

TETRAHEDRON

EXECUTIVE BOARD OF EDITORS FOR TETRAHEDRON PUBLICATIONS

Chairman: Professor S. Neidle

Editor Emeritus: Professor H. H. Wasserman

Professor D. L. Boger, The Scripps Research Institute, La Jolla, CA, USA

Professor Dr. Mathias Christmann, Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany Tel.: 30 838 60182; Fax: 30 838 55367; e-mail: mathias.christmann@fu-berlin.de

Professor S. G. Davies, University of Oxford, Oxford, UK **Professor B. Ganem,** Cornell University, Ithaca, NY, USA

Professor L. Ghosez, Institut Européen de Chimie et de Biologie (IECB), 2, rue Robert Escarpit, 33607 Pessac Cedex, France Fax: 33 5 4000 2222; e-mail: tetrahedron@uclouvain.be

Professor Lin Guo-Qiang, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

Fax: 86 21 641 66263: e-mail: tetrahed@mail.sioc.ac.cn (Senior Referees, Professor T.-Y. Luh, Professor S.-M. Ma and Professor H. N. C. Wong)

Professor Y. Hashimoto, The University of Tokyo, Japan

Professor T. Hayashi, Kyoto University, Japan

Professor J. Hu, Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Xu-Hui District, Shanghai City, Shanghai 200032, China Tel.: 86 21 54925174; Fax: 86 21 64166128; e-mail: jinbohu@sioc.ac.cn

Professor Kim D. Janda, The Scripps Research Institute, La Jolla, CA, USA

Professor M. Kitamura, Nagoya University, Graduate School of Pharmaceutical Sciences, Dept. of Basic Medicinal Sciences, Chikusa, 464-8602, Nagoya, Japan Tel.: 81-52-789-2957; e-mail: kitamura@os.rcms.nagoya-u.ac.jp

Professor S. F. Martin, Chemistry and Biochemistry Department, The University of Texas, 1 University Station A5300, Austin, TX 78712-0165, USA Fax: 1 512 471 4180; e-mail: tet@cm.utexas.edu

Professor S. Neidle, UCL School of Pharmacy, London, UK

Professor G. Pandey, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus Raebareli Road, Lucknow - 226 014 Uttar Pradesh, India Tel.: 91-522-2495034; Fax: 91-522-2668215; e-mail: Tetrahedron@cbmr.res.in

Professor M. Shibasaki, The University of Tokyo, Japan

Professor B. M. Stoltz,

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard Pasadena, California 91125, USA Email: stoltz@caltech.edu

Professor R. J. K. Taylor, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK

Fax: 44 1904 434523; e-mail: tet@york.ac.uk (Associate Editors, Dr. P.A. O'Brien, Dr. D. K. Smith and Dr. I. J. S. Fairlamb)

Professor E. J. Thomas, University of Manchester, UK

Professor K. Tomioka, Dept. of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, 610-0395 Kyotanabe, Japan, e-mail: tetrahedron@dwc.doshisha.ac.jp

Professor H. Waldmann, Max-Planck-Institut für Molekular Physiology, Dortmund, Germany

Professor H. H. Wasserman, Yale University, New Haven, CT, USA

Professor C.-H. Wong, The Scripps Research Institute, La Jolla, CA, USA

Professor J. Wood, Colorado State University, Fort Collins, CO, USA

Professor Y. Yamamoto, Tohoku University, Sendai, Japan (Associate Editor, Professor M. Hirama)

Professor S. Z. Zard, Laboratoire de Synthèse Organique, Ecole Polytechnique, F-91128 Palaiseau Cedex, France

Editors of the Tetrahedron Organic Chemistry Series: Professor J.-E. Bäckvall, University of Stockholm, Sweden Professor Sir J. E. Baldwin, FRS, Dyson Perrins Laboratory, Oxford, UK Professor R. M. Williams, Colorado State University, Fort Collins, CO, USA

BOARD OF CONSULTING EDITORS

- A. Alexakis, University of Geneva, Switzerland
- J.-E. Bäckvall, University of Stockholm, Sweden
- M. Banwell, Australian National University, Canberra, Australia
- A. G. M. Barrett, Imperial College, London, UK
- J. Bode, ETH, Zürich, Switzerland
- C. Bolm, RWTH Aachen, Germany
- S. Buchwald, MIT, USA
- E. M. Carreira, ETH, Zürich, Switzerland
- E. J. Corey, Harvard University, Cambridge, MA, USA
- J. Cossy, ESPCI, Paris, France
- D. P. Curran, University of Pittsburgh, PA, USA
- S. J. Danishefsky, Columbia University, New York, NY. USA
- S. Denmark, University of Illinois, USA
- P.A. Evans, University of Liverpool, UK
- J.-M. Fang, National Taiwan University, Taiwan
- G. C. Fu, MIT, Cambridge, MA, USA
- Y. Kishi, Harvard University, Cambridge, MA, USA

- K. Narasaka, Nanyang Technical University, Singapore
 - K. C. Nicolaou, Rice University, Houston, TX, USA
 - R. Noyori, Nagoya University, Japan

Urbana-Champaign, IL, USA

- L. E. Overman, University of California, Irvine, CA, USA
- A. Padwa, Emory University, USA
- I. Paterson, University of Cambridge, UK
- G. Pattenden, University of Nottingham, UK

- N. Simpkins, Birmingham, UK
- E. Sorensen, Princeton University, Princeton NJ. USA
- J. D. Wuest, University of Montreal, Canada
- Z. Xi, College of Chemistry,
- Peking University (PKU), China

PUBLISHED WEEKLY

Orders, claims, and journal inquiries: please contact the Elsevier Customer Service Department nearest you:

St. Louis: Elsevier Customer Service Department, 3251 Riverport Lane, Maryland Heights, MO 63043, USA; phone: (877) 8397126 [toll free within the USA]; (+1) (314) 4478878 [outside the USA]; fax: (+1) (314) 4478077; e-mail: JournalCustomerService-usa@elsevier.com Oxford: Elsevier Customer Service Department, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK; phone: (+44) (1865) 843434; fax: (+44) (1865) 843970; e-mail: JournalsCustomerServiceEMEA@elsevier.com

Tokyo: Elsevier Customer Service Department, 4F Higashi-Azabu, 1-Chome Bldg, 1-9-15 Higashi-Azabu, Minato-ku, Tokyo 106-0044, Japan; phone: (+81) (3) 5561 5037; fax: (+81) (3) 5561 5047; e-mail: JournalsCustomerServiceJapan@elsevier.com

Singapore: Elsevier Customer Service Department, 3 Killiney Road, #08-01 Winsland House I, Singapore 239519; phone: (+65) 63490222; fax: (+65) 67331510; e-mail: JournalsCustomerServiceAPAC@elsevier.com

Copyright © 2013 Elsevier Ltd

P. Knochel, Ludwigs-Maximilians-University, Munich, Germany

D. W. Knight, Cardiff, UK

- P. Kocienski, University of Leeds, UK
- M. Krische, University of Texas, USA
- E. Lee, Seoul National University Seoul, Korea
- S. V. Ley, University of Cambridge, UK
- X.-Y. Lu, Shanghai Institute of Organic Chemistry, China
- D. Ma, State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, China
- D. MacMillan, Princeton University, Princeton NJ. USA
- I. Marko, University of Louvain, Belgium
- G. Mehta, Indian Institute of Science, Bangalore, India
- S. J. Miller, Yale, USA
- N. Miyata, Nagoya City University, Japan
- J. Moore, University of Illinois at

- - S. Schreiber, Harvard University, USA
 - T. Shioiri, Meijo University, Japan

 - K. Tatsuta, Waseda, Japan

 - H. Yamamoto, University of Chicago, IL, USA

Tetrahedron 69 (2013) 10775-10782

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Tetrahedron Vol. 69, Issue 51, 2013

Contents

REPORT

Stereodynamic properties of medium-ring benzo-fused nitrogenous heterocycles: benzodiazepines, benzazepines, benzazocines, and benzazonines Keith Ramig

Ph Ph rate of ring-flip? Ph isomer distribution? Ph F_3CO G F_3C F_3

ARTICLES

Euryjanicins E–G, poly-phenylalanine, and poly-proline cyclic heptapeptides from the Caribbean sponge *Prosuberites laughlini* Edward Avilés, Abimael D. Rodríguez^{*} pp 10797-10804

pp 10783-10795

Dual pyrene-labeled pyrrolidinyl peptide nucleic acid as an excimer-to-monomer switching probe for DNA sequence detection

Nattapon Maneelun, Tirayut Vilaivan*

Novel sulfonylpolystyrene-supported prolinamides as catalysts for enantioselective aldol reaction in water

Rafael Pedrosa^{*}, José M. Andrés^{*} Ana Gamarra, Rubén Manzano, César Pérez-López

Synthesis of 2,2-difluoro-2*H*-chromenes through the tandem reaction of ethyl 3-bromo-3,3-difluoropropionate with salicylaldehyde derivatives

Song Ou, Min Jiang, Jin-Tao Liu*

Ethyl 3-bromo-3,3-difluoropropionate underwent the reaction with salicylaldehyde derivatives in the presence of base at 110 °C in DMF to give the corresponding 2,2-difluoro-2*H*-chromenes in moderate to good yields.

Oxidative ring opening of 3-hydroxyquinoline-2,4(1*H***,3***H***)-diones into** *N*-(α-**ketoacyl**)**anthranilic acids** Stanislav Kafka^{*}, Karel Proisl, Věra Kašpárková, Damijana Urankar, Roman Kimmel, Janez Košmrlj^{*}

pp 10826-10835

pp 10805-10810

Chemoselective synthesis of 3H-pyrrolo[2,3-c]quinolin-4(5H)-one derivatives from 3-phenacylideneoxindoles and pp 10836-10841 substituted tosylmethyl isocyanide (TosMIC)

Rong Wang, Shun-Yi Wang*, Shun-Jun Ji*

Synthesis and evaluation of 3-acyltetronic acid-containing metal complexing agents

Julien Rouleau, Alexandre Korovitch, Claude Lion, Miryana Hémadi, Nguyêt-Thanh Ha-Duong, Jean-Michel El Hage Chahine, Thierry Le Gall*

Studies of the regioselective ring-opening-closing mode of functionally different thiazolidine type enaminones: en route to the synthesis of trithiaazapentalene derivatives

Aleksandar Rašović*, Andreas Koch, Erich Kleinpeter, Rade Marković

Unconventional stereoselective one-pot synthesis of Knoevenagel-type indoles via in situ condensation of iminium salts with active methylene reagents

Angelo Ranise, Francesco Lucchesini, Matteo Caviglia, Silvana Alfei, Andrea Spallarossa*, Chiara Caneva

H₃C CI с́н₂ Cľ СН YCH₂X Et₃NHCI Et₃N DMF agel-type Indol overall yields: 7-91%

pp 10842-10848

pp 10858-10868

Voacalgines A–E, new indole alkaloids from *Voacanga grandifolia*

Yusuke Hirasawa, Hiroko Arai, Abdul Rahman, Idha Kusumawati, Noor Cholies Zaini, Osamu Shirota, Hiroshi Morita*

pp 10869-10875

Synthesis of novel 4'-C-methyl-1',3'-dioxolane pyrimidine nucleosides and evaluation of its anti-HIV-1 activity Yutaka Kubota, Yuri Kaneda, Kazuhiro Haraguchi^{*}, Mirei Mizuno, Hiroshi Abe, Satoshi Shuto, Takayuki Hamasaki, Masanori Baba, Hiromichi Tanaka

Rearrangement of azoxybenzocrowns into chromophoric hydroxyazobenzocrowns and the use of hydroxyazobenzocrowns for the synthesis of ionophoric biscrown compounds Mirosław Szarmach, Ewa Wagner-Wysiecka, Elżbieta Luboch^{*}

pp 10884-10892

pp 10876-10883

pp 10893-10905

Synthesis of porphyrinylamide and observation of N-methylation-induced trans-cis amide conformational alteration

Mio Matsumura, Aya Tanatani^{*}, Tomoyo Kaneko, Isao Azumaya, Hyuma Masu, Daisuke Hashizume, Hiroyuki Kagechika, Atsuya Muranaka^{*}, Masanobu Uchiyama^{*}

A one-pot synthesis of isoindolin-1-imine derivatives

Khangvan Pham, Zhongguo Zhang, Sida Shen, Lei Ma^{*}, Lihong Hu^{*}

pp 10933-10939

pp 10927-10932

 $(\mathbf{\hat{U}}^{+})$

pp 10940-10945

 $R_1 = CH_3$, Ph, 4FPh $R_2 = CH_3$, Ph, 4FPh, OCH₃

Palladium-catalyzed highly regioselective 2-arylation of 2,*x*-dibromopyridines and its application in the efficient pp 1099 synthesis of a 17β-HSD1 inhibitor

Qizhong Zhou^{*}, Bin Zhang, Liangjun Su, Tiansheng Jiang, Rener Chen^{*}, Tieqi Du, Yuyuan Ye, Jianfen Shen, Guoliang Dai, Deman Han, Huajiang Jiang^{*}

OMe

Stereoselective synthesis of contiguous THF—THF and THF—THP units via Pd^{II}-catalyzed tandem reaction with 1,3-chirality transfer

Nobuyuki Kawai*, Yuhei Fujikura, Jun Takita, Jun'ichi Uenishi

pp 11004-11009

pp 11017-11024

pp 10996-11003

10781

Biomimetically inspired total synthesis of (125)-12-hydroxymonocerin and (12R)-12-hydroxymonocerin Bowen Fang, Xingang Xie, Peng Jing, Changgui Zhao, Huilin Li, Haichen Ma, Xuegong She^{*}

pp 11025-11030

*Corresponding author

(**)**⁺ Supplementary data available via ScienceDirect

Available online at www.sciencedirect.com

ScienceDirect

Full text of this journal is available, on-line from **ScienceDirect**. Visit www.sciencedirect.com for more information.

Abstracted/indexed in: AGRICOLA, Beilstein, BIOSIS Previews, CAB Abstracts, Chemical Abstracts. Current Contents: Life Sciences, Current Contents: Physical, Chemical and Earth Sciences, Current Contents Search, Derwent Drug File, Ei compendex, EMBASE/ Excerpta Medline, PASCAL, Research Alert, Science Citation Index, SciSearch. Also covered in the abstract and citation database SCOPUS[®]. Full text available on ScienceDirect[®]

ISSN 0040-4020

Tetrahedron 69 (2013) 10869-10875

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Voacalgines A-E, new indole alkaloids from Voacanga grandifolia

Yusuke Hirasawa ^a, Hiroko Arai ^a, Abdul Rahman ^b, Idha Kusumawati ^b, Noor Cholies Zaini ^b, Osamu Shirota ^c, Hiroshi Morita ^{a,*}

^a Faculty of Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan

^b Faculty of Pharmacy, Airlangga University, Jalan Dharmawangsa Dalam, Surabaya 60286, Indonesia

^c Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki City, Kagawa 769-2193, Japan

ARTICLE INFO

Article history: Received 29 July 2013 Received in revised form 24 October 2013 Accepted 26 October 2013 Available online 5 November 2013

Keywords: Indole alkaloid Voacanga grandifolia Voacalgine A Cytotoxicity

ABSTRACT

Five new indole alkaloids, voacalgines A–E (**1–5**) consisting of a *C*-mavacurine type of skeleton with 2,3dihydroxybenzoate moiety, a macroline-type of skeleton, or a macroline-type of skeleton with C_6 unit, were isolated from the bark of *Voacanga grandifolia*. Their relative structures were determined by means of NMR data. Voacalgine A showed moderate cell growth inhibitory activities against HL-60 and HCT116 cells. © 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Voacanga grandifolia (Miq.) Rolfe is a member of the Apocynaceae family distributed in Indonesia and India, and is found mostly in Java.¹ The bark and leaves have been known to produce various skeletal alkaloids such as voacinol,² vobtusine,³ vobtusinelactone,⁴ and rhazine.⁵ In our search for bioactive alkaloids from tropical plants,^{6–14} voacalgines A–E (**1–5**), five new indole alkaloids consisting of a *C*-mavacurine¹⁵ type of skeleton with fused benzoic acid moiety, a macroline¹⁶ type of skeleton, or a macrolinetype of skeleton with another C₆ unit, have been isolated from the bark of *V. grandifolia*. In this paper, we describe the isolation and structure elucidation of **1–5** as well as their in vitro cell growth inhibitory activities against three human cell lines.

* Corresponding author. E-mail address: moritah@hoshi.ac.jp (H. Morita).

Tetrahedror

^{0040-4020/\$ —} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2013.10.097

2. Results and discussion

2.1. Voacalgine A (1)

Voacalgine A (1) showed a molecular formula, $C_{27}H_{26}N_2O_6$, which was determined by HRESITOFMS [m/z 475.1842 (M+H)⁺, Δ –2.7 mmu]. IR absorption band was characteristic of carbonyl (1750 and 1670 cm⁻¹) and hydroxyl (3023 cm⁻¹) groups. ¹H and ¹³C NMR data (Table 1) suggested the presence of two sp³ quaternary carbons, four sp³ methylenes, three sp³ methines, two methyls, seven sp² methines, and nine sp² quaternary carbons. Among them, two sp³ methylenes (δ_C 48.8; δ_H 2.83 and 2.83, and δ_C 53.7; δ_H 3.11 and 4.34) and two sp³ methines (δ_C 52.8; δ_H 3.38, and δ_C 58.7; δ_H 4.67) were attached to the nitrogen atom, and one sp³ quaternary carbon (δ_C 104.7) was ascribed to that bearing both an oxygen and a nitrogen atoms.

Table 1

¹H (J, Hz) and ¹³C NMR data of voacalgine A (1) in CD₃OD at 300 K

Position	δ _H	δς
2		104.7
3	3.38 (1H, dd, 2.9, 2.9)	52.8
5	2.83 (2H, m)	48.8
6a	2.32 (1H, ddd, 15.2, 10.6, 6.7)	28.8
6b	2.55 (1H, br d, 15.2)	
7		49.8
8		136.4
9	6.79 (1H, dd, 7.8, 1.8)	123.6
10	6.81 (1H, ddd, 7.8, 7.8, 0.8)	122.0
11	7.10 (1H, ddd, 7.9, 7.8, 1.8)	128.8
12	6.39 (1H, d, 7.9)	111.5
13		146.6
14a	1.82 (1H, ddd, 13.6, 3.4, 3.4)	27.5
14b	2.77 (1H, ddd, 13.6, 3.3, 3.3)	
15	3.55 (1H, m)	32.6
16	4.67 (1H, d, 4.2)	58.7
17		171.3
18	1.65 (3H, dd, 6.8, 2.3)	12.6
19	5.50 (1H, dq, 1.7, 6.8)	122.0
20		135.3
21a	3.11 (1H, d, 12.8)	53.7
21b	4.34 (1H, br d, 12.8)	
1'		108.0
2'		152.9
3'		147.1
4'		128.5
5′	7.30 (1H, d, 8.3)	118.6
6'	7.26 (1H, d, 8.3)	123.1
1'-COOH		170.0
OMe	3.78 (3H, s)	52.9

The gross structure of **1** was deduced from extensive analyses of the two-dimensional NMR data, including the ${}^{1}H{-}^{1}H$ COSY, HMQC, and HMBC spectra in CD₃OD (Fig. 1). The ${}^{1}H{-}^{1}H$ COSY and HMQC spectra revealed connectivity of five partial structures **a** (C-5–C-6), **b** (C-9–C-12), **c** (C-3, C-14–C-16), **d** (C-18–C-19), and **e** (C-5′–C-6′) as shown in Fig. 1.

HMBC cross-peaks of H₂-5 to C-3 and C-21, and H-3 to C-21 established the connections among C-3, C-5, and C-21 through N-4. The connectivity of partial structures **a**, **c**, and indoline ring (C-2, C-7–C-13 and N-1) was revealed by the HMBC correlations of H-9 and H₂-5 to C-7 (δ_C 49.8), and H-6b and H-14a to C-2 (δ_C 104.7). HMBC correlations from H₃-18 to C-20 and H-19 to C-15 and C-21 established the presence of piperidine ring (C-3, C-14–C-15, C-20–C-21, and N-4) with ethylidene side chain at C-20. HMBC correlations from H-16 to C-13, and H-16 and methoxy protons to C-17 indicated voacalgine A possessed *C*-mavacurine type skeleton. On the other hand, the presence of 2,3-dihydroxybenzoate including partial structure **e** was presumed from the HMBC correlations from H-5' to C-1' and C-3', and H-6' to C-2', C-4', and carboxyl carbon. In

Fig. 1. Selected 2D NMR correlations for voacalgine A (1).

addition, the connectivity between this moiety and indole alkaloid moiety at C-4' and C-7 was assigned by the HMBC correlations from H-6a to C-4' and H-5' to C-7. Moreover, the connectivity between C-3' ($\delta_{\rm C}$ 147.1) and C-2 through an oxygen atom was elucidated by comparison of chemical shifts with bipleiophylline¹⁷ ($\delta_{\rm C}$ 146.9 and $\delta_{\rm C}$ 103.2, respectively). Thus, the gross structure of voacalgine A (1) was assigned to be a new indole alkaloid consisting of a *C*-mavacurine type of skeleton and 2,3-dihydroxybenzoic acid.

The relative stereochemistry of **1** was elucidated by the NOESY correlations. A 3,8-diazatricyclo[$6.2.2.0^{4,9}$]dodecane ring (C-2–C-7, C-14–C-16, C-20, C-21, *N*-1, and *N*-4) strongly required that both H-3 and H-15 were α -orientation, and α -orientation of benzoic acid moiety was supported by the NOESY correlations of H-6b/H-5' and H-6a/H-21b. An α -configuration of H-16 and *E*-configuration of double bond (C-19–C-20) were elucidated by the correlations of H-14b/H-16 and H-15/H₃-18, respectively (Fig. 2).

Fig. 2. Selected NOESY correlations for voacalgine A (1).

2.2. Voacalgine B (2)

Voacalgine B (**2**) showed a molecular formula, $C_{21}H_{24}N_{2}O_{3}$, which was determined by HRESITOFMS [m/z 353.1861 (M+H)⁺, Δ +0.1 mmu]. IR absorption band was characteristic of α , β -unsaturated ketone (1650 and 1620 cm⁻¹) and hydroxyl (3300 cm⁻¹) groups. ¹H and ¹³C NMR data (Table 2) suggested the presence of three sp³ methylenes, four sp³ methines, three methyls, four sp² methines (δ_C 57.5; δ_H 4.97, and δ_C 57.7; δ_H 3.98) and two methyls (δ_C 29.6; δ_H 3.68, and δ_C 40.6; δ_H 2.92) were attached to the nitrogen atom, and one sp³ methylene (δ_C 65.4; δ_H 4.27 and 4.35), one sp² methine (δ_C 160.5; δ_H 7.83), and one sp² quaternary carbon (δ_C 152.5) were ascribed to that bearing an oxygen atom.

Table 2 1 H (J, Hz) and 13 C NMR data of voacalgine B (**2**) in CD₃OD at 300 K^a

Position	δ_{H}	δ_{C}
2		128.9
3	4.97 (1H, br s)	57.5
5	3.98 (1H, d, 7.4)	57.7
6a	3.10 (1H, d, 18.0)	24.1
6b	3.49 (1H, dd, 18.0, 7.4)	
7		105.5
8		127.2
9	6.90 (1H, d, 2.3)	103.7
10		152.5
11	6.83 (1H, dd, 8.8, 2.3)	113.7
12	7.29 (1H, d, 8.8)	111.2
13		134.5
14a	1.99 (1H, dd, 11.8, 11.8)	31.4
14b	2.42 (1H, m)	
15	2.68 (1H, dt, 11.8, 6.0)	25.0
16	2.45 (1H, m)	39.0
17a	4.27 (1H, dd, 10.7, 10.7)	65.4
17b	4.35 (1H, dd, 10.7, 2.6)	
18	2.13 (3H, s)	25.0
19		198.3
20		119.5
21	7.83 (1H, s)	160.5
<i>N</i> (1)-Me	3.68 (3H, s)	29.6
<i>N</i> (4)-Me	2.92 (3H, s)	40.6

^a TFA salt.

The gross structure of **2** was deduced from extensive analyses of the two-dimensional NMR data, including the ${}^{1}H{-}^{1}H$ COSY, HMQC, and HMBC spectra in CD₃OD (Fig. 3). The ${}^{1}H{-}^{1}H$ COSY and HMQC spectra revealed connectivity of three partial structures **a** (C-3, C-14–C-17), **b** (C-5–C-6), and **c** (C-11–C-12) as shown in Fig. 3.

Fig. 3. Selected 2D NMR correlations for voacalgine B (2).

The presence of 5-hydroxy-*N*-methylindole ring was deduced by HMBC correlations of *N*(1)-Me to C-2 and C-13, H-9 to C-7 and C-13, H-12 to C-8 and oxygenated C-10, and H-11 to C-13. HMBC cross-peaks of *N*(4)-Me to C-3 and C-5 established the connection between C-3 and C-5 through *N*-4. The connection among indole ring and partial structures **a** and **b** was indicated by HMBC correlations of H-6 to C-7 and H-14 to C-2. HMBC correlations from H₃-18 to C-19 and C-20, and H-21 to C-15, C-17, and C-19 established the presence of 3,4-dihydro-2*H*-pyran ring (C-15–C-17, C-20–C-21 and *O*) with an acetyl group at C-20. Thus, the gross structure of voacalgine B (**2**) was assigned to be a new indole alkaloid with a hydroxyl group at C-10 of alstonerine.¹⁸

The relative stereochemistry of **2** was elucidated by the NOESY correlations. The correlations of H-14a/H-17a, H-16/H-15 and H-6a indicated the α -orientation of an *N*-methyl group at *N*-4 and the β -configuration of H-15 and H-16. Thus, the relative stereochemistry of **2** was assigned as shown in Fig. 4.

The CD spectrum of **2** showed a similar pattern to that of alstonerine.⁸ Thus, the absolute configurations of **2** were elucidated to be 3S, 5S, 15R, and 16R.

Fig. 4. Selected NOESY correlations for voacalgine B (2).

2.3. Voacalgine C (3)

Voacalgine C (**3**) showed a molecular formula, $C_{26}H_{34}N_2O_4$, which was determined by HRESITOFMS [*m*/*z* 439.2618 (M+H)⁺, Δ +2.1 mmu]. IR absorption band was characteristic of hydroxyl (3400 cm⁻¹) group. ¹H and ¹³C NMR data (Table 3) suggested the presence of seven sp³ methylenes, six sp³ methines, two sp³ quaternary carbons, three methyls, four sp² methines, and four sp² quaternary carbons. Among them, two sp³ methines (δ_C 55.5; δ_H 4.44, and δ_C 58.0; δ_H 3.35) and two methyls (δ_C 29.3; δ_H 3.68, and δ_C 41.4; δ_H 2.59) were attached to the nitrogen atom, and an sp³ methine (δ_C 70.5; δ_H 3.48 and 3.83), and two sp³ quaternary carbon (δ_C 107.2 and 107.3) were ascribed to that bearing an oxygen atom.

Table 3 1 H (J, Hz) and 13 C NMR data of voacalgine C (3) in CD₃OD at 300 K^a

Position	δ_{H}	δ_{C}
2		131.0
3	4.44 (1H, br s)	55.5
5	3.35 (1H, m)	58.0
6a	2.70 (1H, br d, 16.1)	23.8
6b	3.34 (1H, m)	
7		106.9
8		127.2
9	7.46 (1H, d, 7.6)	119.0
10	7.06 (1H, dd, 7.6, 7.4)	120.3
11	7.17 (1H, dd, 7.4, 7.9)	122.7
12	7.36 (1H, d, 7.9)	110.1
13		139.0
14a	1.78 (1H, m)	32.3
14b	2.48 (1H, ddd, 14.7, 14.7, 3.5)	
15	1.78 (1H, m)	27.4
16	2.23 (1H, ddd, 10.0, 5.1, 5.1)	37.7
17a	3.82 (1H, m)	64.0
17b	4.00 (1H, dd, 11.9, 10.0)	
18	1.58 (3H, s)	26.0
19		107.3
20	2.07 (1H, dd, 11.8, 7.6)	44.2
21a	1.78 (1H, m)	38.8
21b	2.02 (1H, dd, 12.3, 12.3)	
22		107.2
23	3.50 (1H, br t, 3.0)	70.5
24a	1.62 (1H, m)	28.2
24b	1.97 (1H, dddd, 12.8, 12.6, 3.0, 3.0)	
25a	1.29 (1H, m)	20.9
25b	1.87 (1H, ddddd, 12.6, 12.6, 12.4, 3.4, 3.4)	
26a	3.48 (1H, m)	62.7
26b	3.83 (1H, m)	
N(1)-Me	3.68 (3H, s)	29.3
<i>N</i> (4)-Me	2.59 (3H, s)	41.4

^a formic acid salt.

10872

The gross structure of **3** was deduced from extensive analyses of the two-dimensional NMR data, including the ${}^{1}\text{H}{-}^{1}\text{H}$ COSY, HMQC, and HMBC spectra in CD₃OD (Fig. 5). The ${}^{1}\text{H}{-}^{1}\text{H}$ COSY and HMQC spectra revealed connectivity of four partial structures **a** (C-3, C-14–C-17, and C-20–C-21), **b** (C-5–C-6), **c** (C-9–C-12), and **d** (C-23–C-26) as shown in Fig. 5.

Fig. 5. Selected 2D NMR correlations for voacalgine C (3).

By analysis of HMBC spectrum as shown in Fig. 5, three partial structures **a**–**c** composed of a macroline-type skeleton at C-2–C-17. The HMBC correlations for H₃-18 to C-19 (δ_C 107.3) and C-20 (δ_C 44.2), and H₂-17 to C-19 indicated the presence of 2-methyltetrahydropyran ring (C-15–C-20 and *O*). Furthermore, correlations of H-20, H-24a, and H-26a to C-22 (δ_C 107.2) and H-21b to C-23 (δ_C 70.5) suggested the presence of tri-cyclic polyether structure on C-15–C-26. Thus, the gross structure of voacalgine C (**3**) was elucidated to be possessing a macroline-type skeleton with tetrahydropyran-2-spiro-2'-tetrahydrofuran ring as 25-deoxy form of macrodasine E.¹⁹

The relative stereochemistry of **3** was mainly elucidated by the NOESY correlations. In the 2-methyltetrahydropyran ring (C-15–C-20), the NOESY correlations of H₃-18/H-14b, H-17b, and H-20, and a large ${}^{3}J$ coupling constant (10.0 Hz) between H-16 and H-17b suggested that CH₃-18 and H-20 were α -oriented and H-15 and H-16 were β -oriented. The correlations of H-5/H-17a and H-6a/H-16 indicated the α -orientation of an *N*-methyl group at N-4 (Fig. 6).

On the other hand, the NOESY correlations of H-24b/H-26b and large ³*J* coupling constants between H-24b/H-25b (12.4 Hz) and H-25b/H-26 (12.4 Hz) indicated that the tetrahydropyran ring (C-22–C-26) took chair conformation. And an α -oriented hydroxy group at C-23 was deduced from a small ³*J* coupling constant

Fig. 6. Selected NOESY correlations for voacalgine C (3).

(3.0 Hz) between H-23/H-24b. Finally, the relative configuration of a spiro carbon at C-22 was elucidated by the NOESY correlation of H₃-18/H-26b.

The stable conformer corresponding to the axial orientation of OH-23 was generated after conformational searching by computer modeling (MMFF force field energy minimization) and the result was consistent with the coupling constants of H-23 (br t, 3.0 Hz).

2.4. Voacalgine D (4)

Voacalgine D (**4**) showed a molecular formula, $C_{26}H_{30}N_2O_4$, which was determined by HRESITOFMS [m/z 435.2299 (M+H)⁺, Δ +1.6 mmu]. IR absorption band was characteristic of α , β -unsaturated ketone (1670 cm⁻¹) and hydroxyl (3400 cm⁻¹) groups. By analysis of 1D and 2D NMR spectra (Table 4), voacalgine D possessed a macroline-type skeleton as well as voacalgine C.

Table 4 $^{1}{\rm H}$ (J, Hz) and $^{13}{\rm C}$ NMR data of voacalgine D (4) in CD_3OD at 300 ${\rm K}^{\rm a}$

Position	$\delta_{ m H}$	δ_{C}
2		132.3
3	4.20 (1H, br s)	55.6
5	3.13 (1H, m)	57.0
6a	2.54 (1H, d, 16.6)	23.6
6b	3.24 (1H, m)	
7		107.1
8		127.3
9	7.38 (1H, d, 7.6)	118.8
10	7.00 (1H, dd, 7.6, 7.4)	119.9
11	7.12 (1H, dd, 7.4, 7.9)	122.1
12	7.24 (1H, d, 7.9)	109.8
13		138.7
14a	1.68 (1H, m)	27.2
14b	2.87 (1H, m)	
15	1.65 (1H, m)	28.5
16	1.97 (1H, ddd, 11.8, 3.4, 3.4)	44.8
17a	3.46 (1H, m)	61.0
17b	4.49 (1H, dd, 11.7, 11.7)	
18	1.32 (3H, s)	28.4
19		98.3
20	2.21 (1H, ddd, 10.6, 5.3, 5.3)	43.6
21a	2.82 (1H, m)	37.9
21b	2.90 (1H, m)	
22	7.09 (1H, br d, 3.6)	190.6
23	6.54 (1H, dd, 3.6, 1.7)	153.9
24	7.66 (1H, dd, 1.7, 0.5)	119.2
25	3.44 (3H, s)	113.5
26	2.42 (3H, s)	148.7
<i>N</i> (1)-Me		29.1
<i>N</i> (4)-Me		41.5

^a Formic acid salt.

The HMBC correlations from H₃-18 to C-19 (δ_C 98.3) and C-20 (δ_C 43.6), and H-17a to C-15 (δ_C 28.5) and C-19, and H-21a to C-15 indicated the presence of 2-hydroxy-2-methyltetrahydropyran ring (C-15–C-20 and *O*). And, the correlations of H-26/C-23 and C-24, and H-24/C-23 and 26 suggested the presence of a 2-furyl group on C-23–C-26. Furthermore, the connectivity of C-21 and C-23 through C-22 ketone was deduced from the HMBC correlation of H-21a to C-22 and the NOESY correlation of H-24/H-21a. Thus, the gross structure of voacalgine D (**4**) was assigned to be a new indole alkaloid consisting of a macroline-type skeleton with a 2-furyloyl group at C-21 (Fig. 7).

The relative stereochemistry of **4** was elucidated by the NOESY correlations. The correlations of H-14b/H-17b, H-15/H-16, H-16/H-20, and H-6a/H-16 indicated the α -orientation of an *N*-methyl group at *N*-4 and the β -configuration of H-15, H-16, and H-20. The

Fig. 7. Selected 2D NMR correlations for voacalgine D (4).

configuration of a methyl group at C-19 was assigned as equatorial by the NOESY correlation of H-20/H₃-18 and no correlation of H₃-18/H-17b (Fig. 8).

Fig. 8. Selected NOESY correlations for voacalgine D (4).

2.5. Voacalgine E (5)

Voacalgine E (**5**) showed molecular formula, $C_{26}H_{28}N_2O_4$, which was determined by HRESITOFMS [*m/z* 433.2144 (M+H)⁺, Δ +1.7 mmu]. IR absorption band was characteristic of ketone (1710 cm⁻¹) and α , β -unsaturated ketone (1670 cm⁻¹) groups. By analysis of 1D and 2D NMR spectra (Table 5), voacalgine E possessed a macroline-type skeleton and a 2-furyloyl group as well as voacalgine D.

The gross structure of **5** was deduced from extensive analyses of the two-dimensional NMR data. The ¹H–¹H COSY and HMQC spectra revealed connectivity of four partial structures **a** (C-3, C-14–C-17), **b** (C-5–C-6), **c** (C-9–C-12), and **d** (C-24–C-26) as shown in Fig. 9. Since, the left-half of the structure of voacalgine E in Fig. 9 showed similar HMBC correlations as well as voacalgine D (**4**), **5** was presumed to have a macroline-type skeleton. The HMBC correlations of H₂-17 to C-20 (δ_C 92.9), H₃-18 to C-19 (δ_C 214.9) and C-20, and H-15 to C-19 revealed the presence of 2-acetyltetrahydrofuran ring (C-15–C-20). On the other hand, the presence of a 2-furyloyl group was elucidated by the HMBC correlations from H-25 and H-26 to C-23 (δ_C 153.6), and H-24 to C-22 ketone (δ_C 186.6). And the connection of this moiety and C-20 through C-21 methylene was deduced by the HMBC correlations of

Table 5						
H (I. Hz) and	¹³ C NMR data	of voacalgine	E (5) in	CD ₃ OD	at 300	Ka

Position	$\delta_{ m H}$	δ_{C}
2		126.8
3	5.09 (1H, br s)	56.0
5	4.01 (1H, br s)	55.6
6a	3.08 (1H, d, 17.6)	24.0
6b	3.42 (1H, dd, 17.6, 6.0)	
7		105.4
8		126.8
9	7.54 (1H, d, 7.7)	119.5
10	7.13 (1H, dd, 7.7, 7.6)	121.0
11	7.27 (1H, dd, 7.9, 7.6)	123.9
12	7.46 (1H, d, 7.9)	110.6
13		139.6
14a	2.28 (1H, ddd, 12.1, 11.8, 0.8)	27.6
14b	2.40 (1H, br d, 11.8)	
15	2.14 (1H, ddd, 12.1, 7.1, 5.9)	38.0
16	2.74 (1H, ddd, 8.2, 8.2, 7.1)	44.3
17a	4.23 (1H, dd, 9.9, 9.7)	69.4
17b	4.34 (1H, dd, 9.7, 9.4)	
18	2.24 (3H, s)	27.0
19		214.9
20		92.9
21a	3.36 (1H, m)	43.8
21b	3.49 (1H, m)	
22		186.6
23		153.6
24	7.36 (1H, br d, 3.4)	120.0
25	6.64 (1H, dd, 3.4, 1.2)	113.8
26	7.78 (1H, br s)	149.1
N(1)-Me	3.78 (3H, s)	29.7
<i>N</i> (4)-Me	2.94 (3H, s)	40.3

^a Formic acid salt.

Fig. 9. Selected 2D NMR correlations for voacalgine E (5).

 H_2 -21 to C-19, C-20, and C-22. Thus, the gross structure of voacalgine E was assigned to be a new indole alkaloid consisting of a macroline-type skeleton that E-ring is transformed to fivemembered ring with a 2-furyloyl group at C-21 and an acetyl group at C-20.

The relative stereochemistry of **5** was elucidated by the NOESY correlations. The correlations of H-15/H-16, H-16/H₃-18, and H-6a/H-16 indicated the α -orientation of an *N*-methyl group at *N*-4 and the β -configuration of H-15, H-16, and an acetyl group (Fig. 10).

3. Plausible biogenetic pathway

A plausible biogenetic pathway of voacalgines A, D, and E (1, 4, and 5) with rare skeletons was proposed as shown in Fig. 11. Voacalgine A (1) is the second example combined with *C*-mavacurine type of skeleton (6) and 2,3-dihydroxybenzoic acid (7). Voacalgines D (4) and E (5) might be derived from the ring-opened form of alstonerine (8)²⁰ through introduction of C₆ unit²¹ to C-20 followed by cyclization.

Fig. 10. Selected NOESY correlations for voacalgine E (5).

moderate cell growth inhibitory activities against HL-60 and HCT116 cells (IC₅₀ for 1: 12.1 μ M for HL-60, and 45.7 μ M for HCT116).

5. Experimental section

5.1. General experimental details

5.1.1. General methods. 1D and 2D NMR spectra were recorded on a Bruker AV700 spectrometer, and chemical shifts were referenced to the residual solvent peaks ($\delta_{\rm H}$ 3.31 and $\delta_{\rm C}$ 49.0 for methanol- d_4). Standard pulse sequences were employed for the 2D NMR experiments. ¹H–¹H COSY, HOHAHA, and NOESY spectra were measured with spectral widths of both dimensions of 4800 Hz, and 32 scans with two dummy scans were accumulated into 1 K data points for each of 256 t_1 increments. NOESY spectra in the phase-sensitive mode were measured with a mixing time of 800 ms. For HMQC spectra in the phase-sensitive mode and HMBC spectra, a total of 256 increments of 1 K data points were collected. For HMBC spectra with *Z*-axis PFG, a 50 ms delay time was used for long-range C–H coupling. Zero-filling to 1 K for F_1 and multiplication with squared cosine-bell windows shifted in both dimensions were performed prior to 2D Fourier transformation.

Fig. 11. Plausible biogenetic pathway of voacalgines A (1), D (4), and E (5).

4. Conclusion

5.2. Material

In this work, five new indole alkaloids, voacalgines A–E (1-5) were isolated from the bark of *V. grandifolia*. The structures and stereochemistry of 1-5 were elucidated by 2D NMR analysis.

Voacalgines A-E(1-5) were tested for cytotoxic activity against HL-60, HCT116, and MCF7 cell line. Voacalgine A only showed

The bark of *V. grandifolia* was collected at Purwodadi Botanical Garden, Indonesia in 2006. The botanical identification was made by Ms. Sri Wuryanti, Purwodadi Botanical Garden, Indonesia. A voucher specimen (no. AP070910) has been deposited in the herbarium at Purwodadi Botanical Garden, Pasuruan, Indonesia.

5.3. Extraction and isolation

The bark of *V. grandifolia* (444 g) was extracted with MeOH, the extract (32 g) was treated with 3% tartaric acid (pH 2) and then partitioned with EtOAc. The aqueous layer was treated with saturated Na₂CO₃ (aq) to pH 10 and extracted with CHCl₃ to give an alkaloidal fraction (4.3 g). The alkaloidal fraction was subjected to an amino SiO₂ column in hexane/EtOAc (1:0 \rightarrow 0:1) and then CHCl₃/ MeOH (1:0 \rightarrow 0:1).

The CHCl₃/MeOH (50:1) eluted fraction was chromatographed over a SiO₂ column in CHCl₃/MeOH (1:0 \rightarrow 0:1) and the CHCl₃/MeOH (50:1) eluted fraction was applied to an amino SiO₂ column in CHCl₃/MeOH (1:0 \rightarrow 0:1) to afford voacalgine A (**1**, 4.0 mg, 0.0009%).

The CHCl₃/MeOH (1:0) eluted fraction of the first amino SiO₂ column was chromatographed over a SiO₂ column in CHCl₃/MeOH (1:0 \rightarrow 0:1) and the CHCl₃/MeOH (50:1) eluted fraction was separated by an ODS HPLC (47% MeOH aq with 0.1% TFA, 2.0 mL/min, 254 nm) to afford voacalgine B (**2**, 3.7 mg, 0.0008%, t_R =15 min).

The hexane/EtOAc (2:1) eluted fraction of the first amino SiO₂ column was chromatographed over a SiO₂ column in CHCl₃/MeOH (1:0 \rightarrow 0:1) and the CHCl₃/MeOH (80:1) eluted fraction was separated by an ODS HPLC (42% MeOH aq with 0.1% formic acid, 2.0 mL/min, 254 nm) to afford voacalgine E (**5**, 1.3 mg, 0.0003%, t_R =15 min), whereas the CHCl₃/MeOH (50:1) eluted fraction was chromatographed over an amino SiO₂ column in hexane/EtOAc (1:0 \rightarrow 0:1) and the hexane/EtOAc (2:1) eluted fraction was separated by an ODS HPLC (40% MeOH aq with 0.1% formic acid, 2.0 mL/min, 254 nm) to afford voacalgine C (**3**, 0.9 mg, 0.0002%, t_R =20 min).

The CHCl₃/MeOH (100:1) eluted fraction of the first amino SiO₂ column was separated by an ODS HPLC (48% MeOH aq with 0.1% formic acid, 2.0 mL/min, 254 nm) to afford voacalgine D (**4**, 2.6 mg, 0.0006%, $t_{\rm R}$ =16 min).

5.4. Characterization of natural products

5.4.1. Voacalgine A (1). Brown amorphous solid; $[\alpha]_D^{26} + 110$ (c 1.0, CHCl₃); IR (KBr) ν_{max} 3023, 1750, and 1670 cm⁻¹; UV (MeOH) λ_{max} 201 (ε 34,600), 229 (15,600), and 334 (3100) nm; ESIMS *m*/*z* 475 (M+H)⁺; HRESITOFMS *m*/*z* 475.1842 [(M+H)⁺, Δ –2.7 mmu, calcd for C₂₇H₂₇N₂O₆, 475.1869].

5.4.2. Voacalgine *B* (**2**). Brown amorphous solid; $[\alpha]_D^{27}$ –67 (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3300, 1650, and 1620 cm⁻¹; UV (MeOH) λ_{max} 201 (ε 19,000) and 232 (19,900) nm; CD (MeOH) λ_{max} 301 ($\Delta \epsilon$ –6.63), 259 (+7.68), 229 (–9.35), and 205 (+5.34); ESIMS *m*/*z* 353 (M+H)⁺; HRESITOFMS *m*/*z* 353.1861 [(M+H)⁺, Δ +0.1 mmu, calcd for C₂₁H₂₅N₂O₃, 353.1860].

5.4.3. *Voacalgine C* (**3**). Brown amorphous solid; $[\alpha]_{D}^{2} -22$ (*c* 0.5, MeOH); IR (KBr) ν_{max} 3400 cm⁻¹; UV (MeOH) λ_{max} 201 (ε 12,100), 229 (18,600), and 336 (3800) nm; ESIMS *m*/*z* 439 (M+H)⁺; HRE-SITOFMS *m*/*z* 439.2618 [(M+H)⁺, Δ +2.1 mmu, calcd for C₂₆H₃₅N₂O₄, 439.2597].

5.4.4. Voacalgine D (**4**). Brown amorphous solid; $[\alpha]_D^{24} - 6$ (*c* 1.0, MeOH); IR (KBr) ν_{max} 3400, 1670, and 1630 cm⁻¹; UV (MeOH) λ_{max} 229 (ε 30,400) and 273 (14,500) nm; ESIMS *m*/*z* 435 (M+H)⁺; HRESITOFMS *m*/*z* 435.2299 [(M+H)⁺, Δ +1.6 mmu, calcd for C₂₆H₃₁N₂O₄, 435.2234].

5.4.5. Voacalgine E (**5**). Brown amorphous solid; $[\alpha]_{D^2}^{D^2}$ –14 (c 0.5, MeOH); IR (KBr) ν_{max} 1710 and 1670 cm⁻¹; UV (MeOH) λ_{max} 201 (ε

14,900), 228 (20,400), and 374 (10,300) nm; ESIMS m/z 433 (M+H)⁺; HRESITOFMS m/z 433.2144 [(M+H)⁺, Δ +1.7 mmu, calcd for C₂₆H₂₉N₂O₄, 433.2127].

5.5. Cytotoxicity

HL-60, human promyelocytic leukemia cells were maintained in RPMI-1640 medium: MCF7. human breast adenocarcinoma: and HCT116, human colorectal adenocarcinoma cells were maintained in Dulbecco's modified Eagle's medium (DMEM) medium. Both growth media were supplemented with 10% fetal calf serum and 1% penicillin–streptomycin. The cells $(5 \times 10^3 \text{ cells/well})$ were cultured in Nunc disposable 96-well plates containing 90 µL of growth medium per well and were incubated at 37 °C in a humidified incubator of 5% CO₂. Ten microliters of serially diluted samples $(50 \,\mu\text{M}, 25 \,\mu\text{M}, 12.5 \,\mu\text{M}, \text{and } 6.25 \,\mu\text{M})$ were added to the cultures at 24 h of incubation. After 48 h of incubation with the samples, 15 μ L of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (5 mg/mL) was added to each of the wells. The cultures were incubated for another 3 h before the cells supernatant are removed. After the removal of the cells supernatant, 50 µL of dimethyl sulfoxide (DMSO) was added to each well. The formed formazan crystal was dissolved by re-suspension by pipette. The optical density was measured using a microplate reader (Bio-Rad) at 550 nm with reference wavelength at 700 nm. In all experiments, three replicates were used. Cisplatin was used as positive control (IC₅₀: 0.87 µM for HL-60, 27.7 µM for MCF7, and 16.0 µM for HCT116).

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science, The Open Research Center Project, and Takeda Science Foundation.

References and notes

- 1. Biswas, R. C. Sci. Cult. 1970, 36, 552-554.
- Govindachari, T. R.; Sandhya, G.; Chandrasekharan, S.; Rajagopalan, K. J. Chem. Soc., Chem. Commun. 1987, 1137–1138.
- 3. Schuler, B. O. G.; Verbeek, A. A.; Warren, F. L. J. Chem. Soc. 1958, 4776–4777.
- (a) Kunesch, N.; Das, B. C.; Poisson, J. Bull. Soc. Chim. Fr. 1970, 4370–4375; (b) Rolland, Y.; Kunesch, N.; Poisson, J.; Hagaman, E. W.; Schell, F. M.; Wenkert, E. J. Org. Chem. 1976, 41, 3270–3275.
- 5. Majumbar, P. L.; Dinda, B. N. J. Indian Chem. Soc. 1974, 51, 370.
- Yamasaki, F.; Machida, S.; Nakata, A.; Nugroho, A. E.; Hirasawa, Y.; Kaneda, T.; Shirota, O.; Hagane, N.; Sugizaki, T.; Morita, H. *J. Nat. Med.* **2013**, 67, 212–216.
 Zaima, K.; Deguchi, J.; Matsuno, Y.; Kaneda, T.; Hirasawa, Y.; Morita, H. *J. Nat.*
- Med. 2013, 67, 196–201.
 Zaima, K.; Koga, I.; Iwasawa, N.; Hosoya, T.; Hirasawa, Y.; Kaneda, T.; Ismail, I. S.;
- Lajis, N. H.; Morita, H. J. Nat. Med. 2013, 67, 9–16.
 9. Deguchi, J.; Motegi, Y.; Nakata, A.; Hosoya, T.; Morita, H. J. Nat. Med. 2013, 67,
- 10. Nugroho, A. E.; Hirasawa, Y.; Wong, C. P.; Kaneda, T.; Hadi, A. H. A.; Shirota, O.;
- Ekasari, W.; Widyawaruyanti, A.; Morita, H. J. Nat. Med. **2012**, 66, 350–353.
- Wong, C. P.; Shimada, M.; Nugroho, A. E.; Hirasawa, Y.; Kaneda, T.; Hadi, A. H. A.; Osamu, S.; Morita, H. J. Nat. Med. 2012, 66, 566–570.
- Zaima, K.; Takeyama, Y.; Koga, I.; Saito, A.; Tamamoto, H.; Abd. Azziz, S. S. S.; Mukhtar, M. R.; Awang, K.; Hadi, A. H. A.; Morita, H. J. Nat. Med. 2012, 66, 421–427.
- Morita, H.; Mori, R.; Deguchi, J.; Oshimi, S.; Hirasawa, Y.; Ekasari, W.; Widyawaruyanti, A.; Hadi, A. H. A. J. Nat. Med. 2012, 66, 571–575.
- Hosoya, T.; Nakata, A.; Yamasaki, F.; Abas, F.; Shaari, K.; Lajis, N. H.; Morita, H. J. Nat. Med. 2012, 66, 166–176.
- Calverley, M. J.; Banks, B. J.; Harley-Mason, J. Tetrahedron Lett. 1981, 22, 1635–1638.
- Ghedira, K.; Zeches-Hanrot, M.; Richard, B.; Massiot, G.; Le Men-Olivier, L.; Sevenet, T.; Goh, S. H. *Phytochemistry* 1988, 27, 3955–3962.
- Kam, T.-S.; Tan, S.-J.; Ng, S.-W.; Komiyama, K. Org. Lett. **2008**, *10*, 3749–3752.
 (a) Gilman, R. E. Ph.D. Thesis, University of Michigan, 1959. (b) Cook, J. M.; Le
- Quesne, P. W.; Elderfield, R. C. *Chem. Commun.* **1969**, 1306–1307. **19.** Tan, S.-J.; Robinson, W. T.; Komiyama, K.; Kam, T.-S. *Tetrahedron* **2011**, 67,
- 3830–3838. 20. Kam, T.-S.; Choo, Y.-M. *Tetrahedron* **2000**, *56*, 6143–6150.
- 21. Kam, T.-S.; Choo, Y.-M. Tetrahedron Lett. **2003**, 44, 8787–8789.

Tetrahedron

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER
Universities and research institutions in United Kingdom	Biochemistry, Genetics and Molecular Biology Biochemistry Chemistry Organic Chemistry Pharmacology, Toxicology and Pharmaceutics Drug Discovery	Elsevier Ltd.
H-INDEX 216	PUBLICATION TYPE Journais	ISSN 14645416, 00404020
COVERAGE	INFORMATION	
1957-2020	Homepage How to publish in this journal stoltz@caltech.edu	

SCOPE

Tetrahedron publishes full accounts of research having outstanding significance in the broad field of organic chemistry and its related disciplines, such as organic materials and bio-organic chemistry. Regular papers in Tetrahedron are expected to represent detailed accounts of an original study having substantially greater scope and details than that found in a communication, as published in Tetrahedron Letters. Tetrahedron also publishes thematic collections of papers as special issues and 'Reports', commissioned in-depth reviews providing a comprehensive overview of a research area.

 \bigcirc Join the conversation about this journal

Scopus Preview	Author search	Sources	0 2	Create account	Sign in
Source details			Feedba	ack 🔰 Compare sourc	
Tetrahedron Scopus coverage years: from 1957 to Present			CheScore 2019 4.3		0
Publisher: Elsevier ISSN: 0040-4020 E-ISSN:]464-5416 Subject area: (Chemistry Organic Chemistry) (Pharmacology, Trakology and Pharmamatics: Drug Discovery)			518 2019 0.581		0
(Bochemistry, Genetics and Molecular Biology: Biochemistry) Source type: journal			5NIP 2019 0.675		0