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a b s t r a c t

Five new indole alkaloids, voacalgines AeE (1e5) consisting of a C-mavacurine type of skeleton with 2,3-
dihydroxybenzoate moiety, a macroline-type of skeleton, or a macroline-type of skeleton with C6 unit,
were isolated from the bark of Voacanga grandifolia. Their relative structures were determined bymeans of
NMRdata. Voacalgine A showedmoderate cell growth inhibitory activities against HL-60 andHCT116 cells.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Voacanga grandifolia (Miq.) Rolfe is a member of the Apoc-
ynaceae family distributed in Indonesia and India, and is found
mostly in Java.1 The bark and leaves have been known to produce
various skeletal alkaloids such as voacinol,2 vobtusine,3 vobtusi-
nelactone,4 and rhazine.5 In our search for bioactive alkaloids from

tropical plants,6e14 voacalgines AeE (1e5), five new indole alka-
loids consisting of a C-mavacurine15 type of skeleton with fused
benzoic acid moiety, a macroline16 type of skeleton, or a macroline-
type of skeleton with another C6 unit, have been isolated from the
bark of V. grandifolia. In this paper, we describe the isolation and
structure elucidation of 1e5 as well as their in vitro cell growth
inhibitory activities against three human cell lines.

* Corresponding author. E-mail address: moritah@hoshi.ac.jp (H. Morita).
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2. Results and discussion

2.1. Voacalgine A (1)

Voacalgine A (1) showed a molecular formula, C27H26N2O6,
which was determined by HRESITOFMS [m/z 475.1842 (MþH)þ, D
�2.7mmu]. IR absorption bandwas characteristic of carbonyl (1750
and 1670 cm�1) and hydroxyl (3023 cm�1) groups. 1H and 13C NMR
data (Table 1) suggested the presence of two sp3 quaternary car-
bons, four sp3 methylenes, three sp3 methines, two methyls, seven
sp2 methines, and nine sp2 quaternary carbons. Among them, two
sp3 methylenes (dC 48.8; dH 2.83 and 2.83, and dC 53.7; dH 3.11 and
4.34) and two sp3 methines (dC 52.8; dH 3.38, and dC 58.7; dH 4.67)
were attached to the nitrogen atom, and one sp3 quaternary carbon
(dC 104.7) was ascribed to that bearing both an oxygen and a ni-
trogen atoms.

The gross structure of 1was deduced from extensive analyses of
the two-dimensional NMR data, including the 1He1H COSY, HMQC,
and HMBC spectra in CD3OD (Fig. 1). The 1He1H COSY and HMQC
spectra revealed connectivity of five partial structures a (C-5eC-6),
b (C-9eC-12), c (C-3, C-14eC-16), d (C-18eC-19), and e (C-50eC-60)
as shown in Fig. 1.

HMBC cross-peaks of H2-5 to C-3 and C-21, and H-3 to C-21
established the connections among C-3, C-5, and C-21 through N-4.
The connectivity of partial structures a, c, and indoline ring (C-2, C-
7eC-13 andN-1) was revealed by the HMBC correlations of H-9 and
H2-5 to C-7 (dC 49.8), and H-6b and H-14a to C-2 (dC 104.7). HMBC
correlations from H3-18 to C-20 and H-19 to C-15 and C-21 estab-
lished the presence of piperidine ring (C-3, C-14eC-15, C-20eC-21,
and N-4) with ethylidene side chain at C-20. HMBC correlations
fromH-16 to C-13, and H-16 andmethoxy protons to C-17 indicated
voacalgine A possessed C-mavacurine type skeleton. On the other
hand, the presence of 2,3-dihydroxybenzoate including partial
structure ewas presumed from the HMBC correlations fromH-50 to
C-10 and C-30, and H-60 to C-20, C-40, and carboxyl carbon. In

addition, the connectivity between this moiety and indole alkaloid
moiety at C-40 and C-7 was assigned by the HMBC correlations from
H-6a to C-40 and H-50 to C-7. Moreover, the connectivity between C-
30 (dC 147.1) and C-2 through an oxygen atom was elucidated by
comparison of chemical shifts with bipleiophylline17 (dC 146.9 and
dC 103.2, respectively). Thus, the gross structure of voacalgine A (1)
was assigned to be a new indole alkaloid consisting of a C-mava-
curine type of skeleton and 2,3-dihydroxybenzoic acid.

The relative stereochemistry of 1 was elucidated by the NOESY
correlations. A 3,8-diazatricyclo[6.2.2.04,9]dodecane ring (C-2eC-7,
C-14eC-16, C-20, C-21, N-1, and N-4) strongly required that both H-
3 and H-15 were a-orientation, and a-orientation of benzoic acid
moiety was supported by the NOESY correlations of H-6b/H-50 and
H-6a/H-21b. An a-configuration of H-16 and E-configuration of
double bond (C-19eC-20) were elucidated by the correlations of H-
14b/H-16 and H-15/H3-18, respectively (Fig. 2).

2.2. Voacalgine B (2)

Voacalgine B (2) showed a molecular formula, C21H24N2O3,
which was determined by HRESITOFMS [m/z 353.1861 (MþH)þ, D
þ0.1 mmu]. IR absorption band was characteristic of a,b-un-
saturated ketone (1650 and 1620 cm�1) and hydroxyl (3300 cm�1)
groups. 1H and 13C NMR data (Table 2) suggested the presence of
three sp3 methylenes, four sp3 methines, three methyls, four sp2

methines, and seven sp2 quaternary carbons. Among them, two sp3

methines (dC 57.5; dH 4.97, and dC 57.7; dH 3.98) and two methyls (dC
29.6; dH 3.68, and dC 40.6; dH 2.92) were attached to the nitrogen
atom, and one sp3 methylene (dC 65.4; dH 4.27 and 4.35), one sp2

methine (dC 160.5; dH 7.83), and one sp2 quaternary carbon (dC
152.5) were ascribed to that bearing an oxygen atom.

Fig. 1. Selected 2D NMR correlations for voacalgine A (1).

Fig. 2. Selected NOESY correlations for voacalgine A (1).

Table 1
1H (J, Hz) and 13C NMR data of voacalgine A (1) in CD3OD at 300 K

Position dH dC

2 104.7
3 3.38 (1H, dd, 2.9, 2.9) 52.8
5 2.83 (2H, m) 48.8
6a 2.32 (1H, ddd, 15.2, 10.6, 6.7) 28.8
6b 2.55 (1H, br d, 15.2)
7 49.8
8 136.4
9 6.79 (1H, dd, 7.8, 1.8) 123.6
10 6.81 (1H, ddd, 7.8, 7.8, 0.8) 122.0
11 7.10 (1H, ddd, 7.9, 7.8, 1.8) 128.8
12 6.39 (1H, d, 7.9) 111.5
13 146.6
14a 1.82 (1H, ddd, 13.6, 3.4, 3.4) 27.5
14b 2.77 (1H, ddd, 13.6, 3.3, 3.3)
15 3.55 (1H, m) 32.6
16 4.67 (1H, d, 4.2) 58.7
17 171.3
18 1.65 (3H, dd, 6.8, 2.3) 12.6
19 5.50 (1H, dq, 1.7, 6.8) 122.0
20 135.3
21a 3.11 (1H, d, 12.8) 53.7
21b 4.34 (1H, br d, 12.8)
10 108.0
20 152.9
30 147.1
40 128.5
50 7.30 (1H, d, 8.3) 118.6
60 7.26 (1H, d, 8.3) 123.1
10-COOH 170.0
OMe 3.78 (3H, s) 52.9
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The gross structure of 2was deduced from extensive analyses of
the two-dimensional NMR data, including the 1He1H COSY, HMQC,
and HMBC spectra in CD3OD (Fig. 3). The 1He1H COSY and HMQC
spectra revealed connectivity of three partial structures a (C-3, C-
14eC-17), b (C-5eC-6), and c (C-11eC-12) as shown in Fig. 3.

The presence of 5-hydroxy-N-methylindole ring was deduced
by HMBC correlations of N(1)-Me to C-2 and C-13, H-9 to C-7 and C-
13, H-12 to C-8 and oxygenated C-10, and H-11 to C-13. HMBC
cross-peaks of N(4)-Me to C-3 and C-5 established the connection
between C-3 and C-5 through N-4. The connection among indole
ring and partial structures a and b was indicated by HMBC corre-
lations of H-6 to C-7 and H-14 to C-2. HMBC correlations from H3-
18 to C-19 and C-20, and H-21 to C-15, C-17, and C-19 established
the presence of 3,4-dihydro-2H-pyran ring (C-15eC-17, C-20eC-21
and O) with an acetyl group at C-20. Thus, the gross structure of
voacalgine B (2) was assigned to be a new indole alkaloid with
a hydroxyl group at C-10 of alstonerine.18

The relative stereochemistry of 2 was elucidated by the NOESY
correlations. The correlations of H-14a/H-17a, H-16/H-15 and H-6a
indicated the a-orientation of an N-methyl group at N-4 and the b-
configuration of H-15 and H-16. Thus, the relative stereochemistry
of 2 was assigned as shown in Fig. 4.

The CD spectrum of 2 showed a similar pattern to that of
alstonerine.8 Thus, the absolute configurations of 2were elucidated
to be 3S, 5S, 15R, and 16R.

2.3. Voacalgine C (3)

Voacalgine C (3) showed a molecular formula, C26H34N2O4,
which was determined by HRESITOFMS [m/z 439.2618 (MþH)þ, D
þ2.1 mmu]. IR absorption band was characteristic of hydroxyl
(3400 cm�1) group. 1H and 13C NMR data (Table 3) suggested the
presence of seven sp3 methylenes, six sp3 methines, two sp3 qua-
ternary carbons, three methyls, four sp2 methines, and four sp2

quaternary carbons. Among them, two sp3 methines (dC 55.5; dH
4.44, and dC 58.0; dH 3.35) and two methyls (dC 29.3; dH 3.68, and dC
41.4; dH 2.59) were attached to the nitrogen atom, and an sp3

methine (dC 70.5; dH 3.50), two sp3 methylenes (dC 64.0; dH 3.82 and
4.00, and dC 62.7; dH 3.48 and 3.83), and two sp3 quaternary carbon
(dC 107.2 and 107.3) were ascribed to that bearing an oxygen atom.

Table 2
1H (J, Hz) and 13C NMR data of voacalgine B (2) in CD3OD at 300 Ka

Position dH dC

2 128.9
3 4.97 (1H, br s) 57.5
5 3.98 (1H, d, 7.4) 57.7
6a 3.10 (1H, d, 18.0) 24.1
6b 3.49 (1H, dd, 18.0, 7.4)
7 105.5
8 127.2
9 6.90 (1H, d, 2.3) 103.7
10 152.5
11 6.83 (1H, dd, 8.8, 2.3) 113.7
12 7.29 (1H, d, 8.8) 111.2
13 134.5
14a 1.99 (1H, dd, 11.8, 11.8) 31.4
14b 2.42 (1H, m)
15 2.68 (1H, dt, 11.8, 6.0) 25.0
16 2.45 (1H, m) 39.0
17a 4.27 (1H, dd, 10.7, 10.7) 65.4
17b 4.35 (1H, dd, 10.7, 2.6)
18 2.13 (3H, s) 25.0
19 198.3
20 119.5
21 7.83 (1H, s) 160.5
N(1)-Me 3.68 (3H, s) 29.6
N(4)-Me 2.92 (3H, s) 40.6

a TFA salt.

Fig. 3. Selected 2D NMR correlations for voacalgine B (2).

Fig. 4. Selected NOESY correlations for voacalgine B (2).

Table 3
1H (J, Hz) and 13C NMR data of voacalgine C (3) in CD3OD at 300 Ka

Position dH dC

2 131.0
3 4.44 (1H, br s) 55.5
5 3.35 (1H, m) 58.0
6a 2.70 (1H, br d, 16.1) 23.8
6b 3.34 (1H, m)
7 106.9
8 127.2
9 7.46 (1H, d, 7.6) 119.0
10 7.06 (1H, dd, 7.6, 7.4) 120.3
11 7.17 (1H, dd, 7.4, 7.9) 122.7
12 7.36 (1H, d, 7.9) 110.1
13 139.0
14a 1.78 (1H, m) 32.3
14b 2.48 (1H, ddd, 14.7, 14.7, 3.5)
15 1.78 (1H, m) 27.4
16 2.23 (1H, ddd, 10.0, 5.1, 5.1) 37.7
17a 3.82 (1H, m) 64.0
17b 4.00 (1H, dd, 11.9, 10.0)
18 1.58 (3H, s) 26.0
19 107.3
20 2.07 (1H, dd, 11.8, 7.6) 44.2
21a 1.78 (1H, m) 38.8
21b 2.02 (1H, dd, 12.3, 12.3)
22 107.2
23 3.50 (1H, br t, 3.0) 70.5
24a 1.62 (1H, m) 28.2
24b 1.97 (1H, dddd, 12.8, 12.6, 3.0, 3.0)
25a 1.29 (1H, m) 20.9
25b 1.87 (1H, ddddd, 12.6, 12.6, 12.4, 3.4, 3.4)
26a 3.48 (1H, m) 62.7
26b 3.83 (1H, m)
N(1)-Me 3.68 (3H, s) 29.3
N(4)-Me 2.59 (3H, s) 41.4

a formic acid salt.
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The gross structure of 3was deduced from extensive analyses of
the two-dimensional NMR data, including the 1He1H COSY, HMQC,
and HMBC spectra in CD3OD (Fig. 5). The 1He1H COSY and HMQC
spectra revealed connectivity of four partial structures a (C-3, C-
14eC-17, and C-20eC-21), b (C-5eC-6), c (C-9eC-12), and d (C-
23eC-26) as shown in Fig. 5.

By analysis of HMBC spectrum as shown in Fig. 5, three partial
structures aec composed of a macroline-type skeleton at C-2eC-17.
The HMBC correlations for H3-18 to C-19 (dC 107.3) and C-20 (dC
44.2), and H2-17 to C-19 indicated the presence of 2-
methyltetrahydropyran ring (C-15eC-20 and O). Furthermore,
correlations of H-20, H-24a, and H-26a to C-22 (dC 107.2) and H-21b
to C-23 (dC 70.5) suggested the presence of tri-cyclic polyether
structure on C-15eC-26. Thus, the gross structure of voacalgine C
(3) was elucidated to be possessing a macroline-type skeleton with
tetrahydropyran-2-spiro-20-tetrahydrofuran ring as 25-deoxy form
of macrodasine E.19

The relative stereochemistry of 3 was mainly elucidated by the
NOESY correlations. In the 2-methyltetrahydropyran ring (C-15eC-
20), the NOESY correlations of H3-18/H-14b, H-17b, and H-20, and
a large 3J coupling constant (10.0 Hz) between H-16 and H-17b
suggested that CH3-18 and H-20 were a-oriented and H-15 and H-
16 were b-oriented. The correlations of H-5/H-17a and H-6a/H-16
indicated the a-orientation of an N-methyl group at N-4 (Fig. 6).

On the other hand, the NOESY correlations of H-24b/H-26b and
large 3J coupling constants between H-24b/H-25b (12.4 Hz) and H-
25b/H-26 (12.4 Hz) indicated that the tetrahydropyran ring (C-
22eC-26) took chair conformation. And an a-oriented hydroxy
group at C-23 was deduced from a small 3J coupling constant

(3.0 Hz) between H-23/H-24b. Finally, the relative configuration of
a spiro carbon at C-22 was elucidated by the NOESY correlation of
H3-18/H-26b.

The stable conformer corresponding to the axial orientation of
OH-23 was generated after conformational searching by computer
modeling (MMFF force field energy minimization) and the result
was consistent with the coupling constants of H-23 (br t, 3.0 Hz).

2.4. Voacalgine D (4)

Voacalgine D (4) showed a molecular formula, C26H30N2O4,
which was determined by HRESITOFMS [m/z 435.2299 (MþH)þ, D
þ1.6 mmu]. IR absorption band was characteristic of a,b-un-
saturated ketone (1670 cm�1) and hydroxyl (3400 cm�1) groups. By
analysis of 1D and 2D NMR spectra (Table 4), voacalgine D pos-
sessed a macroline-type skeleton as well as voacalgine C.

The HMBC correlations fromH3-18 to C-19 (dC 98.3) and C-20 (dC
43.6), and H-17a to C-15 (dC 28.5) and C-19, and H-21a to C-15 in-
dicated the presence of 2-hydroxy-2-methyltetrahydropyran ring
(C-15eC-20 and O). And, the correlations of H-26/C-23 and C-24,
and H-24/C-23 and 26 suggested the presence of a 2-furyl group on
C-23eC-26. Furthermore, the connectivity of C-21 and C-23
through C-22 ketonewas deduced from the HMBC correlation of H-
21a to C-22 and the NOESY correlation of H-24/H-21a. Thus, the
gross structure of voacalgine D (4) was assigned to be a new indole
alkaloid consisting of a macroline-type skeleton with a 2-furyloyl
group at C-21 (Fig. 7).

The relative stereochemistry of 4 was elucidated by the NOESY
correlations. The correlations of H-14b/H-17b, H-15/H-16, H-16/H-
20, and H-6a/H-16 indicated the a-orientation of an N-methyl
group at N-4 and the b-configuration of H-15, H-16, and H-20. TheFig. 6. Selected NOESY correlations for voacalgine C (3).

Table 4
1H (J, Hz) and 13C NMR data of voacalgine D (4) in CD3OD at 300 Ka

Position dH dC

2 132.3
3 4.20 (1H, br s) 55.6
5 3.13 (1H, m) 57.0
6a 2.54 (1H, d, 16.6) 23.6
6b 3.24 (1H, m)
7 107.1
8 127.3
9 7.38 (1H, d, 7.6) 118.8
10 7.00 (1H, dd, 7.6, 7.4) 119.9
11 7.12 (1H, dd, 7.4, 7.9) 122.1
12 7.24 (1H, d, 7.9) 109.8
13 138.7
14a 1.68 (1H, m) 27.2
14b 2.87 (1H, m)
15 1.65 (1H, m) 28.5
16 1.97 (1H, ddd, 11.8, 3.4, 3.4) 44.8
17a 3.46 (1H, m) 61.0
17b 4.49 (1H, dd, 11.7, 11.7)
18 1.32 (3H, s) 28.4
19 98.3
20 2.21 (1H, ddd, 10.6, 5.3, 5.3) 43.6
21a 2.82 (1H, m) 37.9
21b 2.90 (1H, m)
22 7.09 (1H, br d, 3.6) 190.6
23 6.54 (1H, dd, 3.6, 1.7) 153.9
24 7.66 (1H, dd, 1.7, 0.5) 119.2
25 3.44 (3H, s) 113.5
26 2.42 (3H, s) 148.7
N(1)-Me 29.1
N(4)-Me 41.5

a Formic acid salt.

Fig. 5. Selected 2D NMR correlations for voacalgine C (3).
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configuration of a methyl group at C-19 was assigned as equatorial
by the NOESY correlation of H-20/H3-18 and no correlation of H3-
18/H-17b (Fig. 8).

2.5. Voacalgine E (5)

Voacalgine E (5) showed molecular formula, C26H28N2O4, which
was determined by HRESITOFMS [m/z 433.2144 (MþH)þ, D
þ1.7 mmu]. IR absorption band was characteristic of ketone
(1710 cm�1) and a,b-unsaturated ketone (1670 cm�1) groups. By
analysis of 1D and 2D NMR spectra (Table 5), voacalgine E pos-
sessed a macroline-type skeleton and a 2-furyloyl group as well as
voacalgine D.

The gross structure of 5was deduced from extensive analyses of
the two-dimensional NMR data. The 1He1H COSY and HMQC
spectra revealed connectivity of four partial structures a (C-3, C-
14eC-17), b (C-5eC-6), c (C-9eC-12), and d (C-24eC-26) as shown
in Fig. 9. Since, the left-half of the structure of voacalgine E in Fig. 9
showed similar HMBC correlations as well as voacalgine D (4), 5
was presumed to have a macroline-type skeleton. The HMBC cor-
relations of H2-17 to C-20 (dC 92.9), H3-18 to C-19 (dC 214.9) and C-
20, and H-15 to C-19 revealed the presence of 2-
acetyltetrahydrofuran ring (C-15eC-20). On the other hand, the
presence of a 2-furyloyl group was elucidated by the HMBC cor-
relations from H-25 and H-26 to C-23 (dC 153.6), and H-24 to C-22
ketone (dC 186.6). And the connection of this moiety and C-20
through C-21 methylene was deduced by the HMBC correlations of

H2-21 to C-19, C-20, and C-22. Thus, the gross structure of voa-
calgine E was assigned to be a new indole alkaloid consisting of
a macroline-type skeleton that E-ring is transformed to five-
membered ring with a 2-furyloyl group at C-21 and an acetyl group
at C-20.

The relative stereochemistry of 5 was elucidated by the NOESY
correlations. The correlations of H-15/H-16, H-16/H3-18, and H-
6a/H-16 indicated the a-orientation of an N-methyl group at N-4
and the b-configuration of H-15, H-16, and an acetyl group
(Fig. 10).

3. Plausible biogenetic pathway

A plausible biogenetic pathway of voacalgines A, D, and E (1, 4,
and 5) with rare skeletons was proposed as shown in Fig. 11. Voa-
calgine A (1) is the second example combined with C-mavacurine
type of skeleton (6) and 2,3-dihydroxybenzoic acid (7). Voacalgines
D (4) and E (5) might be derived from the ring-opened form of
alstonerine (8)20 through introduction of C6 unit21 to C-20 followed
by cyclization.

Fig. 7. Selected 2D NMR correlations for voacalgine D (4).

Fig. 8. Selected NOESY correlations for voacalgine D (4).

Table 5
1H (J, Hz) and 13C NMR data of voacalgine E (5) in CD3OD at 300 Ka

Position dH dC

2 126.8
3 5.09 (1H, br s) 56.0
5 4.01 (1H, br s) 55.6
6a 3.08 (1H, d, 17.6) 24.0
6b 3.42 (1H, dd, 17.6, 6.0)
7 105.4
8 126.8
9 7.54 (1H, d, 7.7) 119.5
10 7.13 (1H, dd, 7.7, 7.6) 121.0
11 7.27 (1H, dd, 7.9, 7.6) 123.9
12 7.46 (1H, d, 7.9) 110.6
13 139.6
14a 2.28 (1H, ddd, 12.1, 11.8, 0.8) 27.6
14b 2.40 (1H, br d, 11.8)
15 2.14 (1H, ddd, 12.1, 7.1, 5.9) 38.0
16 2.74 (1H, ddd, 8.2, 8.2, 7.1) 44.3
17a 4.23 (1H, dd, 9.9, 9.7) 69.4
17b 4.34 (1H, dd, 9.7, 9.4)
18 2.24 (3H, s) 27.0
19 214.9
20 92.9
21a 3.36 (1H, m) 43.8
21b 3.49 (1H, m)
22 186.6
23 153.6
24 7.36 (1H, br d, 3.4) 120.0
25 6.64 (1H, dd, 3.4, 1.2) 113.8
26 7.78 (1H, br s) 149.1
N(1)-Me 3.78 (3H, s) 29.7
N(4)-Me 2.94 (3H, s) 40.3

a Formic acid salt.

Fig. 9. Selected 2D NMR correlations for voacalgine E (5).
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4. Conclusion

In this work, five new indole alkaloids, voacalgines AeE (1e5)
were isolated from the bark of V. grandifolia. The structures and
stereochemistry of 1e5 were elucidated by 2D NMR analysis.

Voacalgines AeE (1e5) were tested for cytotoxic activity against
HL-60, HCT116, and MCF7 cell line. Voacalgine A only showed

moderate cell growth inhibitory activities against HL-60 and
HCT116 cells (IC50 for 1: 12.1 mM for HL-60, and 45.7 mM for
HCT116).

5. Experimental section

5.1. General experimental details

5.1.1. General methods. 1D and 2D NMR spectra were recorded on
a Bruker AV700 spectrometer, and chemical shifts were referenced
to the residual solvent peaks (dH 3.31 and dC 49.0 for methanol-d4).
Standard pulse sequences were employed for the 2D NMR experi-
ments. 1He1H COSY, HOHAHA, and NOESY spectra were measured
with spectral widths of both dimensions of 4800 Hz, and 32 scans
with two dummy scans were accumulated into 1 K data points for
each of 256 t1 increments. NOESY spectra in the phase-sensitive
mode were measured with a mixing time of 800 ms. For HMQC
spectra in the phase-sensitive mode and HMBC spectra, a total of
256 increments of 1 K data points were collected. For HMBC spectra
with Z-axis PFG, a 50 ms delay time was used for long-range CeH
coupling. Zero-filling to 1 K for F1 and multiplication with squared
cosine-bell windows shifted in both dimensions were performed
prior to 2D Fourier transformation.

5.2. Material

The bark of V. grandifolia was collected at Purwodadi Botanical
Garden, Indonesia in 2006. The botanical identification was made
by Ms. Sri Wuryanti, Purwodadi Botanical Garden, Indonesia. A
voucher specimen (no. AP070910) has been deposited in the her-
barium at Purwodadi Botanical Garden, Pasuruan, Indonesia.

Fig. 11. Plausible biogenetic pathway of voacalgines A (1), D (4), and E (5).

Fig. 10. Selected NOESY correlations for voacalgine E (5).
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5.3. Extraction and isolation

The bark of V. grandifolia (444 g) was extracted with MeOH, the
extract (32 g) was treated with 3% tartaric acid (pH 2) and then
partitioned with EtOAc. The aqueous layer was treated with satu-
rated Na2CO3 (aq) to pH 10 and extracted with CHCl3 to give an
alkaloidal fraction (4.3 g). The alkaloidal fraction was subjected to
an amino SiO2 column in hexane/EtOAc (1:0/0:1) and then CHCl3/
MeOH (1:0/0:1).

The CHCl3/MeOH (50:1) eluted fraction was chromatographed
over a SiO2 column in CHCl3/MeOH (1:0/0:1) and the CHCl3/
MeOH (50:1) eluted fraction was applied to an amino SiO2 column
in CHCl3/MeOH (1:0/0:1) to afford voacalgine A (1, 4.0 mg,
0.0009%).

The CHCl3/MeOH (1:0) eluted fraction of the first amino SiO2
column was chromatographed over a SiO2 column in CHCl3/
MeOH (1:0/0:1) and the CHCl3/MeOH (50:1) eluted fraction was
separated by an ODS HPLC (47% MeOH aq with 0.1% TFA, 2.0 mL/
min, 254 nm) to afford voacalgine B (2, 3.7 mg, 0.0008%,
tR¼15 min).

The hexane/EtOAc (2:1) eluted fraction of the first amino SiO2

column was chromatographed over a SiO2 column in CHCl3/
MeOH (1:0/0:1) and the CHCl3/MeOH (80:1) eluted fraction was
separated by an ODS HPLC (42% MeOH aq with 0.1% formic acid,
2.0 mL/min, 254 nm) to afford voacalgine E (5, 1.3 mg, 0.0003%,
tR¼15 min), whereas the CHCl3/MeOH (50:1) eluted fraction was
chromatographed over an amino SiO2 column in hexane/EtOAc
(1:0/0:1) and the hexane/EtOAc (2:1) eluted fraction was sepa-
rated by an ODS HPLC (40% MeOH aq with 0.1% formic acid, 2.0 mL/
min, 254 nm) to afford voacalgine C (3, 0.9 mg, 0.0002%,
tR¼20 min).

The CHCl3/MeOH (100:1) eluted fraction of the first amino SiO2
column was separated by an ODS HPLC (48% MeOH aq with 0.1%
formic acid, 2.0 mL/min, 254 nm) to afford voacalgine D (4, 2.6 mg,
0.0006%, tR¼16 min).

5.4. Characterization of natural products

5.4.1. Voacalgine A (1). Brown amorphous solid; [a]D26 þ110 (c 1.0,
CHCl3); IR (KBr) nmax 3023, 1750, and 1670 cm�1; UV (MeOH) lmax
201 ( 334,600), 229 (15,600), and 334 (3100) nm; ESIMS m/z 475
(MþH)þ; HRESITOFMS m/z 475.1842 [(MþH)þ, D �2.7 mmu, calcd
for C27H27N2O6, 475.1869].

5.4.2. Voacalgine B (2). Brown amorphous solid; [a]D27 �67 (c 1.0,
CHCl3); IR (KBr) nmax 3300, 1650, and 1620 cm�1; UV (MeOH) lmax
201 ( 3 19,000) and 232 (19,900) nm; CD (MeOH) lmax 301 (D 3

�6.63), 259 (þ7.68), 229 (�9.35), and 205 (þ5.34); ESIMS m/z 353
(MþH)þ; HRESITOFMS m/z 353.1861 [(MþH)þ, D þ0.1 mmu, calcd
for C21H25N2O3, 353.1860].

5.4.3. Voacalgine C (3). Brown amorphous solid; [a]D22 �22 (c 0.5,
MeOH); IR (KBr) nmax 3400 cm�1; UV (MeOH) lmax 201 ( 312,100),
229 (18,600), and 336 (3800) nm; ESIMS m/z 439 (MþH)þ; HRE-
SITOFMS m/z 439.2618 [(MþH)þ, D þ2.1 mmu, calcd for
C26H35N2O4, 439.2597].

5.4.4. Voacalgine D (4). Brown amorphous solid; [a]D24 �6 (c 1.0,
MeOH); IR (KBr) nmax 3400, 1670, and 1630 cm�1; UV (MeOH) lmax
229 ( 3 30,400) and 273 (14,500) nm; ESIMS m/z 435 (MþH)þ;
HRESITOFMS m/z 435.2299 [(MþH)þ, D þ1.6 mmu, calcd for
C26H31N2O4, 435.2234].

5.4.5. Voacalgine E (5). Brown amorphous solid; [a]D22 �14 (c 0.5,
MeOH); IR (KBr) nmax 1710 and 1670 cm�1; UV (MeOH) lmax 201 ( 3

14,900), 228 (20,400), and 374 (10,300) nm; ESIMS m/z 433
(MþH)þ; HRESITOFMS m/z 433.2144 [(MþH)þ, D þ1.7 mmu, calcd
for C26H29N2O4, 433.2127].

5.5. Cytotoxicity

HL-60, human promyelocytic leukemia cells were maintained in
RPMI-1640 medium; MCF7, human breast adenocarcinoma; and
HCT116, human colorectal adenocarcinoma cells were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) medium. Both
growthmediawere supplemented with 10% fetal calf serum and 1%
penicillinestreptomycin. The cells (5�103 cells/well) were cultured
in Nunc disposable 96-well plates containing 90 mL of growth
medium per well and were incubated at 37 �C in a humidified in-
cubator of 5% CO2. Ten microliters of serially diluted samples
(50 mM, 25 mM,12.5 mM, and 6.25 mM) were added to the cultures at
24 h of incubation. After 48 h of incubation with the samples, 15 mL
of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) (5 mg/mL) was added to each of the wells. The cultures were
incubated for another 3 h before the cells supernatant are removed.
After the removal of the cells supernatant, 50 mL of dimethyl sulf-
oxide (DMSO)was added to eachwell. The formed formazan crystal
was dissolved by re-suspension by pipette. The optical density was
measured using a microplate reader (Bio-Rad) at 550 nm with
reference wavelength at 700 nm. In all experiments, three repli-
cates were used. Cisplatin was used as positive control (IC50:
0.87 mM for HL-60, 27.7 mM for MCF7, and 16.0 mM for HCT116).
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