Alstiphyllanines E–H, picraline and ajmaline-type alkaloids from Alstonia macrophylla inhibiting sodium glucose cotransporter

by Idha Kusumawati

Submission date: 20-Apr-2021 10:48AM (UTC+0800)

Submission ID: 1564258634

File name: Jurnal C-21.pdf (535.15K)

Word count: 6787

Character count: 27455

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Alstiphyllanines E–H, picraline and ajmaline-type alkaloids from *Alstonia macrophylla* inhibiting sodium glucose cotransporter

Hiroko Arai^a, Yusuke Hirasawa^a, Abdul Rahman^b, Idha Kusumawati^b, Noor Cholies Zaini^b, Seizo Sato^c, Chihiro Aoyama^c, Jiro Takeo^c, Hiroshi Morita^{a,*}

- ^a Faculty of Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
- ^b Faculty of Pharmacy, Airlangga University, Jalan Dharmawangsa Dalam, Surabaya 60286, Indonesia
- ^cCentral Research Laboratory, Nippon Suisan Kaisha, Ltd, 559-6 Kitano-machi, Hachioji, Tokyo 192-0906, Japan

ARTICLE INFO

Article history: Received 10 December 2009 Revised 29 January 2010 Accepted 30 January 2010 Available online 6 February 2010

Keywords: Indole alkaloids Alstonia macrophylla Alstiphyllanines E-H SGIT

ABSTRACT

Three new picraline-type alkaloids, alstiphyllanines E–G (1–3) and a new ajmaline-type alkaloid, alstiphyllanine H (4) were isolated from the leaves of *Alstonia macrophylla* together with 16 related alkaloids (5–20). Structures and stereochemistry of 1–4 were fully elucidated and characterized by 2D NMR analysis. Alstiphyllanines E and F (1 and 2) showed moderate Na⁺-glucose cotransporter (SGLT1 and SGLT2) inhibitory activity. A series of a hydroxy substituted derivatives 21–28 at C-17 of the picraline-type alkaloids have been derived as having potent SGLT inhibitory activity. 10-Methoxy-*N*(1)-methylburnamine-17-O-veratrate (6) exhibited potent inhibitory activity, suggesting that the presence of an ester side chain at C-17 may be important to show SGLT inhibitory activity. Structure activity relationship of alstiphyllanines on inhibitory activity of SGLT was discussed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Na*-glucose cotransporter (SGLT) is a membrane protein that plays an important role in the re-absorption of glucose in the kidneys. SGLT is known to have three isoforms (SGLT1, SGLT2, and SGLT3).¹⁻³ SGLT1 is expressed primarily in the brush border membrane of mature enterocytes in the small intestine, where it absorbs dietary glucose and galactose from the gut lumen.⁴ SGLT2 is only expressed in the renal cortex, where it is assumed to be present in the brush border membrane of the S1 and S2 segments of the proximal tubule, and to be responsible for the re-absorption of glucose from the glomerular filtrate. ⁴ It is expected that the inhi-

bition of SGLT could decrease glucose re-absorption and that this could thus result in an increase in urinary sugar excretion, and a decrease in blood glucose level. Thus, SGLT inhibitors have therapeutic potential for type 2 diabetes.⁵

Our screening study on SGLT inhibitors in traditional medicine⁶ discovered that the methanol extract of *Alstonia macrophylla* shows moderate SGLT inhibitory activity. The genus *Alstonia*, which is widely distributed in tropical regions of Africa and Asia, are well-known rich sources of unique monoterpene indole alkaloids with various biological activities such as anticancer, antibacterial, anti-inflammatory, antitussive, and antimalarial properties. Recently, several new indole alkaloids were isolated from extracts of *Alstonia*

0968-0896/\$ - see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2010.01.077

Corresponding author. Tel./fax: +81 3 5498 5778.
 E-mail address: moritah@hoshi.ac.jp (H. Morita).

species collected in Indonesia and Malaysia.^{8,9} With an aim to isolate additional alkaloids against SGLT inhibitory activity, purification of extracts of *A. macrophylla* Wall.ex G. Don (Apocynaceae) collected in Indonesia led to four new alkaloids alstiphyllanines E-H (1–4) together with 16 known alkaloids (5–20). Herein we report the isolation and structure elucidation of four new indole alkaloids, alstiphyllanines E-H (1–4) from *A. macrophylla* as well as SGLT inhibitory activity and structure activity relationship (SAR) study of some picraline-type indole alkaloids.

2. Results and discussion

2.1. Structures of alstiphyllanines E-H (1-4)

Leaves of A. macrophylla were extracted with MeOH, and the extract was partitioned between EtOAc and 3% aqueous tartaric acid. Water-soluble materials, adjusted to pH 9 with satd aq Na2CO3, were extracted with CHCl3. The CHCl3-soluble materials were subjected to an LH-20 column (CHCl3/MeOH, 1:1) followed by a silica gel column (CHCl₃/MeOH, 1:0-0:1). The eluted fractions were further separated by ODS HPLC (MeOH/H2O/TFA) to afford 1 (1.8 mg, 0.00050% dry weight), 2 (1.3 mg, 0.00036%), 3 (10.4 mg, 0.0029%), and 4 (3.6 mg, 0.0013%), together with 16 known alkaloids, burnamine-17-0-3',4',5'-trimethoxybenzoate¹⁰ (5), 10-methoxy-N(1)-methylburnamine-17-O-veratrate¹⁰ (**6**), alstiphyllanine D⁹ (7), alstiphyllanine B⁹ (8), alstiphyllanine C⁹ (9), picralinal¹¹ (10), picrinine¹¹ (11), quaternine¹² (12), O-deacetylpicraline¹³ (13), vincamedine¹⁴ (14), vincamajine¹⁵ (15), alstiphyllanine A⁹ (16), vincamajine-17-0-veratrate¹⁶ (17), vincamajine-17-0-3',4',5'trimethoxybenzoate¹⁶ (**18**), alstonal ¹⁷ (**19**), and alstonerine¹⁴ (**20**).

Alstiphyllanine E {1, $[\alpha]_D^{26}$ -93 (c 1.0, MeOH)} was revealed to have the molecular formula $C_{30}H_{32}N_2O_7$, by HRESITOFMS [m/z 533.2272 (M+H)*, Δ -1.6 mmu]. The 1 H NMR data (Table 1) showed the presence of seven aromatic protons, an ethylidene side chain, a methyl ester function, and two methoxy groups. The HMBC cross-peak of H_2 -21 to C-19 indicated the ethylidene side chain at C-20. The position of each methoxy group was confirmed

by HMBC correlations of O-Me to C-3′ and C-4′. HMBC correlations for H-5 to C-2, H_2 -17 to C-7, and H_2 -6 to C-16 indicated alstiphyllanine E possessed picraline-type skeleton. The molecular formulae of alstiphyllanine E was smaller than that of burnamin-17-O-3′,4′,5′-trimethoxybenzoate 9 by CH_2O unit. Compared with 1H NMR data of burnamin-17-O-3′,4′,5′-trimethoxybenzoate, 9 alstiphyllanine E was suggested a picraline-type backbone without O-Me at C-5′. The relative stereochemistry of $\mathbf 1$ was elucidated by NOESY correlations as shown in computer-generated 3D drawing (Fig. 1). The NOESY correlation of H_3 -18 to H_3 -15 indicated that the geometry of ethylidene side chain was E. The B-orientation of C-17 was elucidated by the NOESY correlation of H-14b/H-17a.

Alstiphyllanine F {2, $[\alpha]_D^{26}$ -32 (c 1.0, MeOH)} was revealed to have the molecular formula $C_{32}H_{36}N_2O_9$, by HRESITOFMS [m/z]593.2511 (M+H)⁺, Δ -1.2 mmu], which was larger than that of burnamin-17-0-3',4',5'-trimethoxybenzoate by CH2O unit. Compared with ¹H NMR data of burnamin-17-0-3',4',5'-trimethoxybenzoate, alstiphyllanine F was suggested a picraline-type backbone with O-Me. The HMBC cross-peak of H_3 -O-Me (δ_H 3.27) to C-10 (δ_{C} 156.5) revealed the presence of an indole moiety with a methoxy group at C-10. HRESITOFMS data [m/z 413.2080 $(M+H)^{\dagger}$, $\Delta = -0.4$ mmu] of alstiphyllanine G {3, $[\alpha]_D^{26} = -42$ (c 1.0, MeOH)] established the molecular formula, $C_{23}H_{28}N_2O_5$, which was larger than that of *O*-deacetylpicraline¹³ by C_2H_4O unit. The NMR data of 3 were analogous to those of O-deacetylpicraline 13 except for the following observation: a methoxy signal ($\delta_{\rm H}\,3.70)$ and an N-methyl signal ($\delta_{\rm H}$ 2.89) lacking in O-deacetylpicraline appeared for 3. The presence of both methyl groups was verified by the HMBC correlations of the methoxy protons to C-10 and the N-methyl protons to C-2 and C-13.

Alstiphyllanine H {**4**, [α] $_{\rm D}^{26}$ -21 (c 1.0, MeOH)} was obtained as a brown amorphous solid and was revealed to have the molecular formula $C_{22}H_{26}N_2O_4$, by HRESITOFMS [m/z 383.1971 (M+H) † , Δ -2.7 mmu], which was larger than that of vincamajine 15 by an oxygen unit. The 1 H NMR data (Table 1) showed the presence of four aromatic protons, an ethylidene side chain, a methyl ester function, and an N-methyl group. Partial structures C-9–C-12,

Table 1 1 H NMR data [δ_{H} (J, Hz)] of alstiphyllanines E-H (**1–4**)

	1 ^a	2 ^a	3 ^b	4 ^a
2				3.55 (d, 4.8)
2 3 5	4.07 (s)	4.00 (s)	3.73 (d, 3.6)	4.39 (m)
5	5.56 (s)	5.56 (s)	4.72 (d, 2.6)	4.42 (m)
6a	2.67 (d, 15.4)	2.66 (15.1)	2.33 (dd, 13.9, 2.6)	2.53 (d, 14.4)
6b	3.17 (d, 15.4)	3.25 (m)	3.30 (d, 13.9)	2.73 (d, 14.4)
9	7.56 (d, 7.4)	7.03 (s)	6.93 (d, 2.6)	7.20 (d, 7.2)
10	6.54 (dd, 7.4, 7.2)			6.83 (dd, 7.2, 7.2
11	6.87 (dd, 7.5, 7.2)	6.60 (d, 8.4)	6.73 (dd, 8.5, 2.6)	7.19 (dd, 7.6, 7.2
12	6.73 (d, 7.5)	6.33 (d, 8.4)	6.59 (d, 8.5)	6.77 (d, 7.6)
14a	2.23 (d, 14.8)	2.29 (d, 15.1)	1.97 (m)	2.10 (m)
14b	2.41 (d, 14.8)	2.37 (d, 15.1)		2.74 (m)
15	3.40 (s)	3.35 (s)	3.48 (s)	3.36 (s)
17a	4.08 (d, 11.4)	4.09 (d, 10.9)	3.47 (d, 12.3)	4.16 (s)
17b	4.57 (d, 11.4)	4.94 (d, 10.9)	3.73 (d, 12.3)	
18	1.70 (d, 6.8)	1.76 (d, 7.2)	1.56 (dd, 7.1, 2.0)	1.61 (d, 6.5)
19	5.74 (q, 6.8)	5.76 (q, 7.2)	5.35 (q, 7.1)	5.55 (q, 6.5)
21a	4.25 (d, 17.1)	4.02 (m)	3.11 (d, 15.9)	4.46 (d, 15.1)
21b	4.00 (d, 17.1)	4.16 (d, 16.1)	3.66 (d, 15.9)	4.55 (d, 15.1)
CO ₂ Me	3.75 (s)	3.80 (s)	3.72 (s)	3.73 (s)
10-O-Me		3.27 (s)	3.70 (s)	
3'-O-Me	3.86 (s)	3.89 (s)		
4'-O-Me	3.88 (s)	3.81 (s)		
5'-O-Me		3.89 (s)		
N(1)-Me			2.89 (s)	2.66 (s)
2'	7.15 (s)	6.91 (s)		
5'	6.94 (d, 8.4)	. ,		
6'	7.28 (d, 8.4)	6.91 (s)		

a TFA salt in CD₃OD.

b Free base in CDCl₃.

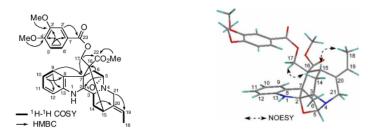


Figure 1. Selected 2D NMR correlations for alstiphyllanine E (1).

C-5-C-6, C-2-C-15, and C-18-C-19 were deduced from a detailed analysis of 1H-1H COSY spectrum of 4. The HMBC cross-peaks of H₃-18 to C-20 and H-19 to C-15 indicated the presence of an ethylidene side chain at C-20 (Fig. 2). And the presence of an indoline ring was elucidated by HMBC correlations for H-9 to C-7 and N-Me to C-2 and C-13. HMBC correlations for H-2, H-5, and H-6a to C-17 and H-6a and H-14a to C-16 indicated alstiphyllanine H possessed ajmaline-type skeleton. Comparison of ¹³C chemical shifts of C-3, C-5, and C-21 (δ_C 70.5, 77.4, and 67.3, respectively) in **4** with those ($\delta_{\rm C}$ 53.2, 61.7, and 55.6, respectively) of vincamedine¹⁴ indicated the presence of an N-oxide functionality at N-4. The relative stereochemistry of 4 was elucidated by NOESY correlations as shown in computer-generated 3D drawing (Fig. 2). NOESY correlations of H₃-18 to H-21 indicated that the geometry of the ethylidene side chain was Z. The NOESY correlations of H-3/H-2 and H-14a and H-14b/H-17 indicated that H-2 was \alpha-orientated and H-17 was β -oriented. Oxidation of vincamajine with m-chloroperoxybenzoic acid (m-CPBA) afforded the N-oxide derivative, whose spectral data and the $[\alpha]_D$ value were identical with those of natural alstiphyllanine H. Thus, the structure of asltiphyllanine H was elucidated as shown in Figure 2.

2.2. SGLT inhibitory activity

The in vitro SGLT inhibitory potential of alkaloids **1–20** was assessed by monitoring inhibition of uptaking of methyl- α -D-glucopyranoside in cultured cells expressing SGLT1 or SGLT2 at 50 μ M (Table 3). As shown in Table 3, picraline-type alkaloids with veratrate or trimethoxybenzoate at C-17 such as compounds **1**, **2**, and **5–7**, showed inhibitory activity against SGLT1 and SGLT2. However, compounds **8** and **9** which have an N(4)-Me group were found to have no SGLT inhibitory activity. Any ajmaline and macroline type alkaloids (**4** and **14–20**) did not show inhibition on SGLT1 and SGLT2.

To discuss SAR of picraline-type alkaloids showing SGLT inhibitory activity, we prepared eight picraline-type derivatives 21-28 from $\bf 6$ and $\bf 7$ by use of acyl anhydride, m-CPBA, and boron tribromide, respectively (Table 4). As shown in Table 4, the presence of

Table 2 13 C NMR data ($\delta_{\rm C}$) of alstiphyllanines E–H (**1–4**)

	., or ansarpmya			
	1ª	2 ^a	3 b	4 ^a
2	109.5	106.6	109.6	70.9
3	54.8	53.3	49.4	70.5
5	90.5	89.9	86.9	77.4
6	41.6	44.6	44.8	32.1
7	53.1	53.1	52.7	57.3
8	132.9	136.0	134.2	130.1
9	128.4	117.4	113.3	126.4
10	122.4	156.5	154.5	120.9
11	129.6	112.9	112.9	129.7
12	112.1	112.8	109.5	110.7
13	149.4	143.8	145.4	155.2
14	20.4	22.5	21.6	22.9
15	39.9	37.0	33.0	36.3
16	59.0	58.5	57.5	63.3
17	67.3	69.6	64.1	74.6
18	13.1	14.7	13.1	12.8
19	128.2	126.0	119.9	122.1
20	132.9	132.5	137.8	129.5
21	42.2	47.2	46.7	67.3
22	172.8	174.8	174.6	171.3
23	166.3	166.5		
CO ₂ Me	52.4	53.1	55.8	52.9
10- <i>O-Me</i>		56.2	51.8	
3'-O-Me	56.4	57.3		
4'-0-Me	56.4	61.8		
5'-O-Me		57.3		
N(1)-Me			30.1	35.0
1'	122.5	125.8		
2'	129.6	108.7		
3'	149.8	154.9		
4'	153.1	143.9		
5'	111.6	154.9		
6'	125.0	108.7		

a TFA salt in CD3OD.

an N(1)-Me group promoted SGLT1 inhibitory activity when compared to those of **1**, **2** and **5**. Compound **22** which was converted a methoxy group at C-10 of **7** into a hydroxyl showed less activity against SGLT1, whereas N(4)-oxide derivatives **23** and **24** with a

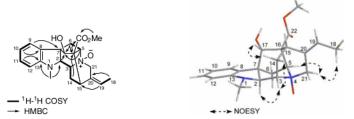


Figure 2. Selected 2D NMR correlations for alstiphyllanine H (4).

b Free base in CDCl₃.

Table 3
Structures and SGLT inhibitory activity of alkaloids 1–20

	R ¹	R^1 R^2 R^3		R ⁴		Inhibition % ^a	
						SGLT1	SGLT2
icraline-	type alkaloids						
l	CH ₂ O-Bz(OMe) ₂	Н	H	Н		60.3	85.9
2	$CH_2O-Bz(OMe)_3$	OMe	Н	Н		65.2	103.8
;	CH₂OH	OMe	Me	H		14.0	31.6
5	$CH_2O-Bz(OMe)_3$	Н	H	H	19Z	53.0	87.3
;	CH ₂ O-Bz(OMe) ₂	OMe	Me	Н		95.8	102.6
,	CH ₂ O-Bz(OMe) ₃	OMe	Me	Н		89.9	101.4
	CH ₂ O-Bz(OMe) ₂	OMe	Me	Н	N(4)-Me	-10.3	-0.2
)	CH ₂ O-Bz(OMe) ₃	OMe	Me	Н	N(4)-Me	-8.2	-6.1
0	СНО	Н	H	Н		16.5	36.3
1	Н	Н	Н	Н		9.6	27.3
2	Н	OMe	Н	OMe		11.7	30.0
13	CH ₂ OH	Н	Н	Н		10.1	-0.2
jmaline-	-type alkaloids						
ŀ	Me	OH			N(4)-oxide	4.3	23.1
4	Me	OAc				22.0	47.4
15	Me	OH				11.5	30.6
16	Me	OAc			N(4)-oxide	5.3	38.5
17	Me	$OBz(OMe)_2$				26.0	44.0
18	Me	$OBz(OMe)_3$				7.2	47.6
Macroli n	e-type alkaloids						
19						15.8	26.8
20						20.7	27.7
Rê 🔨	R ¹ ₁₆ CO₂Me	R ² C	O ₂ Me		H		√ ^H H
10	1 NO N4		1_		NH	N N	N 9
R ⁴ ~~	N R ³ H	N Har		N/N/	OH H	l H	H
		ajmaline typ	ne		, 10		/ 10
	picraline type	(4 and 14-1		macı	roline type		ine type
(1-3 and 5-13)	(12	-,		19	2	20

 $^{^{}a}\,$ Inhibition (%) at 50 $\mu M.$

Table 4
Structures and SGLT inhibitory activity of picraline-type derivatives 1, 2, 5–7, and 21–28

	R ¹	R ²	R ³		Inhibition % ^a (IC ₅₀ μM)	
					SGLT1	SGLT2
1	CH ₂ O-Bz(OMe) ₂	Н	Н		60.3 (44)	85.9 (40)
2	CH ₂ O-Bz(OMe) ₃	OMe	Н		65.2 (39)	103.8 (40)
2 5	$CH_2O-Bz(OMe)_3$	Н	H	19Z	53.0 (50)	87.3 (35)
6 7	CH ₂ O-Bz(OMe) ₂	OMe	Me		95.8 (4)	102.6 (0.5)
7	$CH_2O-Bz(OMe)_3$	OMe	Me		89.9(5)	101.4(2)
21	CH ₂ O-Bz	OMe	Me		85.2 (17)	100.1(1)
22	$CH_2O-Bz(OH)_3$	OH	Me		46.9 (50)	95.6 (7)
23	CH ₂ O-Bz(OMe) ₂	OMe	Me	N(4)-oxide	94.6(5)	64.9 (35)
24	$CH_2O-Bz(OMe)_3$	OMe	Me	N(4)-oxide	93.8 (4)	91.4 (11)
25	CH ₂ O-cinnamoyl	OMe	Me		96.3 (5)	102.8(1)
26	CH ₂ O-Ac	OMe	Me		5.4 (>100)	39.9 (78)
27	CH2OCOCH2CH3	OMe	Me		27.1 (97)	86.9 (12)
28	CH ₂ O-Bn	OMe	Me		7.6 (>100)	25.7 (>100)
		R ¹ ₁₀ CO ₂ Me				
		picraline type (1, 2, 5-7, and 21-28)				

 $^{^{\}rm a}$ Inhibition (%) at 50 $\mu M_{\rm \cdot}$

methoxy group at C-10 showed less activity against SGLT2. Aliphatic esters at C-17 such as **26** and **27** showed less activity against both SGLT1 and SGLT2, and the presence of an aromatic long side chain at C-17 such as cinnamoyl derivative **25** potentiated the inhibitory activity against SGLT1 and SGLT2. On the other hand,

the benzyl ether derivative 28 at C-17 did not show inhibitory

In this work, three new picraline-type alkaloids, alstiphyllanines E-G (1-3) and a new ajmaline-type alkaloid, alstiphyllanine H (4) were isolated from the leaves of A. macrophylla, and their

structures were fully elucidated by 2D NMR analysis. SAR study of these alkaloids and synthetic analogue against STLT1 and SGLT2 suggested that the presence of picraline-type alkaloid with an ester side chain at C-17 may be important to show inhibitory activity.

3. Experimental section

3.1. General methods

¹H and 2D NMR spectra were recorded on a Bruker AV 400 spectrometer and chemical shifts were reported using residual CD₃OD ($\delta_{\rm H}$ 3.31 and $\delta_{\rm C}$ 49.0) as internal standards. Standard pulse sequences were employed for the 2D NMR experiments. 1 H– 1 H COSY, HOHAHA, and NOESY spectra were measured with spectral widths of both dimensions of 4800 Hz, and 32 scans with two dummy scans were accumulated into 1 K data points for each of 256 t_{1} increments. NOESY spectra in the phase sensitive mode were measured with a mixing time of 800 ms. For HMQC spectra in the phase sensitive mode and HMBC spectra, a total of 256 increments of 1 K data points were collected. For HMBC spectra with Z-axis PFG, a 50 ms delay time was used for long-range C–H coupling. Zero-filling to 1 K for F_{1} and multiplication with squared cosine-bell windows shifted in both dimensions were performed prior to 2D Fourier transformation.

3.2. Material

The leaves of *A. macrophylla* were collected at Purwodadi Botanical Garden, Indonesia in 2006. The botanical identification was made by Ms. Sri Wuryanti, Purwodadi Botanical Garden, Indonesia. A voucher specimen has been deposited in the herbarium at Purwodadi Botanical Garden, Pasuruan, Indonesia.

3.3. Extraction and isolation

The leaves of A. macrophylla (363.5 g) were extracted with MeOH. The MeOH extract (43.8 g) was treated with 3% tartaric acid (pH 2) and then partitioned with EtOAc. The aqueous layer was treated with satd aq Na₂CO₃ aq to pH 9 and extracted with CHCl₃ to give alkaloidal fraction (2.06 g). The alkaloidal fraction was purified by LH-20 column (CHCl₃/MeOH, 1:0) and SiO₂ column (CHCl₃/MeOH, 1:0→0:1) and the fraction eluted by MeOH was purified by ODS HPLC (CH₃CN/H₂O/CF₃CO₂H, 45:55:0.1; flow rate, 2 mL/min; UV detection at 254 nm) to afford alstiphyllanines E (1, 1.8 mg, 0.00050% yield), F (2, 1.3 mg, 0.00036%), G (3, 10.4 mg, 0.0029%), and H (4, 3.6 mg, 0.0013%), together with known alkaloids, burnamine-17-0-3',4',5'-trimethoxybenzoate¹⁰ (5), 10-methoxy-N(1)methylburnamine-17-O-veratrate¹⁰ (6), alstiphyllanine D⁹ (7), alstiphyllanine B⁹ (8), alstiphyllanine C⁹ (9), picralina¹¹ (10), picrinine¹¹ (11), quaternine¹² (12), O-deacetylpicraline¹³ (13), vincamedine¹⁴ (14), vincamajine¹⁵ (15), alstiphyllanine A⁹ (16), vincamajine-17-O-veratrate¹⁶ (**17**), vincamajine-17-*O*-3',4',5'-trimethoxybenzo-ate¹⁶ (**18**), alstonal¹⁷ (**19**), alstonerine¹⁴ (**20**).

3.3.1. Alstiphyllanine E (1)

Brown amorphous solid; $[\alpha]_{20}^{26}$ – 93 (c 1.0, MeOH); IR (film) $\nu_{\rm max}$ 3390, 1740, and 1680 cm⁻¹; UV (MeOH) $\lambda_{\rm max}$ 291 (ϵ 4700), 264 (6200), and 204 (27,000) nm; ¹H and ¹³C NMR data (Tables 1 and 2); ESIMS m/z 533 (M+H)*; HRESITOFMS m/z 533.2272 [(M+H)*, Δ –1.6 mmu, calcd for C₃₀H₃₃N₂O₇, 533.2288].

3.3.2. Alstiphyllanine F (2)

Brown amorphous solid; $[α]_D^{3D} - 32$ (c 1.0, MeOH); IR (film) $ν_{max}$ 3420, 1740, and 1680 cm⁻¹; UV (MeOH) $λ_{max}$ 245 (ε 6800) and 204 (28,000) nm; 1 H and 13 C NMR data (Tables 1 and 2); ESIMS m/z 593

 $(M+H)^+$; HRESITOFMS m/z 593.2511 [$(M+H)^+$, Δ +1.2 mmu, calcd for $C_{32}H_{37}N_2O_9$, 593.2499].

3.3.3. Alstiphyllanine G (3)

Brown amorphous solid; $[\alpha]_0^{26}$ –42 (*c* 1.0, MeOH); IR (film) v_{max} 3420 and 1720 cm⁻¹; UV (MeOH) λ_{max} 306 (ε 1500), 240 (3500), and 204 (12,000) nm; 1 H and 13 C NMR data (Tables 1 and 2); ESIMS m/z 413 (M+H)*; HRESITOFMS m/z 413.2080 [(M+H)*, Δ +0.4 mmu, calcd for $C_{23}H_{28}N_2O_5$, 413.2076].

3.3.4. Alstiphyllanine H (4)

Brown amorphous solid; $[α]_{2}^{26} - 21$ (c 1.0, MeOH); IR (film) $ν_{max}$ 3420 and 1740 cm⁻¹; UV (MeOH) $λ_{max}$ 291 (ε 1400) and 204 (10,000) nm; ${}^{1}H$ and ${}^{13}C$ NMR data (Tables 1 and 2); ESIMS m/z 383 (M+H) ${}^{+}$; HRESITOFMS m/z 383.1944 [(M+H) ${}^{+}$, Δ –2.7 mmu, calcd for $C_{22}H_{26}N_2O_4$, 383.1971].

3.3.5. Conversion of vincamajine (15) to alstiphyllanine H (4)

m-Chloroperoxybenzoic acid (0.9 mg) was added to a stirred solution of vincamajine (**15**, 0.9 mg) in CH_2CI_2 (0.2 mL) at room temperature. The mixture was stirred at 0 °C for 10 min, and washed with 20% Na_2SO_2 (5 mL) and H_2O (5 mL), and concentrated to give a pale yellow solid. The residue was subjected to a silica gel column ($CHCI_3/MeOH$, 10:1) to give the N-oxide derivative (1.5 mg), whose spectral data and $[\alpha]_D$ value were identical with those of alstiphyllanine H (**4**).

3.3.6. Conversion of 6 to 3

A mixture of 39.6 mg of alkaloid **6** and 20 mL of 5% NaOMe were heated for 30 min under stirring. The solution was diluted with water and extracted with CHCl₃. The extract was treated with 3% tartaric acid (pH 2) and then partitioned with EtOAc. The aqueous layer was treated with saturated Na₂CO₃ aq to pH 9 and extracted with CHCl₃ to give **3** (27.1 mg, 95.8%).

3.3.7. Conversion of 3 to Its benzoate derivative (21)

To a solution of 3 (3.2 mg) in CH₂Cl₂ (0.1 mL) was added benzoic anhydride (4.5 mg) and DMAP (3.2 mg), and the solution was stirred at room temperature. The mixture was diluted with CHCl3 and washed with water, satd aq NaHCO3, and water. The organic phase was dried over MgSO4 and concentrated in vacuo, and then purified by an ODS HPLC (MeOH/H2O/formic acid; flow rate, 2 mL/ min; UV detection at 254 nm) to obtain **21** (2.4 mg, 60.0%): $[\alpha]_n^2$ –38 (c 0.1, MeOH); IR (film) 1740 and 1710 cm⁻¹; ¹H NMR (CD₃OD) δ 7.61 (dd, 7.6, 7.6, H-2', 6'), 7.55 (dd, 7.6, 7.6, H-4'), 7.39 (d, 7.6, H-3', 5'), 7.05 (d, 2.5, H-9), 6.57 (d, 8.6, H-12), 6.42 (dd, 2.5, 8.6, H-11), 5.66 (q, 6.9, H-19), 5.49 (br s, H-5), 4.78 (d, 10.9, H-17), 4.24 (d, 10.9, H-17) 4.12 (m, H-21), 3.70 (s, -OMe), 3.64 (br s, H-3, 15), 3.41 (s, -OMe), 3.35 (d, 15.0, H-6), 2.94 (s, -NMe), 2.53 (d, 15.0, H-6), 2.29 (d, 15.1, H-14), 2.19 (d, 15.1, H-14), 1.70 (d, 6.92, H-18); HRESIMS m/z 517.2323 [calcd for $C_{30}H_{33}N_2O_6 (M+H)^+, 517.2339$].

3.3.8. Conversion of 7 to its hydroxy derivative (22)

A solution of boron tribromide in CH₂Cl₂ (1.0 M, 8.1 μ L) was added dropwise to stirred solution of **7** (1.1 mg) in CH₂Cl₂ (50 μ L), stirring being continued for 15 min at 0 °C. The reaction mixture was quenched with water and diluted with EtOAc. The organic layer was successively washed with water and brine, dried with MgSO₄, and concentrated in vacuo. The residue was chromatographed on an ODS HPLC (MeOH/H₂O/formic acid, 55:45:0.1; flow rate, 2 mL/min; UV detection at 254 nm) to give compound **22** (0.3 mg, 30.3 %): [α _D²⁷ -78 (α _C 0.1, MeOH); IR (film) 3420, 1740, and 1710 cm⁻¹; H NMR (CD₃OD) α _C 7.00 (d, 8.4, H-9), 6.87 (s, H-2', 6'), 6.58 (d, 2.5, H-12), 6.51 (dd, 8.4, 2.5, H-11), 5.74 (q, 7.7, H-19), 5.41 (br s, H-5), 4.53 (d, 11.4, H-17), 4.25 (d,

11.4, H-17), 4.19 (br s, H-3), 3.72 (br s, H-15), 3.99 (m, H-21), 3.70 (s, -OMe), 3.30 (m, H-6), 2.95 (s, -NMe), 2.60 (d, 15.9, H-6), 2.34 (d, 16.1, H-14), 2.28 (d, 16.1, H-14), 1.72 (d, 7.7, H-18); HRESIMS m/z 551.2052 [calcd for $C_{29}H_{31}N_2O_9(M+H)^*$, 551.2030].

3.3.9. Conversion of 6 to Its N(4)-oxide derivative (23)

To a solution of **6** (2.8 mg) in CHCl₃ (0.3 mL) was added *m*-CPBA (1.0 mg) in CHCl₃ (300 μL) and the mixture was kept at 4 °C for 10 min. After evaporation, the residue was applied to a silica gel column (CHCl₃/MeOH, 9:1) to give **23** (1.0 mg, 34.8 %): $[\alpha]_D^{27} - 14$ (c 0.5, MeOH); IR (film) 1740 and 1710 cm⁻¹; ¹H NMR (CD₃OD) δ 7.24 (dd, 8.5, 2.0, H-5'), 7.11 (d, 2.0, H-2'), 7.03 (d, 2.6, H-9), 6.93 (d, 8.5, H-5'), 6.56 (d, 8.6, H-12), 6.40 (dd, 8.6, 2.6, H-11), 5.69 (q, 6.7, H-19), 5.05 (br s, H-5), 4.81 (d, 11.1, H-17), 4.34 (d, 16.4, H-21) 4.16 (d, 16.4, H-21), 4.03 (d, 3.2, H-3), 3.89 (s, -OMe), 3.88 (s, -OMe), 3.74 (s, -OMe), 3.60 (br s, H-15), 3.34 (s, -OMe), 3.30 (m, H-6), 2.95 (s, -Me), 2.50 (m, H-6), 2.47 (m, H-14), 2.25 (d, 15.8, H-14), 1.72 (dd, 6.7, 2.3, H-18); HRESIMS m/z 593.2522 [calcd for $C_{32}H_{37}N_2O_9(M+H)^+$, 593.2499].

3.3.10. Conversion of 7 to its N(4)-oxide derivative (24)

To a solution of **7** (1.0 mg) in CHCl₃ was added *m*-CPBA (1.6 mg) in CHCl₃ (300 μL) and the mixture was kept at 4 °C for 10 min. After evaporation, the residue was applied to a silica gel column (CHCl₃/MeOH, 9:1) to give **24** (1.0 mg, 34.8 %): $[\alpha]_0^{27}$ –24 (*c* 0.5, MeOH)); IR (film) 1730 and 1720 cm⁻¹; ¹H NMR (CDCl₃) δ 7.08 (d, 2.6, H-12), 6.89 (s, H-2′, 5′), 6.52 (d, 8.6, H-9), 6.52 (d, 8.6, H-9), 6.52 (d, 8.6, H-11), 5.64 (q, 7.12, H-9), 5.21 (br s, 3.54, H-5), 4.80 (d, 10.9, H-17), 4.44 (d, 16.7, H-21) 4.32 (d, 16.7, H-21), 4.19, (d, 2.4, H-3), 4.06 (d, 10.9, H-17), 3.91 (s, -OMe), 3.88 (s, -OMe), 3.72 (s, -OMe), 3.45 (br s, H-15), 3.34 (s, -OMe), 3.30 (m, H-6), 3.00 (s, -NMe), 2.58 (dd, 15.6, 3.5, H-6), 2.54 (d, 15.7, H-14), 2.20 (d, 15.7, H-14), 1.69 (dd, 7.0, 2.0, H-18); HRESIMS m/z 623.2624 [calcd for C₃₃H₃₉N₂O₁₀(M+H)⁺, 623.2605].

3.3.11. Conversion of 3 to its cinnamoyl derivative (25)

Compound 3 (13.9 mg), hydrocinnamic acid (5.8 mg), and DMAP (5.7 mg), were combined with CH₂Cl₂ (100 µL). 1,3-Dicyclohexylcarbodiimide (DCC) (23.5 mg) in CH₂Cl₂ (50 μL) was added dropwise over 10 min at 0 °C. The solution was warmed to room temperature and stirred overnight. The reaction mixture was partitioned with CHCl₃ and 1 N aq HCl, 10 % aq NaHCO₃, and water. The combined organic extract was dried (Na2SO4) and concentrated in vacuo and then purified by an ODS HPLC (MeOH/H2O/formic acid, 60:40:0.1; flow rate, 2 mL/min; UV detection at 254 nm) to obtain compound **25** (0.7 mg, 3.8%): $[\alpha]_D^{27}$ –49 (*c* 0.5, MeOH); IR (film) 1740 and 1710 cm⁻¹; 1 H NMR (CD₃OD) δ 7.52 (m, H-4′, 8′), 7.41 (m, H-5', 6', 7'), 7.24 (d, 16.1, H-2'), 7.08 (s, H-9), 6.58 (s, H-11, 12), 5.97 (d, 16.1, H-1'), 5.52 (q, 7.4, H-19), 4.98 (m, H-5), 4.65 (d, 10.9, H-17), 4.08 (d, 10.9, H-17), 3.83 (m, H-21), 3.79 (m, H-3), 3.71 (s, -OMe), 3.68 (m, H-21), 3.48 (s, -OMe), 3.48 (m, H-15), 3.30 (m, H-6), 2.90 (s, -NMe), 2.39 (d, 14.6, H-6), 2.12 (d, 14.3, H-14), 2.04 (d, 14.3, H-14), 1.65 (d, 7.4, H-18); HRESIMS m/ z 543.2490 [calcd for $C_{32}H_{35}N_2O_6(M+H)^+$, 543.2495].

3.3.12. Conversion of 3 to its acetylate derivative (26)

Compound **3** (1.0 mg), acetic anhydride (7.5 μ L), triethylamine (2.5 μ L), and DMAP (0.5 mg) in CH₂Cl₂ (50 μ L) was stirred at room temperature for 1.5 h. The reaction mixture was partitioned with CHCl₃ and 10 % aq NaHCO₃. The combined organic extract was concentrated in vacuo and then purified by a silica gel column (CHCl₃/MeOH, 1:0–0:1) to obtain compound **26** (0.8 mg, 73.4%). [α]₀²⁷ – 32 (α 0.5, MeOH); IR (film) 1740 cm⁻¹; ¹H NMR (CD₃OD) δ 7.02 (d, 2.6, H-12), 6.73 (dd, 8.6, 2.6, H-11), 6.61 (d, 8.6, H-9), 5.51 (q, 7.3, H-19), 4.94 (m, H-5) 4.53 (d, 11.0, H-17), 3.86, (d, 11.0, H-17), 3.78 (d,

14.6, H-21), 3.72 (s, -OMe), 3.70 (s, -OMe), 3.44 (br s, H-3), 3.36 (m, H-21), 3.35 (m, H-15), 3.30 (m, H-6), 2.89 (s, -NMe), 2.36 (dd, 14.4, 2.8, H-6), 2.09 (d, 15.4, H-14), 2.00 (d, 15.4, H-14), 1.64 (d, 7.3, H-18), 1.54 (s, $-COCH_3$); HRESIMS m/z 455.2161 [calcd for $C_{25}H_{31}N_2O_6(M+H)^+$, 455.2182].

3.3.13. Conversion of 3 to its propionate derivative (27)

To a solution of 3 (1.6 mg) in CH₂Cl₂ (0.05 mL) was added propionic anhydride (3 μ L), and DMAP (1.2 mg) in CH₂Cl₂ (50 μ L) and the solution was stirred at room temperature. The mixture was diluted with CHCl3 and washed with water, satd aq NaHCO3, and water. The organic phase was dried over MgSO4 and concentrated in vacuo and then purified by an ODS HPLC (MeOH/H2O/formic acid; flow rate, 2 mL/min; UV detection at 254 nm) to obtain 27 (0.2 mg, 60.0%). $[\alpha]_D^{27} - 143$ (c 0.1, MeOH); IR (film) 1740 cm⁻¹; ¹H NMR (CD₃OD) δ 7.02 (d, 2.6, H-2), 6.80 (dd, 8.6, 2.6, H-11), 6.70 (d, 8.6, H-12), 5.74 (q, 6.5, H-19), 5.55 (br s, H-5) 4.52 (d, 11.2, H-17), 4.21 (m, H-21), 3.98 (m, H-21), 3.93, (d, 11.2, H-17), 3.75 (m, H-3), 3.74 (s, -OMe), 3.73 (s, -OMe), 3.64 (br s, H-15), 3.23 (d, 15.5, H-6), 2.95 (s, -NMe), 2.61 (d, 15.5, H-6), 2.32 (d, 14.6, H-14), 2.21 (d, 14.6, H-14), 1.84 (m, H-1'), 1.72 (d, 6.5, H-18), 0.85 (t, 7.5, H-2'); HRESIMS m/z 469.2352 [calcd for $C_{26}H_{33}N_2O_6(M+H)^+$, 469.2339].

3.3.14. Conversion of 3 to its benzyl ether derivative (28)

To a solution of 3 (2.7 mg) in dry CH₂Cl₂ (53 μL) were added triethylamine (1.27 μL), benzyl bromide (0.93 μL), and DMAP (0.4 mg). The reaction mixture was heated for 3 h, then cooled to room temperature and diluted with CHCl3. The organic phase was washed twice with an aqueous solution of NaHCO3 and once with water. The organic phase was dried Na2SO4 and concentrated in vacuo. The residue was chromatographed on an ODS HPLC (MeOH/H₂O/formic acid, 61:39:0.1; flow rate, 2 mL/min; UV detection at 254 nm) to give **28** (0.6 mg, 18.2%): $[\alpha]_D^{27}$ -4.6 (*c* 0.5, MeOH); IR (film) 1730 cm $^{-1}$; ¹H NMR (CD₃OD) δ 7.64 (d, 7.8, H-3', 7'), 7.57 (m, H-4', 5', 6'), 6.85 (m, H-9, 12), 6.78 (d, 9.5, H-11), 5.65 (m, H-5), 5.62 (m, H-19), 4.61 (s, H-1'), 4.45 (d, 16.1, H-21), 4.41 (s, H-3), 3.97 (d, 16.1, H-21), 3.77, (m, H-15), 3.74 (s, -OMe), 3.72 (s, -OMe), 3.66 (d, 17.5, H-17), 3.61 (d, 17.5, H-17), 3.30 (m, H-6), 3.03 (s, -NMe), 2.54 (dd, 16.6, 3.7, H-6), 2.38 (m, H-14), 1.65 (d, 5.5, H-18); HRE-SIMS 503.2535 [calcd for $C_{30}H_{35}N_2O_5(M+H)^+$, 503.2546].

3.3.15. Uptake of Methyl-α-p-glucopyranoside in cultured cells expressing SGLT1 or SGLT2¹⁸

COS-1 cells were cultured at 37 °C in Dulbecco's modified Eagle's/Ham's F-12 medium (1:1) supplemented with 10% fetal calf serum. For the uptake assay, the cells were plated at 1×10^5 cells/24-well plate (Asahi Techno Glass, Tokyo, Japan), and 1 µg of each transporter plasmid was transfected into subconfluent cultures of COS-1 cells using Lipofectamine 2000 (Invitrogen). The cells were used 2-3 days after transfection. They were incubated in a pretreatment buffer [140 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl₂, and 10 mM Hepes/Tris (pH 7.5)] with a test sample at 37 °C for 30 min. An uptake solution containing 80 mM methyl-α-D-glucopyranoside and 4 μCi/mL methyl [U-14C|glucopyranoside was then added into each well and the mixture was incubated at 37 °C for 30 min. Following incubation, the plates were washed three times with cold stop buffer [140 mM choline chloride, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, and 10 mM Hepes/Tris (pH 7.5)] containing 300 µM phlorizin. The cells were then solubilized with 0.1 M NaOH, and their radioactivity was measured with a liquid scintillation counter (3100TR, Perkin-Elmer). Phlorizine was used as a standard drug for this bioassay and its IC50 values were 0.2 and 0.1 mM against SGLT1 and SGLT2, respectively.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and a grant from The Open Research Center Project in Hoshi University.

References and notes

- 1. Lee, W.-S.; Kanai, Y.; Wells, R. G.; Hediger, M. A. J. Biol. Chem. 1994, 269, 12032-
- 2. You, G.; Lee, W.-S.; Barros, E. J. G.; Kanai, Y.; Huo, T.-L.; Khawaja, S.; Wells, R. G.;
- Nigam, S. K.; Heidiger, M. A. J. Biol. Chem. 1995, 270, 29365–29371. Mackenzie, B.; Panayotova-Heiermann, M.; Loo, D. D. F.; Lever, J. E.; Wright, E. M. J. Biol. Chem. 1994, 269, 22488-22491.
- Wright, E. M.; Turk, E. *Pfugers Arch.* **2004**, 447, 510–518. Katsuno, K.; Fujimori, Y.; Takemura, Y.; Hitatochi, M.; Itho, F.; Komatsu, Y.;
- Fujikura, H.; Isaji, M. J. Pharm. Exp. Ther. 2007, 320, 323–330.

 Morita, H.; Deguchi, J.; Motegi, Y.; Sato, S.; Aoyama, C.; Takeo, J.; Shiro, M.; Hirasawa, Y. Bioorg. Med. Chem. Lett. 2010, 20, 1070–1074.
- 7. (a) Kamarajan, P.; Sekar, N.; Mathuram, V.; Govindasamy, S. Biochem. Int. 1991, 25, 491-498; (b) Saraswathi, V.; Subramanian, S.; Ramamoorth, N.; Mathuram, V.; Govindasamy, S. Med. Sci. Res. 1997, 25, 167-170; (c) Keawpradub, N.; Kirby,

- G. C.; Steele, J. C. P.; Houghton, P. J. Planta Med. 1999, 65, 690-694; (d) Husain, K.; Jantan, I.; Kamaruddin, N.; Said, I. M.; Aimi, N.; Takayama, H. Phytochemistry **2001**, 57, 603–606; (e) Husain, K.; Jantan, I.; Said, I. M.; Aimi, N.; Takayama, H. J. Asian Nat. Prod. Res. **2003**, 5, 63–67; (f) Jagetia, G. C.; Baliga, M. S. Phytother. Res. 2006, 20, 103–109; (g) Khan, M. R.; Omoloso, A. D.; Kihara, M. Fitotruter, Res. 2007, 27, 36–740; (h) Gupta, R. S.; Bhatnager, A. K.; Joshi, Y. C.; Sharma, M. C.; Khushalani, V.; Kachhawa, J. B. Pharmacology 2005, 75, 57–62. Koyama, K.; Hirasawa, Y.; Zaima, K.; Hoe, T. C.; Chan, K.-L.; Morita, H. Bioorg. Med. Chem. 2008, 16, 6483–6488.
- Hirasawa, Y.; Arai, H.; Zaima, K.; Oktarina, R.; Rahman, A.; Ekasari, W.; Indrayanto, G.; Zaini, N.; Morita, H. *J. Nat. Prod.* 2009, 72, 304–307.
 Abe, F.; Yamauchi, T.; Shibuya, H.; Kitagawa, I.; Yamashita, M. *Chem. Pharm.*
- Bull. 1998, 46, 1235–1238.
 11. Abe, F.; Chen, R.; Yamauchi, T.; Marubayashi, N.; Ueda, I. Chem. Pharm. Bull. 1989, 37, 887–890.
- 12. Mamatas-Kalamaras, S.; Sevenet, T.; Thal, C.; Potier, P. Phytochemistry 1968, 7, 2045-2051.
- 13. Burmel, R.; Medina, J. Phytochemistry 1968, 7, 2045-2051.
- Caron, C.; Yachaoui, Y.; Massiot, G.; Men-Olivier, L.; Pusset, J.; Sevenet, T. Phytochemistry 1984, 23, 2355–2357.
- Ratnayake, C.; Arambewela, L.; Silva, K.; Rahman, A.; Alvi, K. Phytochemistry 1975, 14, 1849–1854.
- 16. Abe, F.; Yamauchi, T.; Santisuk, T. Phytochemistry 1994, 37, 249-252.
- Kam, T.; Choo, Y. J. Nat. Prod. 2004, 67, 547–552.
 Sato, S.; Aoyama, C.; Takeo, J. Bioorg. Med. Chem. 2007, 15, 3445–3449.

Alstiphyllanines E–H, picraline and ajmaline-type alkaloids from Alstonia macrophylla inhibiting sodium glucose cotransporter

	arisporter			
ORIGINA	ALITY REPORT			
SIMILA	5% ARITY INDEX	9% INTERNET SOURCES	11% PUBLICATIONS	2% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	Submitt Student Pape	ed to iGroup		2%
2	www.jst Internet Source	age.jst.go.jp		1 %
3	mafiado Internet Sourc			1 %
4	pubs.rso			1 %
5	Na^+-gl	, K "Pyrazole-O ucose cotranspo nic & Medicinal 21	orter (SGLT) inh	nibitors",
6	spectros diacetar	v, Y.E "Synthes scopy of nine sto nido-3,5,7,9-tetr Carbohydrate Re	ereoisomeric 5 adeoxynon-2-	ulosonic

7	Hiroki Oguri, Shojiro Hishiyama, Ohki Sato, Tohru Oishi, Masahiro Hirama, Michio Murata, Takeshi Yasumoto, Nobuyuki Harada. "Synthetic study of ciguatoxin. Absolute configuration of the C2 hydroxy group", Tetrahedron, 1997 Publication	1%
8	Qu, Yue, Judy Yuet-Wa Chan, Chun-Wai Wong, Ling Cheng, Chuanshan Xu, Albert Wing-Nang Leung, and Clara Bik-San Lau. "Antidiabetic Effect of Schisandrae Chinensis Fructus Involves Inhibition of the Sodium Glucose Cotransporter: Antidiabetic Effect of Schisandrae Chinensis", Drug Development Research, 2014.	1%
9	studentsrepo.um.edu.my Internet Source	1 %
10	www.mdpi.com Internet Source	1%
11	www.thieme-connect.com Internet Source	1 %
12	Jun Deguchi, Yusuke Motegi, Asami Nakata, Takahiro Hosoya, Hiroshi Morita. "Cyclic diarylheptanoids as inhibitors of NO production from Acer nikoense", Journal of Natural Medicines, 2012	1 %

13	Yao, S "Stereochemistry of atropisomeric 9,10-dihydrophenanthrene dimers from Pholidota chinensis", Tetrahedron: Asymmetry, 20080908 Publication	<1%
14	Ochiai, H "Orally active PDE4 inhibitor with therapeutic potential", European Journal of Medicinal Chemistry, 200407 Publication	<1%
15	Ying-Ying Si, Ming-Xu Tang, Shuang Lin, Gang Chen, Hui-Ming Hua, Jiao Bai, Yu-Bo Wang, Hai-Feng Wang, Yue-Hu Pei. " 2-Methylversiquinazoline C, a new fumiquinazoline-type alkaloid from the fungus PJ03-11 ", Journal of Asian Natural Products Research, 2018 Publication	<1%
16	dmd.aspetjournals.org Internet Source	<1%
17	Chao-Feng Zhang. "Four new alkaloid derivatives from Ligularia duciformis", Journal of Asian Natural Products Research, 04/2009	<1%
18	molecular-cancer.biomedcentral.com Internet Source	<1%

BR Davis. "Diterpene Synthesis. IV. Synthesis of Some Octahydrophenanthrenes and a Contribution to the Mechanisms of Cyclialkylations", Australian Journal of Chemistry, 1987

<1%

<1%

Publication

20

Ohtake, Yoshihito, Tsutomu Sato, Takamitsu Kobayashi, Masahiro Nishimoto, Naoki Taka, Koji Takano, Keisuke Yamamoto, Masayuki Ohmori, Marina Yamaguchi, Kyoko Takami, Sang-Yong Yeu, Koo-Hyeon Ahn, Hiroharu Matsuoka, Kazumi Morikawa, Masayuki Suzuki, Hitoshi Hagita, Kazuharu Ozawa, Koji Yamaguchi, Motohiro Kato, and Sachiya Ikeda. "Discovery of Tofogliflozin, a Novel *C*-Arylglucoside with an *O*-Spiroketal Ring System, as a Highly Selective Sodium Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes", Journal of Medicinal Chemistry, 2012.

Publication

21

Feng, Yiqing, Max M. Majireck, and Steven M. Weinreb. "Total Syntheses of the Monoterpene Indole Alkaloids (±)-Alstilobanine A and E and (±)-Angustilodine", The Journal of Organic Chemistry, 2014.

<1%

22	Myong Jung Kim, Lak Shin Jeong, Joong Hyup Kim, Ji Hye Shin, Soon Yong Chung, Sang Kook Lee, Moon Woo Chun. "Synthesis and Biological Evaluation of Novel Apio Nucleosides with Thiazole - 4 - carboxamide and 1,2,4 - Triazole - 3 - carboxamide", Nucleosides, Nucleotides and Nucleic Acids, 2004 Publication	<1%
23	Qing-Wen Shi, Takayuki Oritani, Hiromasa Kiyota, Ding Zhao. "Taxane diterpenoids from Taxus yunnanensis and Taxus cuspidata", Phytochemistry, 2000	<1%
24	Wu, T.S "Alkaloidal and other constituents from the root bark of Clausena excavata", Phytochemistry, 199910 Publication	<1%
25	www.spandidos-publications.com Internet Source	<1%
26	Hisamatsu, Y "Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana", Tetrahedron Letters, 20030714 Publication	<1%
27	Giovanni Appendino, Francesca Borrelli, Raffaele Capasso, Claudio Campagnuolo et al. " Minor Diterpenoids from Cascarilla (Bennet)	<1%

and Evaluation of the Cascarilla Extract and Cascarillin Effects on Gastric Acid Secretion ", Journal of Agricultural and Food Chemistry, 2003

Publication

Iskandar Idris. "Sodium-glucose cotransporter-2 inhibitors: an emerging new class of oral antidiabetic drug", Diabetes Obesity and Metabolism, 02/2009

<1%

- Publication
- Xiang-Hai Cai. "A Cage-Monoterpene Indole Alkaloid from *Alstonia scholaris*", Organic Letters, 02/2008

<1%

Publication

Anpai Li. "ENANTIOSELECTIVE TOTAL SYNTHESES OF 13-ACETYL- 12-HYDROXY-PODOCARPANE- 8,11,13-TRIENE-7-ONE", Synthetic Communications, 2002

<1%

Wu, Yuqiu, Mayu Suehiro, Mariko Kitajima, Takeshi Matsuzaki, Shusuke Hashimoto, Masato Nagaoka, Rongping Zhang, and Hiromitsu Takayama. "Rhazinilam and Quebrachamine Derivatives from Yunnan Kopsia arborea", Journal of Natural Products, 2009.

<1%

Publication

scholarworks.uvm.edu 33 Internet Source

Stephen D. Pastor, Paul A. Odorisio, 34 Ramanathan Ravichandran. "S-(HYDROXYMETHYL) 4-HYDROXYPHENYL SULFIDES: SYNTHESIS AND SELECTED CHEMISTRY OF SOME STABLE

- and the Related Elements, 1987 Publication
- V Ferro. "The Synthesis of Some Pyrrolidines 35 as Potential Precursors to Retronecine", Australian Journal of Chemistry, 1993 Publication

HEMIMERCAPTALS", Phosphorous and Sulfur

<1%

- "Pediatric Nephrology", Springer Science and 36 Business Media LLC, 2016

<1%

- Publication
- Christiane Mailleau. "Interrelationship 37 between the Na/glucose cotransporter and CFTR in Caco - 2 cells: Relevance to cystic fibrosis", Journal of Cellular Physiology, 09/1998

<1%

Publication

Takeo Nakanishi, Akimasa Fukushi, Masanobu Sato, Mayuko Yoshifuji et al. "Functional

<1%

Characterization of Apical Transporters Expressed in Rat Proximal Tubular Cells (PTCs) in Primary Culture", Molecular Pharmaceutics, 2011

Publication

Exclude quotes Off Exclude matches Off

Exclude bibliography On

Alstiphyllanines E–H, picraline and ajmaline-type alkaloids from Alstonia macrophylla inhibiting sodium glucose cotransporter

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
7 0	
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	