of O H′ dissociation.

However, in both cases, M3 yielded a different barrier

height than M1 did. The results indicate that the long-

range correction does alter the PEC profile of O H′

dissociation. Therefore, the long-range correction plays

a more significant role than the dispersion correction in

the PEC profiles of O H′ dissociation.

In detail, for phenol [Figure 2(d)], the variation of

PEC profiles was accompanied by the variation of dis-

sociation pathways in the polar coordinate. Both varia-

tions occurred only at a certain O H′ distance (rO H′)

range. The PEC profile variation range was around 1.8–

3 Å; while the pathway variation range was around 2–4

Å. In those ranges, M3 yielded a different profile and

pathway than M1 did. Kamiya et al.[43] also obtained

different profiles when using XCs with long-range cor-

rection in a system interacting through a van der Waals

interaction (noncovalent interaction). Thus, the differ-

ent profiles obtained by the long-range correction (M3)

may be due to the presence of noncovalent interactions,

particularly at a region with barriers. Therefore, in line

with its role in O H′ BDE, the long-range correction

may play a role in the energy barrier of O H′ dissoci-

ation.

Along the phenol dissociation pathway, M1 and M3

obtained different r at B1a, B1b, and B2 (See Table S11

of the SI). At B1a and B1b, atom H′ was located around

atom O [See Figure S2 of the SI]. Here, M3 obtained

shorter rO H′ at B1a than M1 did at B1b. Different

than at B1a and B1b, at B2 atom H′ was located be-
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tween atom 2 and atom 3. Here, M3 obtained shorter

r2 H′ and longer r3 H′ than M1 did. The results indi-

cate that the shortening and lengthening of r are due

to the long-range correction.

The r alteration after the introduction of long-range

correction was accompanied by atomic charges alter-

ation. The NBO calculations showed that atom O, 2,

and 3 [See Figure 1(h)] were negatively charged while

atom H′ was positively charged. At B1a, M3 yielded

greater positive charge on atom H′ and greater nega-

tive charge on atom O than M1 did. It implies that the

increasing coulombic attraction between atom O and

H′ is the reason for the shortening of rO H′ at B1a.

At B2, M3 obtained lesser positive charge on atom H′

and greater negative charge on atom 2 than M1 did. It

indicates that the increasing coulombic attraction be-

tween atom 2 and H′ is the reason for the shortening of

the r2 H′. At this location, M3 obtained lesser negative

charge on atom 3 than M1 did. It implies the increas-

ing coulombic repulsion between atom 3 and H′ is the

reason for the lengthening of the r3 H′. Therefore, the

Coulombic interactions play a role in the alteration of

r.

3.4 The dissociation pathway

Figure 3 shows the O H′ dissociation pathways of two

selected molecules, phenol and catechol, in an ELD. For

the case of phenol [Figure 3(a)], each pathway had three

transition states (TS) and three intermediate states (IS)

as predicted earlier in Figure 2(d)left; while for the case

of catechol [Figure 3(b)], each pathway had two TSs and

two ISs. The experiment has observed the presence of

IS1 in a photochemical reaction [44]. While a theoreti-

cal study reported IS1 and IS3 as two isomers of phenol

[45]. Another theoretical study reported the first step

in decomposition of catechol lead to IS4 [46]. The simi-

larity between the molecules in the intermediate states

with the previous studies indicate the possibility of hy-

drogen migration before O H′ dissociation occurred.

[Fig. 3 about here.]

The dissociation pathways in phenol and catechol

showed that all methods obtained the same relative

electronic energy order in each TS. The order for both

cases was M1 ≈ M2 < M3 ≈ M4 < M5. For the case

of phenol, the average difference between the energy

obtained by methods with long-range correction (M3

and M4) and methods without the correction (M1 and

M2) was 0.16 eV. Similarly, for the case of catechol, the

average difference was 0.14 eV. The differences are sig-

nificant. It was aligned with the PEC profile difference

[Figure 2(d)left] after the long-range correction was in-

troduced, particularly at the region with barriers. The

results imply that the long-range correction predicts the

dissociation is more difficult at a region where the non-

covalent interaction may be present. Therefore, the cor-

rection indeed plays a role in the energy barrier of O H′

dissociation.

Methods with long-range correction (M3 and M4)

obtained shorter r than methods without the correc-

tion did in the TS structures. For the case of phenol,

the rO H′ and r3 H′ shortened by 0.01 Å on average.

The shortening was also similar to the case of cate-

chol. The 0.01 Å is significant compared to the O H′

bond length shortening in the ground state of phenol

and catechol [Table 4(h) and (i)]. Thus, the shorten-

ing confirms the shortening of r along the dissociation

pathway discussed in Subsection 3.3. For this reason,

the long-range correction indeed plays a role in r in the

transition state.

Methods with the long-range correction (M3 and

M4) obtained similar relative electronic energy to M5

did in the TSs. The average differences of relative elec-

tronic energy obtained by those methods were 0.07 for

phenol and 0.06 for catechol. These values are very

small which indicate the similarity of transition state

according to those methods. Therefore, CAM-B3LYP

and M06-2X predicts comparable transition state of

O H′ dissociation.

Overall, all methods showed consistent performances

on the BDE calculations and O H′ dissociation path-

ways prediction. For the BDE calculations, the meth-

ods obtained the D◦ of O H′ bonds in all molecules in-

creased in the following order: M1 ≈ M2 < M3 ≈ M4 <

M5. The increase of D◦ after the presence of long-range

correction in CAM-B3LYP (M3) was in agreement with

the study by Chan et al. [47] For the pathways predic-

tion, the methods obtained variation of pathways in

phenol and cathecol dissociation. The variations were

identified by the alteration in energy barriers and rO H′

in the TS. The energy barrier increased in the same or-

der as the increase in D◦ of O H′ bonds. This result

validates the study by Peach et al. [48] that showed in-

creasing barrier height when using CAM-B3LYP com-

pared to B3LYP. The increasing energy barriers was

accompanied by the shortening of rO H′ as follows: M1

≈ M2 > M3 ≈ M4. The shortening due to the long-

range correction (M3) was in agreement with our pre-

vious study [31]. The results show the significance of

this research: the use of long-range correction in CAM-

B3LYP affects the rO H′ in TS. On the other hand, the

M06-2X used in this study predicted the highest D◦ and

energy barrier. The D◦ was similar to the experimen-

tal observation. Its developer suggested the functional
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for applications involving main group thermochemistry,

kinetics, and noncovalent interactions [21,28].

4 Conclusion

We have studied the effects of dispersion and long-

range corrections on O H and C H dissociations of

non-phenyl and phenyl groups. The effects were identi-

fied through bond dissociation energy and dissociation

pathways. We summarized that the dispersion correc-

tion had negligible effects on the O H and C H bond

dissociation energies and the non-phenyl and phenyl

groups dissociation pathways. While the long-range cor-

rection in CAM-B3LYP had a minor effect on the O H

bond dissociation energy and a significant effect on the

O H dissociation pathways. We found that the long-

range correction increased the bond dissociation energy

of the O H bond of non-phenyl and phenyl groups in

their singlet states by 5.7 kJ/mol. We argued that the

increase was due to the alteration of electron density

in the O H bond orbitals. However, the dissociation

energy was still far from the experimental results. The

significant effects of the long-range correction on the

O H dissociation pathways occurred in two members

of phenyl groups, namely phenol and catechol. The ef-

fects were identified as follows. First, the correction

shortened the O H distances in the transition states

by 0.01 Å, on average. Second, the correction increased

the energy barrier by 0.16 eV (in phenol) and 0.14 eV

(in catechol), on average. Overall, our results support

other theoretical studies on the increasing energy bar-

rier due to the long-range correction. Accordingly, we

suggest that one should consider the long-range cor-

rection when studying hydrogen bond dissociation in

phenolic compounds, such as phenol and catechol.
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Fig. 1 Kekulé structure of the molecule of interest. The primed H was the dissociated hydrogen atom. For clarity in
molecules (g) – (i), only dissociated hydrogen atom was shown, and carbon atoms were replaced by numbers
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10 FIGURES

(a) PEC (left) and polar coordinate (right) of methane.

(b) PEC (left) and polar coordinate (right) of toluene.

(c) PEC (left) and polar coordinate (right) of methanol.

(d) PEC (left) and polar coordinate (right) of phenol.

Fig. 2 PECs of C H′ and O H′ bond dissociations with their respective polar coordinates. The I, II, and III
represented three different regions based on the similarity of events at each region. Angles in the polar coordinate
were H C H′ in methane, 2–1–C H′ in toluene, H C O H′ in methanol, and 2–1–O H′ in phenol (see Figure 1).
The initial angle was at zero degree, then deviated clockwise or counterclockwise. Particularly in methane, the
clockwise represented inward deviation. B1a, B1b, B2, and B3 in (d) represented first barrier obtained by M1 and
M2, first barrier obtained by M3 and M4, second and third barrier obtained by all four methods, respectively
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FIGURES 11

(a) O H′ dissociation pathways of phenol

(b) O H′ dissociation pathways of catechol

Fig. 3 Energy level diagram for O H′ dissociation pathways of two selected molecules. R1, R2, P1, and P2 represent
phenol, catechol, product of phenol dissociation, and product of catechol dissociation. While TS and IS stand for
transition state and intermediate state. The TSs were shown with the selected interactomic distances (unit in Å)
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TABLES 13

Table 1 List of methods used in the manuscript

M1 B3LYP
M2 B3LYP + GD3
M3 CAM-B3LYP
M4 CAM-B3LYP + GD3
M5 M06-2X
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Table 2 List of symbols and acronyms used throughout the manuscript

Symbol/acronym Description

D◦ Bond dissociation energy
r Distances between atoms
BDE Bond dissociation energy
DFT Density functional theory
ELD Energy level diagram
IS Intermediate state
NBO Natural Bond Orbital
PEC Potential energy curve
TS Transition state
XC Exchange-correlation
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TABLES 15

Table 3 The discrepancy of calculated geometrical parameters of hydroxyl and phenol by (1) B3LYP, (2) CAM-
B3LYP, and (3) M06-2X with respect to the experimental values [41]. The parameters were bond length (R, in Å)
and bond angle (A, in degree). The parameter in (i) belongs to hydroxyl; while others belong to phenol

Parameter Expr. (1) (2) (3)
(i) R(O,H′) 0.970 +0.006 +0.005 +0.003
(ii) R(O,H′) 0.956 +0.007 +0.005 +0.005
(iii) R(C,C)av 1.397 -0.003 -0.009 -0.006
(iv) R(1,O) 1.364 +0.006 0.000 -0.001
(v) R(4,H) 1.082 +0.001 +0.001 0.000
(vi) R(5,H) 1.076 +0.008 +0.008 +0.008
(vii) R(6,H) 1.084 +0.002 +0.001 +0.002
(viii) A(1,O,H′) 109.0 +0.8 +1.0 +0.8
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Table 4 The difference of calculated O H′ and C H′ bond lengths from M1 (Å). The label referred to Figure 1

Molecule Bond M1 M2 M3 M4 M5

(a) Hydroxyl O H’ 0.976 0.000 -0.002 -0.002 -0.004

(b) Methylidyne C H’ 1.127 0.000 -0.003 -0.003 -0.007

(c) Water O H’ 0.962 0.000 -0.001 -0.001 -0.003

(d) Methane C H’ 1.091 0.000 -0.001 -0.001 -0.002

(e) Methanol O H’ 0.961 0.000 -0.002 -0.002 -0.003

(f) Ethane C H’ 1.094 0.000 -0.001 -0.001 -0.002

(g) Toluene C H’ 1.094 0.000 -0.002 -0.002 -0.002

(h) Phenol O H’ 0.963 0.000 -0.002 -0.002 -0.002

(i) Catechol O H’ 0.962 0.000 -0.002 -0.002 -0.002
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TABLES 17

Table 5 The discrepancy of calculated D◦ with respect to the experimental values (kJ/mol) [41,42]. The label referred
to Figure 1

Molecule Bond Expr. M1 M2 M3 M4 M5

(a) Hydroxyl O H’ 429.73 -1.1 -1.1 -0.8 -0.8 -9.2

(b) Methylidyne C H’ 338.4 +1.8 +1.8 -2.2 -2.2 -8.1

(c) Water O H’ 497.32 -17.1 -17.1 -14.0 -14.0 -11.7

(d) Methane C H’ 439.3 -8.3 -8.2 -7.1 -7.0 -6.1

(e) Methanol O H’ 440.2 -26.4 -25.2 -21.1 -20.3 -11.5

(f) Ethane C H’ 420.5 -8.9 -7.6 -6.8 -6.0 -3.4

(g) Toluene C H’ 375.5 -10.8 -9.1 -5.8 -4.7 +2.9

(h) Phenol O H’ 362.8 -16.0 -14.6 -9.6 -8.6 +6.7

(i) Catechol O H’ 342.3 -32.0 -29.9 -24.0 -22.5 -9.8
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BEGIN

The most of the questions are answered in the revised form. However, it is still
not clear what kind of dissociation is modelled. The Scheme 1 in the present
form is wrong. It should be either R H′ R + H ′ or R H′ R– + H+′

depending on what kind of dissociation is presented – homolytic or heterolytic.

Question 1

We realize that (1) our explanation about the type of dissociation modelled was un-
clear and (2) the reaction modelled in Scheme 1 was wrong.

To address these issues:

(1) we revise the first paragraph of “2.1. Reaction model” as follows.

Scheme 1 presents our model for the homolytic hydrogen dissoci-
ation. The reactant was R H′ possessing O H, or C H, bond; the
products were R and a hydrogen atom (H′ ). There were ninemolecules
of interest for R H′, whichwere (a) hydroxyl, (b)methylidyne, (c) wa-
ter, (d) methane, (e) methanol, (f) ethane, (g) toluene, (h) phenol,
and (i) catechol. Figure 1 presents the Kekulé structure of these
molecules.

In the manuscript

We also revise the writing of R and H′ throughout the manuscript.
(2) we revise Scheme 1 as follows.

R H′

[in.]
R + H′

[fi.]

Scheme 1: The initial state [in.] and the final state [fi.] of the reaction model.

The superscripts in H′ is written according to [1].
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Abstract Hydrogen atom transfer is one important re-

action in biological system, in industry, and in atmo-

sphere. The reaction is preluded by hydrogen bond dis-

sociation. To gain a comprehensive understanding on

the reaction, it is necessary to investigate how the cur-

rent computational methods model hydrogen bond dis-

sociation. As a starting point, we utilized density func-

tional theory-based calculations to identify the effect

of dispersion and long-range corrections on O—H and

C—H dissociations in non-phenyl and phenyl groups.

We employed five different methods, namely B3LYP,
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CAM-B3LYP (with long-range correction), M06-2X, and

B3LYP and CAM-B3LYP with the D3 version of Grimme’s

dispersion. The results showed that for the case of O—H

dissociation in two member of phenyl groups, namely

phenol and catechol, the dispersion correction’s effect

was negligible but the long-range correction’s effect was

significant. The significant effect was shown by the in-

creasing of energy barrier and the shortening of O—H

interatomic distance in the transition state. Therefore,

we suggest one should consider the long-range correc-

tion in modeling hydrogen bond dissociation in phenolic

compounds, namely phenol and catechol.

Keywords density functional theory · dispersion

correction · energy · long-range correction · non-phenyl

and phenyl groups · O—H and C—H dissociations

1 Introduction

Hydrogen atom transfer is one important reaction that

occurs in various environments: the biological systems,

the atmosphere, and the industry. In biological systems,

the reaction takes place in lipid peroxidation formation

[1,2] and its prevention, [3–8] as well as in free radi-

cals formation [9]. In the atmosphere, the reaction in-

volves hydroxyl radical (OH) and organic or inorganic

materials [10,11]. Meanwhile in industry, one way the

reaction occurs is in the presence of a catalyst [12,13].

Overall, the reaction has been a subject of experimen-

tal and computational studies. However, there is still

a need to understand how the current computational

methods can model hydrogen bond dissociation. This

understanding will help to achieve a comprehensive in-

sight into the hydrogen atom transfer reaction.

Numerous publications have reported the usage of

computational methods based on density functional the-

Manuscript Click here to access/download;Manuscript;manuscript.tex
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2 F. Rusydi et al.

ory (DFT) to investigate hydrogen bond dissociation.

One quantity describing the hydrogen bond dissocia-

tion is bond dissociation energy (BDE). In 1999, Bar-

ckholtz et al. reported the use of one DFT exchange-

correlation (XC) functional, B3LYP, to predict C H

BDE of small aromatics. The predictions were in agree-

ment with the available experimental values [14]. In the

following years, the XC was used to predict the BDE of

various bonds in small and large molecules [15–17]. On

the other hand, other publications showed that B3LYP

has low accuracy [18–20] but is reliable to predict the

substituent effect such as in alkyl and peroxyl radicals

[18]. In 2008, Zhao and Truhlar introduced XC from

the Minnesota family, M06-2X. This XC has much-

improved accuracy in predicting BDE [21]. M06-2X is

reliable for various cases, such as predicting substituent

effects on O C and C C BDE of lignin [22] and pre-

dicting BDE of polyphenols in various solvents [23]. The

DFT used for the above prediction was unrestricted

[15,22]. In addition to B3LYP and M06-2X, Du et al.

used CAM-B3LYP, which includes a long-range correc-

tion to B3LYP, in their calculations. They found that

CAM-B3LYP underestimates O CH3 BDE relative to

experimental values. However, this XC has better per-

formance for aromatic molecules than for non-aromatic

molecules [24]. Even though many references have re-

ported the use of various DFT XCs for predicting BDE,

there is still limited references reported about the path

taken by hydrogen atom during the bond dissociation.

The use of XCs to model the path is necessary to gain

insight into the hydrogen atom transfer reactions. Thus,

the present work investigates the effect of dispersion

and long-range corrections in O H and C H bond dis-

sociations. The corrections have been integrated into

DFT XCs. Therefore, it is necessary to use DFT to

identify the effect of dispersion and long-range correc-

tion on O H and C H bond dissociations.

This work aims to study the effects of dispersion and

long-range corrections on the O-H and C-H bond dis-

sociations computationally. We utilize DFT with three

functionals combined with the D3 version of Grimme’s

dispersion. The combination is five methods: B3LYP

that has been used for chemical computation, CAM-

B3LYP that includes a long-range correction, B3LYP-

GD3 and CAM-B3LYP-GD3 which includes Grimme’s

dispersion, and M06-2X that has a good performance

for noncovalent interactions [25–28]. The dissociation is

designed to occur at O-H and C-H bonds of six non-

phenyl and three phenyl groups. The phenyl groups

containing O-H bonds are chosen to represent the phe-

nolic compounds. To achieve the goal, we calculate bond

dissociation energy and build hydrogen dissociation path-

ways using two techniques: a relaxed scan calculation

and a geometry optimization in the ground and transi-

tion states. We have used these two techniques to study

other chemical reactions [29–32]. This study will answer

the following question: What are the effects of the dis-

persion and long-range corrections on the O-H and C-H

dissociations of non-phenyl and phenyl groups?

2 Computational models

2.1 Reaction model

Scheme 1 presents our model for the homolytic hy-

drogen dissociation. The reactant was R H′ possess-

ing O H, or C H, bond; the products were R and a

hydrogen atom (H′ ). There were nine molecules of in-

terest for R H′, which were (a) hydroxyl, (b) methyli-

dyne, (c) water, (d) methane, (e) methanol, (f) ethane,

(g) toluene, (h) phenol, and (i) catechol. Figure 1 presents

the Kekulé structure of these molecules.

R H′

[in.]

R + H′

[fi.]

Scheme 1: The initial state [in.] and the final state [fi.]

of the reaction model.

[Fig. 1 about here.]

2.2 DFT calculations

We performed computational techniques with the basis

of DFT [33,34]. We used 6-311++G(d,p) basis set with

three different XCs; they were (1) B3LYP, (2) CAM-

B3LYP, and (3) M06-2X which were implemented in

Gaussian 16 software [35]. The first XC has become

a standard functional for a geometry structure study,

while the second XC has improved the long-range inter-

action of the first XC. The third XC has been param-

eterized, such that noncovalent interactions take into

account. We applied the D3 version of Grimme’s dis-

persion to accommodate the dispersion effect along the

dissociation pathways. We combined the XCs and the

dispersion into five different methods, as shown in Ta-

ble 1. In addition to DFT, we used Natural Bond Or-

bital (NBO) calculations for the natural hybrid orbital

and charge population analysis [36].

[Table 1 about here.]

The procedure for DFT calculations is as follows.

First, we validated that the three XCs were capable to

obtain the spin-state and the geometry in the ground
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state. For this purpose, we chose hydroxyl and phenol

because they represented molecules with odd and even

number of electrons and because their experimental re-

sults were available. Second, we performed a geometry

optimization to obtain the geometry of all molecules

of interest in the ground state using the five calcula-

tion methods. To obtain BDE (D◦) of hydrogen, we

coupled DFT with frequency calculations. It resulted

in the total electronic energy with thermal correction

to enthalpy at 298.15 K in the ground state. D◦ was

the enthalpy difference between the final and the initial

states in Scheme 1. Third, we constructed the hydrogen

dissociation pathways.

We employed two different computational techniques

for the third DFT calculations procedure. The first tech-

nique was a relaxed scan calculation, where one hydro-

gen atom (with prime mark in Figure 1) left oxygen or

carbon atom of R and let R relaxed. The increments

were set to be 0.2 Å for all methods. The second one

was based on the geometry optimization in the ground

and transition states. We applied the first technique to

the selected non-phenyl and phenyl groups. The value

of D◦ that was affected and was not affected by dis-

persion and/or long-range corrections became the re-

striction in selecting molecules in the first technique.

The first technique resulted in potential energy curve

(PEC) and the dissociation pathway was visualized us-

ing a polar coordinate. We emphasized that the path-

way that led to other than hydrogen dissociation would

not be discussed further. The PEC that was affected

by dispersion and/or long-range corrections became the

restriction to select molecules in the second technique.

The second technique yielded a dissociation pathway in

energy level diagrams (ELD). We have successfully ap-

plied both techniques in our previous studies for bigger

molecules [29–32].

We excluded PEC results from M06-2X in the cur-

rent study because it produced unreasonable results.

We also noted that Mardirossian and Head-Gordon [37]

reported a similar case. They highlighted that M06-

2X poorly predicted the bond length of krypton dimer

and benzene-silane dimer through their potential en-

ergy curves. We listed the symbols and acronyms in

Table 2 to assist readers in getting familiar with them.

[Table 2 about here.]

3 Results and discussion

3.1 The ground state structures

Spin-state and geometry The geometry optimization us-

ing the three XCs obtained the doublet and singlet as

the lowest in energy level for hydroxyl and phenol, re-

spectively. On average, the doublet was 4.6 eV lower

than the quartet (in hydroxyl); while the singlet was 4.2

eV lower than the triplet (in phenol). The doublet and

the singlet were more stable compared to the quartet

and the triplet. The results agree with the ground spin-

states of hydroxyl and phenol reported in references [38,

39]. Furthermore, the selected geometrical parameters

of hydroxyl and phenol in those spin-states were less

than 0.017 Å and 1.4 degrees (see Table 3). The val-

ues were within the accuracy limit for DFT calculations

[40]. Therefore, the three XCs were capable to obtain

the correct ground state structure of the molecules with

odd or even number of electrons. Based on these results,

the same XCs were used to obtain the ground spin-state

of other molecules with an odd and even numbers of

electrons which were doublet and singlet, respectively.

[Table 3 about here.]

The dispersion and long-range corrections Table 4 presents

O H′ and C H′ bond lengths of the obtained ground

state geometry of all molecules of interest. The Carte-

sian coordinates of the ground state geometry were given

in Table S1-S9 of Supplementary Information (SI). Cal-

culation using the method with dispersion correction

(M2 and M4) obtained the same bond length as the

method without the correction (M1 and M3). The method

with the long-range correction (M3) and the method

parameterized with dispersion-like interaction (M5) ob-

tained slightly shorter bond lengths (the negative val-

ues) than the method without the correction (M1). The

results suggest the dispersion and the long-range cor-

rections do not alter the ground state O H′ and C H′

bond lengths of our molecules of interest.

[Table 4 about here.]

3.2 The bond dissociation energy

Table 5 presents the discrepancy of D◦ between the

calculated and experimental values. Among all meth-

ods, the M5 method obtained D◦ the closest to the ex-

perimental values for molecules with singlet spin-state.

The results supported the work of Zhao and Truhlar

[21], which suggested using the M5 method for D◦ cal-

culations of molecules with singlet spin-state. There-

fore, M06-2X functional is suitable for dealing with the

hydrogen dissociation energy of molecules with singlet

spin-state.

[Table 5 about here.]
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The discrepancies obtained by M2, M3, and M4

were varied compared to that obtained by M1. In all

molecules [Table 5 (a)-(i)], M2 obtained 0.9 kJ/mol

(in average) discrepancies higher than M1 did. More-

over, M4 obtained 0.6 kJ/mol (in average) discrepan-

cies higher than M3 did. The results indicate that the

dispersion correction does not alter the calculated D◦

of molecules with singlet and doublet spin-states. In

hydroxyl and methylidyne [Table 5 (a) and (b)], M3

obtained 1.9 kJ/mol (in average) discrepancies lower

than M1 did. Meanwhile, in other molecules [Table 5

(c)-(i)], M3 obtained 4.4 kJ/mol (in average) discrep-

ancies higher than M1 did. The 4.4 kJ/mol is signif-

icant, which implies that the long-range correction is

the reason for D◦ alteration of molecules with singlet

spin-state. Thus, the long-range correction plays a role

in altering D◦ of molecules with singlet spin-state but

not the molecules with doublet spin-state.

Among seven molecules in Table 5 (c)-(i), the alter-

ation of discrepancies from M1 to M3 on O H′ bonds

differed from that on C H′ bonds. The seven molecules

were in their singlet spin-state. For four molecules with

O H′ bonds, the discrepancies increased by 5.7 kJ/mol

(on average) from M1 to M3. However, for three molecules

with C H′ bonds, the discrepancies only increased by

2.8 kJ/mol (in average) from M1 to M3. The increase on

O H′ bonds is more significant than on C H′ bonds. It

indicates that the long-range correction alters the cal-

culated D◦ on O H′ bond more than that on C H′

bond of molecules with singlet spin-state.

The increase in the discrepancy on O H′ bonds

was not accompanied by bond length alteration but by

O H′ bond orbitals alteration. As discussed in section

3.1, from M1 to M3, the ground state O H′ bond length

only altered by 0.002 Å. However, from M1 to M3, the

O H′ bond orbitals altered mainly in (spλ)O hybrid

orbitals (see Table S10 of the SI). According to the

NBO calculations, the average percentage of alteration

at (spλ)O hybrid orbitals was 33 times more than that

at (spλ)C hybrid orbitals. Therefore, the long-range cor-

rection plays a role in altering the electron density in

the O H′ bond orbitals; hence the calculated D◦ of

O H′ bond increases.

3.3 The potential energy curve

Figure 2 shows the PECs of four selected molecules

together with their respective polar coordinates. All

methods yielded two types of PEC profiles. The first

type was a PEC-like of dissociation diatomic molecules

[Figure 2(a)–2(b) left]. Region I described the dissocia-

tion process, and region II described H′ was already a

free atom. All methods agreed one to each other. The

second type was somewhat challenging to explain since

not all methods agreed [Figure 2(c)–2(d) left]. There

was region III that contained barriers. PEC profiles in

methylidyne and ethane were supportive results to the

first type, while PEC profiles in hydroxyl and water

were supportive results to the second type. Hence, they

were placed in Supporting Information [Figure S1(a)–

(b) and S1(c)–(d) left]. On the other hand, the polar co-

ordinates show that the hydrogen dissociation pathways

in methane [Figure 2(a) right] are different from those

in other molecules [Figure 2(b)–2(d) right and Figure

S1(c)–(d) right of the SI]. All methods were only agreed

for methane. It implies that the corrections (long-range

and dispersion) significantly affect the pathway in real

space rather than in the PEC profile.

[Fig. 2 about here.]

Overall, the PEC profiles of methanol and phenol

[Figure 2(c)–2(d) left] were explained as follows. In re-

gion III, methanol and phenol had barriers; methanol

had one, and phenol had at least three barriers. In both

cases, M2 yielded a similar barrier height to M1 did.

So did M4 and M3. It means the dispersion correction

does not alter the PEC profile of O H′ dissociation.

However, in both cases, M3 yielded a different barrier

height than M1 did. The results indicate that the long-

range correction does alter the PEC profile of O H′

dissociation. Therefore, the long-range correction plays

a more significant role than the dispersion correction in

the PEC profiles of O H′ dissociation.

In detail, for phenol [Figure 2(d)], the variation of

PEC profiles was accompanied by the variation of dis-

sociation pathways in the polar coordinate. Both varia-

tions occurred only at a certain O H′ distance (rO H′)

range. The PEC profile variation range was around 1.8–

3 Å; while the pathway variation range was around 2–4

Å. In those ranges, M3 yielded a different profile and

pathway than M1 did. Kamiya et al.[43] also obtained

different profiles when using XCs with long-range cor-

rection in a system interacting through a van der Waals

interaction (noncovalent interaction). Thus, the differ-

ent profiles obtained by the long-range correction (M3)

may be due to the presence of noncovalent interactions,

particularly at a region with barriers. Therefore, in line

with its role in O H′ BDE, the long-range correction

may play a role in the energy barrier of O H′ dissoci-

ation.

Along the phenol dissociation pathway, M1 and M3

obtained different r at B1a, B1b, and B2 (See Table

S11 of the SI). At B1a and B1b, atom H′ was located

around atom O [See Figure S2 of the SI]. Here, M3

obtained shorter rO H′ at B1a than M1 did at B1b.

Different than at B1a and B1b, at B2 atom H′ was lo-
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cated between atom 2 and atom 3. Here, M3 obtained

shorter r2 H′ and longer r3 H′ than M1 did. The re-

sults indicate that the shortening and lengthening of r

are due to the long-range correction.

The r alteration after the introduction of long-range

correction was accompanied by atomic charges alter-

ation. The NBO calculations showed that atom O, 2,

and 3 [See Figure 1(h)] were negatively charged while

atom H′ was positively charged. At B1a, M3 yielded

greater positive charge on atom H′ and greater nega-

tive charge on atom O than M1 did. It implies that the

increasing coulombic attraction between atom O and

H′ is the reason for the shortening of rO H′ at B1a.

At B2, M3 obtained lesser positive charge on atom H′

and greater negative charge on atom 2 than M1 did. It

indicates that the increasing coulombic attraction be-

tween atom 2 and H′ is the reason for the shortening of

the r2 H′. At this location, M3 obtained lesser negative

charge on atom 3 than M1 did. It implies the increas-

ing coulombic repulsion between atom 3 and H′ is the

reason for the lengthening of the r3 H′. Therefore, the

Coulombic interactions play a role in the alteration of

r.

3.4 The dissociation pathway

Figure 3 shows the O H′ dissociation pathways of two

selected molecules, phenol and catechol, in an ELD. For

the case of phenol [Figure 3(a)], each pathway had three

transition states (TS) and three intermediate states (IS)

as predicted earlier in Figure 2(d)left; while for the case

of catechol [Figure 3(b)], each pathway had two TSs and

two ISs. The experiment has observed the presence of

IS1 in a photochemical reaction [44]. While a theoreti-

cal study reported IS1 and IS3 as two isomers of phenol

[45]. Another theoretical study reported the first step

in decomposition of catechol lead to IS4 [46]. The simi-

larity between the molecules in the intermediate states

with the previous studies indicate the possibility of hy-

drogen migration before O H′ dissociation occurred.

[Fig. 3 about here.]

The dissociation pathways in phenol and catechol

showed that all methods obtained the same relative

electronic energy order in each TS. The order for both

cases was M1 ≈ M2 < M3 ≈ M4 < M5. For the case

of phenol, the average difference between the energy

obtained by methods with long-range correction (M3

and M4) and methods without the correction (M1 and

M2) was 0.16 eV. Similarly, for the case of catechol, the

average difference was 0.14 eV. The differences are sig-

nificant. It was aligned with the PEC profile difference

[Figure 2(d)left] after the long-range correction was in-

troduced, particularly at the region with barriers. The

results imply that the long-range correction predicts the

dissociation is more difficult at a region where the non-

covalent interaction may be present. Therefore, the cor-

rection indeed plays a role in the energy barrier of O H′

dissociation.

Methods with long-range correction (M3 and M4)

obtained shorter r than methods without the correc-

tion did in the TS structures. For the case of phenol,

the rO H′ and r3 H′ shortened by 0.01 Å on average.

The shortening was also similar to the case of cate-

chol. The 0.01 Å is significant compared to the O H′

bond length shortening in the ground state of phenol

and catechol [Table 4(h) and (i)]. Thus, the shorten-

ing confirms the shortening of r along the dissociation

pathway discussed in Subsection 3.3. For this reason,

the long-range correction indeed plays a role in r in the

transition state.

Methods with the long-range correction (M3 and

M4) obtained similar relative electronic energy to M5

did in the TSs. The average differences of relative elec-

tronic energy obtained by those methods were 0.07 for

phenol and 0.06 for catechol. These values are very

small which indicate the similarity of transition state

according to those methods. Therefore, CAM-B3LYP

and M06-2X predicts comparable transition state of

O H′ dissociation.

Overall, all methods showed consistent performances

on the BDE calculations and O H′ dissociation path-

ways prediction. For the BDE calculations, the meth-

ods obtained the D◦ of O H′ bonds in all molecules in-

creased in the following order: M1 ≈ M2 < M3 ≈ M4 <

M5. The increase of D◦ after the presence of long-range

correction in CAM-B3LYP (M3) was in agreement with

the study by Chan et al. [47] For the pathways predic-

tion, the methods obtained variation of pathways in

phenol and cathecol dissociation. The variations were

identified by the alteration in energy barriers and rO H′

in the TS. The energy barrier increased in the same or-

der as the increase in D◦ of O H′ bonds. This result

validates the study by Peach et al. [48] that showed in-

creasing barrier height when using CAM-B3LYP com-

pared to B3LYP. The increasing energy barriers was

accompanied by the shortening of rO H′ as follows: M1

≈ M2 > M3 ≈ M4. The shortening due to the long-

range correction (M3) was in agreement with our pre-

vious study [31]. The results show the significance of

this research: the use of long-range correction in CAM-

B3LYP affects the rO H′ in TS. On the other hand, the

M06-2X used in this study predicted the highest D◦ and

energy barrier. The D◦ was similar to the experimen-

tal observation. Its developer suggested the functional

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 F. Rusydi et al.

for applications involving main group thermochemistry,

kinetics, and noncovalent interactions [21,28].

4 Conclusion

We have studied the effects of dispersion and long-

range corrections on O H and C H dissociations of

non-phenyl and phenyl groups. The effects were identi-

fied through bond dissociation energy and dissociation

pathways. We summarized that the dispersion correc-

tion had negligible effects on the O H and C H bond

dissociation energies and the non-phenyl and phenyl

groups dissociation pathways. While the long-range cor-

rection in CAM-B3LYP had a minor effect on the O H

bond dissociation energy and a significant effect on the

O H dissociation pathways. We found that the long-

range correction increased the bond dissociation energy

of the O H bond of non-phenyl and phenyl groups in

their singlet states by 5.7 kJ/mol. We argued that the

increase was due to the alteration of electron density

in the O H bond orbitals. However, the dissociation

energy was still far from the experimental results. The

significant effects of the long-range correction on the

O H dissociation pathways occurred in two members

of phenyl groups, namely phenol and catechol. The ef-

fects were identified as follows. First, the correction

shortened the O H distances in the transition states

by 0.01 Å, on average. Second, the correction increased

the energy barrier by 0.16 eV (in phenol) and 0.14 eV

(in catechol), on average. Overall, our results support

other theoretical studies on the increasing energy bar-

rier due to the long-range correction. Accordingly, we

suggest that one should consider the long-range cor-

rection when studying hydrogen bond dissociation in

phenolic compounds, such as phenol and catechol.
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(a) PEC (left) and polar coordinate (right) of methane.

(b) PEC (left) and polar coordinate (right) of toluene.

(c) PEC (left) and polar coordinate (right) of methanol.

(d) PEC (left) and polar coordinate (right) of phenol.

Fig. 2 PECs of C H′ and O H′ bond dissociations with their respective polar coordinates. The I, II, and III
represented three different regions based on the similarity of events at each region. Angles in the polar coordinate
were H C H′ in methane, 2–1–C H′ in toluene, H C O H′ in methanol, and 2–1–O H′ in phenol (see Figure 1).
The initial angle was at zero degree, then deviated clockwise or counterclockwise. Particularly in methane, the
clockwise represented inward deviation. B1a, B1b, B2, and B3 in (d) represented first barrier obtained by M1 and
M2, first barrier obtained by M3 and M4, second and third barrier obtained by all four methods, respectively

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



FIGURES 11

(a) O H′ dissociation pathways of phenol

(b) O H′ dissociation pathways of catechol

Fig. 3 Energy level diagram for O H′ dissociation pathways of two selected molecules. R1, R2, P1, and P2 represent
phenol, catechol, product of phenol dissociation, and product of catechol dissociation. While TS and IS stand for
transition state and intermediate state. The TSs were shown with the selected interactomic distances (unit in Å)
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TABLES 13

Table 1 List of methods used in the manuscript

M1 B3LYP
M2 B3LYP + GD3
M3 CAM-B3LYP
M4 CAM-B3LYP + GD3
M5 M06-2X
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Table 2 List of symbols and acronyms used throughout the manuscript

Symbol/acronym Description

D◦ Bond dissociation energy
r Distances between atoms
BDE Bond dissociation energy
DFT Density functional theory
ELD Energy level diagram
IS Intermediate state
NBO Natural Bond Orbital
PEC Potential energy curve
TS Transition state
XC Exchange-correlation
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TABLES 15

Table 3 The discrepancy of calculated geometrical parameters of hydroxyl and phenol by (1) B3LYP, (2) CAM-
B3LYP, and (3) M06-2X with respect to the experimental values [41]. The parameters were bond length (R, in Å)
and bond angle (A, in degree). The parameter in (i) belongs to hydroxyl; while others belong to phenol

Parameter Expr. (1) (2) (3)
(i) R(O,H′) 0.970 +0.006 +0.005 +0.003
(ii) R(O,H′) 0.956 +0.007 +0.005 +0.005
(iii) R(C,C)av 1.397 -0.003 -0.009 -0.006
(iv) R(1,O) 1.364 +0.006 0.000 -0.001
(v) R(4,H) 1.082 +0.001 +0.001 0.000
(vi) R(5,H) 1.076 +0.008 +0.008 +0.008
(vii) R(6,H) 1.084 +0.002 +0.001 +0.002
(viii) A(1,O,H′) 109.0 +0.8 +1.0 +0.8
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Table 4 The difference of calculated O H′ and C H′ bond lengths from M1 (Å). The label referred to Figure 1

Molecule Bond M1 M2 M3 M4 M5

(a) Hydroxyl O H’ 0.976 0.000 -0.002 -0.002 -0.004

(b) Methylidyne C H’ 1.127 0.000 -0.003 -0.003 -0.007

(c) Water O H’ 0.962 0.000 -0.001 -0.001 -0.003

(d) Methane C H’ 1.091 0.000 -0.001 -0.001 -0.002

(e) Methanol O H’ 0.961 0.000 -0.002 -0.002 -0.003

(f) Ethane C H’ 1.094 0.000 -0.001 -0.001 -0.002

(g) Toluene C H’ 1.094 0.000 -0.002 -0.002 -0.002

(h) Phenol O H’ 0.963 0.000 -0.002 -0.002 -0.002

(i) Catechol O H’ 0.962 0.000 -0.002 -0.002 -0.002
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TABLES 17

Table 5 The discrepancy of calculated D◦ with respect to the experimental values (kJ/mol) [41,42]. The label referred
to Figure 1

Molecule Bond Expr. M1 M2 M3 M4 M5

(a) Hydroxyl O H’ 429.73 -1.1 -1.1 -0.8 -0.8 -9.2

(b) Methylidyne C H’ 338.4 +1.8 +1.8 -2.2 -2.2 -8.1

(c) Water O H’ 497.32 -17.1 -17.1 -14.0 -14.0 -11.7

(d) Methane C H’ 439.3 -8.3 -8.2 -7.1 -7.0 -6.1

(e) Methanol O H’ 440.2 -26.4 -25.2 -21.1 -20.3 -11.5

(f) Ethane C H’ 420.5 -8.9 -7.6 -6.8 -6.0 -3.4

(g) Toluene C H’ 375.5 -10.8 -9.1 -5.8 -4.7 +2.9

(h) Phenol O H’ 362.8 -16.0 -14.6 -9.6 -8.6 +6.7

(i) Catechol O H’ 342.3 -32.0 -29.9 -24.0 -22.5 -9.8
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Abstract
Hydrogen atom transfer is one important reaction in biological system, in industry, and in atmosphere. The reaction is preluded by
hydrogen bond dissociation. To gain a comprehensive understanding on the reaction, it is necessary to investigate how the current
computational methods model hydrogen bond dissociation. As a starting point, we utilized density functional theory-based calculations
to identify the effect of dispersion and long-range corrections on O—H and C—H dissociations in non-phenyl and phenyl groups. We
employed five different methods, namely B3LYP, CAM-B3LYP (with long-range correction), M06-2X, and B3LYP and CAM-B3LYP
with the D3 version of Grimme’s dispersion. The results showed that for the case of O—H dissociation in two member of phenyl
groups, namely phenol and catechol, the dispersion correction’s effect was negligible, but the long-range correction’s effect was
significant. The significant effect was shown by the increasing of energy barrier and the shortening of O—H interatomic distance in the
transition state. Therefore, we suggest one should consider the long-range correction in modeling hydrogen bond dissociation in
phenolic compounds, namely phenol and catechol.
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1.  Introduction
Hydrogen atom transfer is one important reaction that occurs in various environments: the biological systems, the atmosphere, and the
industry. In biological systems, the reaction takes place in lipid peroxidation formation [ 1, 2 ] and its prevention, [ 3, 4, 5, 6, 7, 8 ] as well as
in free radicals formation [ 9 ]. In the atmosphere, the reaction involves hydroxyl radical (OH) and organic or inorganic materials [ 10, 11 ].
Meanwhile in industry, one way the reaction occurs is in the presence of a catalyst [ 12, 13 ]. Overall, the reaction has been a subject of
experimental and computational studies. However, there is still a need to understand how the current computational methods can model
hydrogen bond dissociation. This understanding will help to achieve a comprehensive insight into the hydrogen atom transfer reaction.

Numerous publications have reported the usage of computational methods based on density functional theory (DFT) to investigate
hydrogen bond dissociation. One quantity describing the hydrogen bond dissociation is bond dissociation energy (BDE). In 1999,
Barckholtz et al. reported the use of one DFT exchange-correlation (XC) functional, B3LYP, to predict C-H BDE of small aromatics. The
predictions were in agreement with the available experimental values [ 14 ]. In the following years, the XC was used to predict the BDE of
various bonds in small and large molecules [ 15, 16, 17 ]. On the other hand, other publications showed that B3LYP has low accuracy [
18, 19, 20 ] but is reliable to predict the substituent effect such as in alkyl and peroxyl radicals [ 18 ]. In 2008, Zhao and Truhlar introduced
XC from the Minnesota family, M06-2X. This XC has much-improved accuracy in predicting BDE [ 21 ]. M06-2X is reliable for various
cases, such as predicting substituent effects on O-C and C-C BDE of lignin [ 22 ] and predicting BDE of polyphenols in various solvents [
23 ]. The DFT used for the above prediction was unrestricted [ 15, 22 ]. In addition to B3LYP and M06-2X, Du et al. used CAM-B3LYP,
which includes a long-range correction to B3LYP, in their calculations. They found that CAM-B3LYP underestimates O-CH3 BDE relative
to experimental values. However, this XC has better performance for aromatic molecules than for non-aromatic molecules [ 24 ]. Even
though many references have reported the use of various DFT XCs for predicting BDE, there is still limited references reported about the
path taken by hydrogen atom during the bond dissociation. The use of XCs to model the path is necessary to gain insight into the hydrogen
atom transfer reactions. Thus, the present work investigates the effect of dispersion and long-range corrections in O-H and C-H bond
dissociations. The corrections have been integrated into DFT XCs. Therefore, it is necessary to use DFT to identify the effect of dispersion
and long-range correction on O-H and C-H bond dissociations.

This work aims to study the effects of dispersion and long-range corrections on the O-H and C-H bond dissociations computationally. We
utilize DFT with three functionals combined with the D3 version of Grimme’s dispersion. The combination is five methods: B3LYP that
has been used for chemical computation, CAM-B3LYP that includes a long-range correction, B3LYP-GD3 and CAM-B3LYP-GD3 which
include Grimme’s dispersion, and M06-2X that has a good performance for noncovalent interactions [ 25, 26, 27, 28 ]. The dissociation is
designed to occur at O-H and C-H bonds of six non-phenyl and three phenyl groups. The phenyl groups containing O-H bonds are chosen
to represent the phenolic compounds. To achieve the goal, we calculate bond dissociation energy and build hydrogen bond dissociation
pathways using two techniques: a relaxed scan calculation and a geometry optimization in the ground and transition states. We have used
these two techniques to study other chemical reactions [ 29, 30, 31, 32 ]. This study will answer the following question: What are the effects
of the dispersion and long-range corrections on the O-H and C-H dissociations of non-phenyl and phenyl groups?

2.  Computational	models
2.1.  Reaction	model
Scheme 1  presents our model for the homolytic hydrogen bond dissociation. The reactant was R-  possessing O-H, or C-H, bond; the
products were  and a hydrogen atom ( ). There were nine molecules of interest for R- , which were (a) hydroxyl, (b) methylidyne,
(c) water, (d) methane, (e) methanol, (f) ethane, (g) toluene, (h) phenol, and (i) catechol.

Figure 1  presents the Kekulé structures of these molecules.

Scheme 1

The initial state [in.] and the final state [fi.] of the reaction model.

Fig. 1

Kekulé structures of the molecules of interest. The primed H was the dissociated hydrogen atom. For clarity in molecules (g)–(i), only
dissociated hydrogen atom was shown, and carbon atoms were replaced by numbers

H′

R. H′. H′
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2.2.  DFT	calculations
We performed computational techniques with the basis of DFT [ 33, 34 ]. We used 6-311++G(d,p) basis set with three different XCs; they
were (1) B3LYP, (2) CAM-B3LYP, and (3) M06-2X which were implemented in Gaussian 16 software [ 35 ]. The first XC has become a
standard functional for a geometry structure study, while the second XC has improved the long-range interaction of the first XC. The third
XC has been parameterized, such that noncovalent interactions take into account. We applied the D3 version of Grimme’s dispersion to
accommodate the dispersion effect along the dissociation pathways. We combined the XCs and the dispersion into five different methods,
as shown in Table 1 . In addition to DFT, we used Natural Bond Orbital (NBO) calculations for the natural hybrid orbital and charge

population analysis [ 36 ].

Table 1

List of methods used in the manuscript

M1 B3LYP

M2 B3LYP + GD3

M3 CAM-B3LYP

M4 CAM-B3LYP + GD3

M5 M06-2X

The procedure for DFT calculations is as follows. First, we validated that the three XCs were capable to obtain the spin-state and the
geometry in the ground state. For this purpose, we chose hydroxyl and phenol because they represented molecules with odd and even
number of electrons and because their experimental results were available. Second, we performed a geometry optimization to obtain the
geometry of all molecules of interest in the ground state using the five calculation methods. To obtain BDE ( ) of hydrogen, we coupled
DFT with frequency calculations. It resulted in the total electronic energy with thermal correction to enthalpy at 298.15 K in the ground
state.  was the enthalpy difference between the final and the initial states in Scheme 1. Third, we constructed the hydrogen
bond dissociation pathways.

We employed two different computational techniques for the third DFT calculations procedure. The first technique was a relaxed scan
calculation, where one hydrogen atom (with prime mark in Figure 1 ) left oxygen or carbon atom of  and let  relaxed. The
increments were set to be 0.2 Å  for all methods. The second one was based on the geometry optimization in the ground and transition
states. We applied the first technique to the selected non-phenyl and phenyl groups. The value of  that was affected and was not
affected by dispersion and/or long-range corrections became the restriction in selecting molecules in the first technique. The first
technique resulted in potential energy curve (PEC), and the dissociation pathway was visualized using a polar coordinate. We emphasized
that the pathway that led to other than hydrogen bond dissociation would not be discussed further. The PEC that was affected by
dispersion and/or long-range corrections became the restriction to select molecules in the second technique. The second technique yielded
a dissociation pathway in energy level diagrams (ELD). We have successfully applied both techniques in our previous studies for bigger
molecules [ 29, 30, 31, 32 ].

We excluded PEC results from M06-2X in the current study because it produced unreasonable results. We also noted that Mardirossian
and Head-Gordon [ 37 ] reported a similar case. They highlighted that M06-2X poorly predicted the bond length of krypton dimer and

benzene-silane dimer through their potential energy curves. We listed the symbols and acronyms in Table 2  to assist readers in getting
familiar with them.

Table 2

List of symbols and acronyms used throughout the manuscript

Symbol/acronym Description

Bond dissociation energy

r Distances between atoms

BDE Bond dissociation energy

DFT Density functional theory

ELD Energy level diagram

IS Intermediate state

NBO Natural Bond Orbital

D∘

D∘

R. R.
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Symbol/acronym DescriptionPEC Potential energy curve

TS Transition state

XC Exchange-correlation

3.  Results	and	discussion
3.1.  The	ground	state	structures
Spin-state and geometry The geometry optimization using the three XCs obtained the doublet and singlet as the lowest in energy level for
hydroxyl and phenol, respectively. On average, the doublet was 4.6 eV lower than the quartet (in hydroxyl), while the singlet was 4.2 eV
lower than the triplet (in phenol). The doublet and the singlet were more stable compared to the quartet and the triplet. The results agree
with the ground spin-states of hydroxyl and phenol reported in references [ 38, 39 ]. Furthermore, the selected geometrical parameters of

hydroxyl and phenol in those spin-states were less than 0.017 Å  and 1.4 degrees (see Table 3 ). The values were within the accuracy limit

for DFT calculations [ 40 ]. Therefore, the three XCs were capable to obtain the correct ground state structure of the molecules with odd
or even number of electrons. Based on these results, the same XCs were used to obtain the ground spin-state of other molecules with an
odd and even numbers of electrons which were doublet and singlet, respectively.

Table 3

The discrepancy of calculated geometrical parameters of hydroxyl and phenol by (1) B3LYP, (2) CAM-B3LYP, and (3) M06-2X with respect to the
experimental values [ 41 ]. The parameters were bond length (R, in Å) and bond angle (A, in degree). The parameter in (i) belongs to hydroxyl, while others
belong to phenol

 Parameter Expr. (1) (2) (3)

(i) R(O, ) 0.970 +0.006 +0.005 +0.003

(ii) R(O, ) 0.956 +0.007 +0.005 +0.005

(iii) R(C,C)av 1.397 − 0.003 − 0.009 -0.006

(iv) R(1,O) 1.364 +0.006 0.000 − 0.001

(v) R(4,H) 1.082 +0.001 +0.001 0.000

(vi) R(5,H) 1.076 +0.008 +0.008 +0.008

(vii) R(6,H) 1.084 +0.002 +0.001 +0.002

(viii) A(1,O, ) 109.0 +0.8 +1.0 +0.8

The dispersion and long-range corrections Table 4  presents O-  and C-  bond lengths of the obtained ground state geometry of all
molecules of interest. The Cartesian coordinates of the ground state geometry were given in Table S1-S9 of Supplementary Information
(SI). Calculation using the method with dispersion correction (M2 and M4) obtained the same bond length as the method without the
correction (M1 and M3). The method with the long-range correction (M3) and the method parameterized with dispersion-like interaction
(M5) obtained slightly shorter bond lengths (the negative values) than the method without the correction (M1). The results suggest the
dispersion and the long-range corrections do not alter the ground state O-  and C-  bond lengths of our molecules of interest.

Table 4

The difference of calculated O-  and C-  bond lengths from M1 (Å). The label referred to Fig. 1

 Molecule Bond M1 M2 M3 M4 M5

(a) Hydroxyl O-H 0.976 0.000 −0.002 −0.002 −0.004

(b) Methylidyne C-H 1.127 0.000 −0.003 −0.003 −0.007

(c) Water O-H 0.962 0.000 −0.001 −0.001 −0.003

(d) Methane C-H 1.091 0.000 −0.001 −0.001 −0.002

(e) Methanol O-H 0.961 0.000 −0.002 −0.002 −0.003

(f) Ethane C-H 1.094 0.000 −0.001 −0.001 −0.002

(g) Toluene C-H 1.094 0.000 −0.002 −0.002 −0.002

(h) Phenol O-H 0.963 0.000 −0.002 −0.002 −0.002

(i) Catechol O-H 0.962 0.000 −0.002 −0.002 −0.002

3.2.  The	bond	dissociation	energy
Table 5  presents the discrepancy of  between the calculated and experimental values. Among all methods, the M5 method obtained 

 the closest to the experimental values for molecules with singlet spin-state. The results supported the work of Zhao and Truhlar [ 21 ],
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which suggested using the M5 method for  calculations of molecules with singlet spin-state. Therefore, M06-2X functional is suitable
for dealing with the hydrogen bond dissociation energy of molecules with singlet spin-state.

Table 5

The discrepancy of calculated  with respect to the experimental values (kJ/mol) [ 41, 42 ]. The label referred to Fig. 1

 Molecule Bond Expr. M1 M2 M3 M4 M5

(a) Hydroxyl O-H 429.73 −1.1 −1.1 −0.8 −0.8 −9.2

(b) Methylidyne C-H 338.4 +1.8 +1.8 −2.2 −2.2 −8.1

(c) Water O-H 497.32 −17.1 −17.1 −14.0 −14.0 −11.7

(d) Methane C-H 439.3 −8.3 −8.2 −7.1 −7.0 −6.1

(e) Methanol O-H 440.2 −26.4 −25.2 −21.1 −20.3 −11.5

(f) Ethane C-H 420.5 −8.9 −7.6 −6.8 −6.0 −3.4

(g) Toluene C-H 375.5 −10.8 −9.1 −5.8 −4.7 +2.9

(h) Phenol O-H 362.8 −16.0 −14.6 −9.6 −8.6 +6.7

(i) Catechol O-H 342.3 −32.0 −29.9 −24.0 −22.5 −9.8

The discrepancies obtained by M2, M3, and M4 were varied compared to that obtained by M1. In all molecules [Table 5  (a)-(i)], M2
obtained 0.9 kJ/mol (in average) discrepancies higher than M1 did. Moreover, M4 obtained 0.6 kJ/mol (in average) discrepancies higher
than M3 did. The results indicate that the dispersion correction does not alter the calculated  of molecules with singlet and doublet
spin-states. In hydroxyl and methylidyne [Table 5  (a) and (b)], M3 obtained 1.9 kJ/mol (in average) discrepancies lower than M1 did.

Meanwhile, in other molecules [Table 5  (c)-(i)], M3 obtained 4.4 kJ/mol (in average) discrepancies higher than M1 did. The 4.4 kJ/mol is
significant, which implies that the long-range correction is the reason for  alteration of molecules with singlet spin-state. Thus, the
long-range correction plays a role in altering  of molecules with singlet spin-state but not the molecules with doublet spin-state.

Among seven molecules in Table 5  (c)-(i), the alteration of discrepancies from M1 to M3 on O-  bonds differed from that on C-
bonds. The seven molecules were in their singlet spin-state. For four molecules with O-  bonds, the discrepancies increased by 5.7
kJ/mol (on average) from M1 to M3. However, for three molecules with C-  bonds, the discrepancies only increased by 2.8 kJ/mol (in
average) from M1 to M3. The increase on O-  bonds is more significant than on C-  bonds. It indicates that the long-range correction
alters the calculated  on O-  bond more than that on C-  bond of molecules with singlet spin-state.

The increase in the discrepancy on O-  bonds was not accompanied by bond length alteration but by O-  bond orbitals alteration. As
discussed in Sect. 3.1 , from M1 to M3, the ground state O-  bond length only altered by 0.002 Å. However, from M1 to M3, the O-
bond orbitals altered mainly in  hybrid orbitals (see Table S10 of the SI). According to the NBO calculations, the average
percentage of alteration at  hybrid orbitals was 33 times more than that at  hybrid orbitals. Therefore, the long-range
correction plays a role in altering the electron density in the O-  bond orbitals; hence the calculated  of O-  bond increases.

3.3.  The	potential	energy	curve
Figure 2  shows the PECs of four selected molecules together with their respective polar coordinates. All methods yielded two types of

PEC profiles. The first type was a PEC-like of dissociation diatomic molecules [Fig.  2 (a)– 2 (b) left]. Region I described the dissociation
process, and region II described  was already a free atom. All methods agreed one to each other. The second type was somewhat
challenging to explain since not all methods agreed [Fig. 2 (c)– 2 (d) left]. There was region III that contained barriers. PEC profiles in
methylidyne and ethane were supportive results to the first type, while PEC profiles in hydroxyl and water were supportive results to the
second type. Hence, they were placed in Supporting Information [Figure S1(a)–(b) and S1(c)–(d) left]. On the other hand, the polar
coordinates show that the hydrogen bond dissociation pathways in methane [Fig. 2 (a) right] are different from those in other molecules

[Fig. 2 (b)– 2 (d) right and Figure S1(c)–(d) right of the SI]. All methods were only agreed for methane. It implies that the corrections
(long-range and dispersion) significantly affect the pathway in real space rather than in the PEC profile.

Fig. 2

PECs of C-  and O-  bond dissociations with their respective polar coordinates. The I, II, and III represented three different regions based
on the similarity of events at each region. Angles in the polar coordinate were H-C-  in methane, 2–1–C-  in toluene, H-C-O-  in
methanol, and 2–1–O-  in phenol (see Fig. 1 ). The initial angle was at zero degree, then deviated clockwise or counterclockwise.
Particularly in methane, the clockwise represented inward deviation. B1a, B1b, B2, and B3 in (d) represented first barrier obtained by M1
and M2, first barrier obtained by M3 and M4, second and third barrier obtained by all four methods, respectively

Overall, the PEC profiles of methanol and phenol [Fig. 2 (c)– 2 (d) left] were explained as follows. In region III, methanol and phenol had
barriers; methanol had one, and phenol had at least three barriers. In both cases, M2 yielded a similar barrier height to M1 did. So did M4
and M3. It means the dispersion correction does not alter the PEC profile of O-  dissociation. However, in both cases, M3 yielded a
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different barrier height than M1 did. The results indicate that the long-range correction does alter the PEC profile of O-  dissociation.
Therefore, the long-range correction plays a more significant role than the dispersion correction in the PEC profiles of O-  dissociation.

In detail, for phenol [Fig. 2 (d)], the variation of PEC profiles was accompanied by the variation of dissociation pathways in the polar
coordinate. Both variations occurred only at a certain O-  distance ( ) range. The PEC profile variation range was around 1.8–3 Å;
while the pathway variation range was around 2–4 Å. In those ranges, M3 yielded a different profile and pathway than M1 did. Kamiya et
al. [ 43 ] also obtained different profiles when using XCs with long-range correction in a system interacting through a van der Waals
interaction (noncovalent interaction). Thus, the different profiles obtained by the long-range correction (M3) may be due to the presence
of noncovalent interactions, particularly at a region with barriers. Therefore, in line with its role in O-  BDE, the long-range correction
may play a role in the energy barrier of O-  dissociation.

Along the phenol dissociation pathway, M1 and M3 obtained different r at B1a, B1b, and B2 (See Table S11 of the SI). At B1a and B1b,
atom  was located around atom O [See Figure S2 of the SI]. Here, M3 obtained shorter  at B1a than M1 did at B1b. Different

than at B1a and B1b, at B2 atom  was located between atom 2 and atom 3. Here, M3 obtained shorter  and longer  than M1
did. The results indicate that the shortening and lengthening of r are due to the long-range correction.

The r alteration after the introduction of long-range correction was accompanied by atomic charges alteration. The NBO calculations
showed that atom O, 2, and 3 [See Fig. 1 (h)] were negatively charged while atom  was positively charged. At B1a, M3 yielded greater
positive charge on atom  and greater negative charge on atom O than M1 did. It implies that the increasing coulombic attraction
between atom O and  is the reason for the shortening of  at B1a. At B2, M3 obtained lesser positive charge on atom  and

greater negative charge on atom 2 than M1 did. It indicates that the increasing coulombic attraction between atom 2 and  is the reason
for the shortening of the  At this location, M3 obtained lesser negative charge on atom 3 than M1 did. It implies the increasing

coulombic repulsion between atom 3 and  is the reason for the lengthening of the  Therefore, the Coulombic interactions play a
role in the alteration of r.

3.4.  The	dissociation	pathway
Figure 3  shows the O-  dissociation pathways of two selected molecules, phenol and catechol, in an ELD. For the case of phenol [Fig. 

3 (a)], each pathway had three transition states (TS) and three intermediate states (IS) as predicted earlier in Fig. 2 (d)left; while for the

case of catechol [Fig. 3 (b)], each pathway had two TSs and two ISs. The experiment has observed the presence of IS1 in a photochemical

reaction [ 44 ]. While a theoretical study reported IS1 and IS3 as two isomers of phenol [ 45 ]. Another theoretical study reported the first
step in decomposition of catechol lead to IS4 [ 46 ]. The similarity between the molecules in the intermediate states with the previous
studies indicates the possibility of hydrogen migration before O-  dissociation occurred.

Fig. 3

Energy level diagram for O-  dissociation pathways of two selected molecules. R1, R2, P1, and P2 represent phenol, catechol, product of
phenol dissociation, and product of catechol dissociation. While TS and IS stand for transition state and intermediate state. The TSs were
shown with the selected interatomic distances (unit in Å)

The dissociation pathways in phenol and catechol showed that all methods obtained the same relative electronic energy order in each TS.
The order for both cases was M1  M2 < M3  M4 < M5. For the case of phenol, the average difference between the energy obtained by
methods with long-range correction (M3 and M4) and methods without the correction (M1 and M2) was 0.16 eV. Similarly, for the case of
catechol, the average difference was 0.14 eV. The differences are significant. It was aligned with the PEC profile difference [Fig. 2
(d)left] after the long-range correction was introduced, particularly at the region with barriers. The results imply that the long-range
correction predicts the dissociation is more difficult at a region where the noncovalent interaction may be present. Therefore, the
correction indeed plays a role in the energy barrier of O-  dissociation.

Methods with long-range correction (M3 and M4) obtained shorter r than methods without the correction did in the TS structures. For the
case of phenol, the  and  shortened by 0.01 Å  on average. The shortening was also similar to the case of catechol. The 0.01

Å  is significant compared to the O-  bond length shortening in the ground state of phenol and catechol [Table 4 (h) and (i)]. Thus, the
shortening confirms the shortening of r along the dissociation pathway discussed in Subsection 3.3. For this reason, the long-range
correction indeed plays a role in r in the transition state.

Methods with the long-range correction (M3 and M4) obtained similar relative electronic energy to M5 did in the TSs. The average
differences of relative electronic energy obtained by those methods were 0.07 for phenol and 0.06 for catechol. These values are very
small which indicate the similarity of transition state according to those methods. Therefore, CAM-B3LYP and M06-2X predict
comparable transition state of O-  dissociation.

Overall, all methods showed consistent performances on the BDE calculations and O-  dissociation pathways prediction. For the BDE
calculations, the methods obtained the  of O-  bonds in all molecules increased in the following order: M1  M2 < M3  M4 < M5.
The increase of  after the presence of long-range correction in CAM-B3LYP (M3) was in agreement with the study by Chan et al. [ 47
] For the pathways prediction, the methods obtained variation of pathways in phenol and catechol dissociation. The variations were
identified by the alteration in energy barriers and  in the TS. The energy barrier increased in the same order as the increase in 

of O-  bonds. This result validates the study by Peach et al. [ 48 ] that showed increasing barrier height when using CAM-B3LYP
compared to B3LYP. The increasing energy barriers was accompanied by the shortening of  as follows: M1  M2 > M3  M4.
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The shortening due to the long-range correction (M3) was in agreement with our previous study [ 31 ]. The results show the significance
of this research: the use of long-range correction in CAM-B3LYP affects the  in TS. On the other hand, the M06-2X used in this

study predicted the highest  and energy barrier. The  was similar to the experimental observation. Its developer suggested the
functional for applications involving main group thermochemistry, kinetics, and noncovalent interactions [ 21, 28 ].

4.  Conclusion
We have studied the effects of dispersion and long-range corrections on O-H and C-H dissociations of non-phenyl and phenyl groups. The
effects were identified through bond dissociation energy and dissociation pathways. We summarized that the dispersion correction had
negligible effects on the O-H and C-H bond dissociation energies and the non-phenyl and phenyl groups dissociation pathways. While the
long-range correction in CAM-B3LYP had a minor effect on the O-H bond dissociation energy and a significant effect on the O-H
dissociation pathways. We found that the long-range correction increased the bond dissociation energy of the O-H bond of non-phenyl and
phenyl groups in their singlet states by 5.7 kJ/mol. We argued that the increase was due to the alteration of electron density in the O-H
bond orbitals. However, the dissociation energy was still far from the experimental results. The significant effects of the long-range
correction on the O-H dissociation pathways occurred in two members of phenyl groups, namely phenol and catechol. The effects were
identified as follows. First, the correction shortened the O-H distances in the transition states by 0.01 Å, on average. Second, the correction
increased the energy barrier by 0.16 eV (in phenol) and 0.14 eV (in catechol), on average. Overall, our results support other theoretical
studies on the increasing energy barrier due to the long-range correction. Accordingly, we suggest that one should consider the long-range
correction when studying hydrogen bond dissociation in phenolic compounds, such as phenol and catechol.
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