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cyclization as potential PET probe for functional characterization
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evaluated in vitro using COX-2 expressing tumor cell lines and in
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A series of new 2-(1,3,4-oxadiazol-2-ylthio)-1-phenylethanone derivatives (6a–6x) as potential focal adhesion
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was performed to position compound 6i into the active site of FAK to determine the probable binding model.
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a b s t r a c t

Seven new ajmaline type alkaloids, alstiphyllanines I–O (1–7) were isolated from the leaves of Alstonia
macrophylla together with six related alkaloids (8–13). Structures and stereochemistry of 1–7 were fully
elucidated and characterized by 2D NMR analysis. A series of alstiphyllanines I–O (1–7) as well as the
known ajmaline type alkaloids (8–13) showed that they relaxed phenylephrine (PE)-induced contractions
against rat aortic ring. Among them, vincamedine (10) showed potent vasorelaxant activity, which may
be mediated through inhibition of Ca2+ influx through voltage-dependent Ca2+ channels (VDCs) and/or
receptor-operated Ca2+ channels (ROCs) as well as partially mediated the NO release from endothelial
cells. The presence of substituents at both N-1 and C-17 may be important to show vasorelaxation
activity.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The vasodilators are useful for treatment of cerebral vasospasm
and hypertension, and for improvement of peripheral circulation.
Several endothelium-dependent vasodilators, such as bradykinin,
acetylcholine, and histamine, have been reported to elevate Ca2+

levels in endothelial cells and activate NO release, leading to vaso-
relaxation.1 On the other hand, contractile response in smooth
muscle is caused by Ca2+ influx through VDCs and/or ROCs.2 The
endothelium-independent vasodilators, such as nicardipine, niph-
edipine, dirtiazem, and verapamil, have been reported to inhibit
VDCs and led to decrease the intracellular Ca2+ concentration in
smooth muscle, leading to vasorelaxation.2 K+ channels play
important roles in the regulation of vascular tone.3–5 Indeed, the
K+ channels present in blood vessels indirectly influence vascular
tension by changing the resting membrane potential. Many vascu-
larly active agents and drugs induce their vasodilator of vasocon-
strictor effects by opening or closing K+ channels.6

Our screening study on vasodilators in traditional medicine7

discovered that the alkaloidal extract of Alstonia macrophylla shows
remarkably vasodilation activity against rat aorta. The genus

Alstonia, which is widely distributed in tropical regions of Africa
and Asia, are well-known rich sources of unique monoterpene in-
dole alkaloids with various biological activities such as anticancer,
antibacterial, anti-inflammatory, antitussive, and antimalarial
properties.7 Recently, several new indole alkaloids were isolated
from extracts of Alstonia macrophylla Wall.ex G. Don (Apocynaceae)
collected in Indonesia.8,9 With an aim to isolate additional new
alkaloids showing vasorelaxant activity, purification of extracts of
A. macrophylla led to seven new alkaloids, alstiphyllanines I–O
(1–7) together with six known alkaloids (8–13). Herein we report
the isolation and structure elucidation of alstiphyllanines I–O
(1–7) as well as vasorelaxant activity and structure–activity rela-
tionship (SAR) study of these ajmaline type indole alkaloids.

1.1. Structures of alstiphyllanines I–O (1–7)

Leaves of A. macrophylla were extracted with MeOH, and the ex-
tract was partitioned between EtOAc and 3% aqueous tartaric acid.
Water-soluble materials, adjusted to pH 9 with satd aq Na2CO3,
were extracted with CHCl3. The CHCl3-soluble materials were sub-
jected to an LH-20 column (CHCl3/MeOH, 1:1) followed by a silica
gel column (CHCl3/MeOH, 1:0–0:1). The eluted fractions were fur-
ther separated by ODS HPLC (MeOH/H2O/TFA) to afford 1 (5.6 mg,
0.0016% dry weight), 2 (12 mg, 0.0039%), 3 (1.5 mg, 0.0004%), 4

0968-0896/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.bmc.2012.04.013
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(15.2 mg, 0.0029%), 5 (7.2 mg, 0.0021%), 6 (1.5 mg, 0.0004%), and 7
(5.6 mg, 0.0016%), together with six known alkaloids, alstiphylla-
nine A (8),9 alstiphyllanine H (9),9 vincamedine (10),10 vincamajine
(11),11 vincamajine-17-O-veratrate (12),12 and vincamajine-17-O-
30,40,50-trimethoxybenzoate (13).12

Alstiphyllanine I {1, ½a�26
D �90 (c 1.0, MeOH)} showed the

pseudomolecular ion peak at m/z 559 (M+H)+ in the ESIMS, and
the molecular formula C32H34N2O7, was established by HRESIMS
[m/z 559.2455 (M+H)+]. IR absorptions implied the presence of car-
bonyl (1750 and 1670 cm�1) functionalities. The 1H NMR data
(Table 1) showed the presence of four aromatic protons, an ethyl-
idene side chain, a methyl ester, and an acetyl group. The 13C NMR
data (Table 2) revealed thirty-two carbon signals due to six sp2

quaternary carbons, eight sp2 methines, two ester carbonyls, one
amide carbonyl, two sp3 quaternary carbons, five sp3 methines,
three sp3 methylenes, and five methyl groups. Partial structures
C-9 to C-12, C-5 to C-6, C-2 to C-15, and C-18 to C-19 were deduced
from detailed analysis of the 1H–1H COSY spectrum of 1. The HMBC
cross-peaks of H3-18 to C-20 and H-19 to C-21 placed the ethyli-
dene side chain at C-20. The presence of veratroyl group (dC 56.5,
56.5, 112.9, 113.3, 124.1, 127.8, 150.7, and 154.6, respectively)
and its connection to a nitrogen atom of the indole ring were elu-
cidated by a HMBC correlation for H0-2 to C-23 (dC 170.6). The

HMBC correlations for H-17 to C-5 and C-6 and H-2 to C-17 indi-
cated that 1 was an ajmaline-type alkaloid. The presence of an
acetyl group was indicated by the HMBC correlations for H3-25
and H-17 to C-24 (dC 169.9). Thus, 1 was an ajmaline-type alkaloid
with a 3,4-dimethoxybenzoyl (veratroyl) group in place of a
methyl group of vincamedine.10 The relative stereochemistry of 1
was elucidated by NOESY correlations as shown in computer-gen-
erated 3D drawing (Fig. 1). The NOESY correlations of H3-18 to H-
21 and H-19 to H-15 indicated that the ethylidene side chain was Z.
In addition, H-3 correlated with both H-2 and H-14a, and H-14b
with H-17 indicating that H-2 was a-oriented and H-17 was b-
oriented.

Alstiphyllanine J {2, ½a�26
D �94 (c 1.0, MeOH)} was revealed to

have the molecular formula C33H36N2O8, by HRESITOFMS [m/z
589.2548 (M+H)+, D �0.2 mmu], which was larger than that of
alstiphyllanine I (1) by CH2O unit. Compared with 1H NMR data
of 1, alstiphyllanine J was suggested to be an ajmaline-type back-
bone with an additional O-Me unit at C-50. The HMBC cross-peak
of H3-O-Me (dH 3.85) to C-50 (dC 155.0) revealed the presence of
an eudesmoyl moiety.

HRESITOFMS data [m/z 499.2220 (M+H)+, D �1.3 mmu] of alsti-
phyllanine K {3, ½a�26

D �20 (c 1.0, MeOH)} established the molecular
formula, C30H30N2O5, which was smaller than that of alstiphylla-

Table 1
1H NMR data [dH (J, Hz)] of alstiphyllanines I–O (1–7)

1a 2a 3a 4a 5a 6a 7a

2 4.38 (m) 4.44 (m) 4.34 (d, 4.8) 4.30 (br s) 4.35 (br s) 4.29 (m) 4.35 (br s)
3 5.19 (m) 5.19 (br s) 4.87 (m) 4.93 (m) 5.09 (m) 4.99 (m) 5.09 (m)
5 4.46 (m) 4.44 (m) 4.09 (m) 4.11 (m) 4.01 (m) 4.15 (m) 4.01 (m)
6a 2.22 (m) 2.31 (d, 9.5) 2.06 (d, 12.3) 2.01 (d, 13.5) 2.10 (dd, 12.4, 6.2) 1.98 (m) 2.10 (dd, 12.4, 6.2)
6b 2.87 (d, 11.0) 2.86 (d, 9.5) 2.79 (dd, 12.3, 3.6) 2.86 (d, 13.5) 2.91 (d, 12.4) 2.88 (d, 11.0) 2.91 (d, 12.4)
9 7.25 (br s) 7.23 (br s) 7.22 (d, 6.6) 7.29 (m) 7.32 (m) 7.32 (d, 6.9) 7.32 (m)
10 7.01 (br s) 7.01 (m) 6.98 (dd, 6.6, 7.8) 7.00 (m) 7.00 (m) 7.01 (dd, 6.9, 8.7) 7.00 (m)
11 7.01 (br s) 7.01 (m) 6.93 (dd, 7.8, 7.8) 6.98 (m) 7.02 (m) 6.93 (dd, 9.0, 8.7) 7.02 (m)
12 6.23 (br s) 6.23 (m) 6.22 (d, 7.8) 6.27 (m) 6.27 (m) 6.11 (d, 9.0) 6.27 (m)
14a 2.08 (t, 14.0) 2.07 (t, 14.0) 1.91 (m) 1.85 (t, 13.9) 1.95 (dd, 14.5, 12.4) 1.91 (t, 14.3) 1.95 (dd, 14.5, 12.4)
14b 2.61 (d, 14.0) 2.59 (d, 14.0) 2.53 (dd, 15.0, 6.0) 2.49 (dt, 13.9, 7.1) 2.55 (dt, 14.5, 4.9) 2.49 (dd, 14.3, 5.0) 2.55 (dt, 14.5, 4.9)
15 3.39 (d, 3.6) 3.37 (br s) 3.24 (m) 3.31 (m) 3.37 (d, 3.6) 3.33 (m) 3.85 (m)
17 6.02 (s) 6.02 (s) 5.96 (s) 4.49 (s) 4.52 (s) 4.50 (s) 4.56 (s)
18 1.61 (d, 6.1) 1.61 (d, 4.5) 1.59 (d, 6.6) 1.59 (d, 6.4) 1.61 (d, 6.6) 1.60 (d, 6.8) 1.67 (d, 6.4)
19 5.60 (m) 5.59 (m) 5.49 (m) 5.50 (m) 5.55 (m) 5.53 (m) 5.55 (m)
21a 4.37 (m) 4.08 (m) 3.84 (m) 3.87 (m) 4.01 (m) 3.92 (m) 4.03 (m)
21b 4.12 (d, 16.0) 4.35 (d, 13.8) 4.09 (m) 4.11 (m) 4.26 (m) 4.18 (m) 4.03 (m)
25 1.91 (s) 1.88 (s) 1.90 (s)
CO2Me 3.78 (s) 3.78 (s) 3.76 (s) 3.74 (s) 3.76 (s) 3.75 (s) 3.76 (s)
30-O-Me 3.78 (s) 3.85 (s) 3.74 (s) 3.81 (s) 3.81 (s)
40-O-Me 3.92 (s) 3.78 (s) 3.82 (s) 3.87 (s) 3.87 (s)
50-O-Me 3.85 (s) 3.81 (s) 3.81 (s)
20 7.29 (s) 7.05 (s) 7.74 (d, 7.5) 7.28 (m) 7.01 (s) 7.70 (m) 7.01 (s)
30 7.52 (dd, 7.6, 7.5) 7.52 (m)
40 7.64 (dd, 7.6, 7.6) 7.65 (t, 6.9)
50 7.06 (d, 6.9) 7.52 (dd, 7.6, 7.5) 7.02 (d, 6.9) 7.52 (m)
60 7.41 (d, 6.9) 7.05 (s) 7.74 (d, 7.5) 7.34 (d, 6.9) 7.01 (s) 7.70 (m) 7.01 (s)

a TFA salt in CD3OD.
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nine I (1) by C2H4O2 unit. The NMR data of 3 were analogous to
those of 1 except for the following observation: two methoxy sig-
nals (dH 3.78 and 3.92) in 1 were lack in 3. The presence of a ben-
zoyl group was verified by the HMBC correlations of H-20 and H-60

to C-23.
Alstiphyllanine L {4, ½a�26

D �68 (c 1.0, MeOH)} was revealed to
have the molecular formula C30H32N2O6, by HRESITOFMS [m/z
517.2347 (M+H)+, D +0.8 mmu], which was smaller than that of
alstiphyllanine I (1) by an acetyl unit. IR absorption band at
3420 cm�1 and 13C chemical shift at C-17 (dC 75.5) supported the
presence of a hydroxyl group at C-17.

HRESITOFMS data [m/z 547.2429 (M+H)+, D �1.5 mmu] of alsti-
phyllanine M {5, ½a�26

D �62 (c 1.0, MeOH)} established the molecular

formula, C31H34N2O7, which was smaller than that of alstiphylla-
nine J (2) by an acetyl unit. IR absorption band at 3420 cm�1 and
13C chemical shift at C-17 (dC 75.6) supported the presence of a hy-
droxyl group at C-17.

Alstiphyllanine N {6, ½a�26
D �62 (c 1.0, MeOH)} was revealed to

have the molecular formula C28H28N2O4, by HRESITOFMS [m/z
457.2132 (M+H)+, D +0.5 mmu], which was smaller than that of
alstiphyllanine K (3) by an acetyl unit. IR absorption band at
3420 cm�1 and 13C chemical shift at C-17 (dC 75.6) supported the
presence of a hydroxyl group at C-17.

Alstiphyllanine O {7, ½a�26
D �53 (c 1.0, MeOH)} had a molecular

formula C31H34N2O7 based on the HRESITOFMS [m/z 547.2429
(M+H)+, D �1.5 mmu]. The IR absorption band at 3420 cm�1 and
13C chemical shift at C-17 (dC 75.5) supported the presence of a hy-
droxyl group at C-17. Analysis of the 1H, 13C, and 2D NMR of 7 gave
the same planar structure as 5, suggesting that 7 should be a ste-
reoisomer of 5. The NOESY correlation of H-15/H3-18 indicated
that the ethylidene side chain was E.

A detail 2D NMR analysis of a series of alstiphyllanines J–O (2–
7) suggested their structures were related ajmaline-type indole
alkaloids. The relative stereochemistry of a series of alstiphylla-
nines J–O (2–7) was elucidated by NOESY correlations. The NOESY
correlation of H3-18 to H-21 and H-19 to H-15 indicated that the
geometry of ethylidene side chain was Z except for that of alstiphy-
llanine O. The NOESY correlations of H-3/H-2 and H-14a and
H-14b/H-17 indicated that H-2 was a-orientated and H-17 was
b-oriented.

1.2. Vasorelaxant activity in ex-vivo

All isolated compounds except for 3 (it is not enough for evalu-
ation because of the limited amount) were tested for vasorelaxant
activity against rat aorta (Fig. 2). When PE (0.3 lM) was applied
to thoracic aortic rings with endothelium after achieving a maximal
response, a series of alstiphyllanines I, J, L–O (1, 2, 4–7) and their re-
lated ajmaline-type alkaloids, alstiphyllanine A (8), alstiphyllanine
H (9), vincamedine (10), vincamajine (11), vincamajine-17-O-vera-
trate (12), and vincamajine-17-O-30,40,50-trimethoxybenzoate (13),
were added and some of them showed potent vasorelaxant effects
at 30 lM (Fig. 2). The presence of a hydroxy group at C-17 and an
N(4)-oxide reduced the potency of vasodilation. On the other hand,
the presence of substituents at N(1) might affect slightly on vasore-
laxation activity. In addition, compared with the geometry at C-19
of 5 and 7, 19Z might increase the potency of vasodilation.

Vincamedine (10) showed the excellent activity at early stage
within 5–15 min after addition. Furthermore, to investigate the
involvement of endothelial cells, vasorelaxant activity was tested
using endothelium-denuded aorta (�EC rings) for 10 (Fig. 3).

Table 2
13C NMR data (dC) of alstiphyllanines I–O (1–7)

1a 2a 3a 4a 5a 6a 7a

2 68.3 68.3 69.0 69.2 69.1 69.4 69.1
3 57.0 57.1 55.9 56.4 57.7 56.8 57.7
5 64.7 64.8 63.8 63.9 64.1 64.6 64.1
6 34.3 34.2 35.7 34.6 34.5 34.9 34.5
7 56.6 57.0 57.5 57.7 57.7 57.9 57.7
8 129.6 129.6 130.9 130.7 131.4 131.7 131.4
9 125.2 125.1 125.2 127.0 127.1 127.2 127.1
10 124.9 125.0 124.7 124.5 124.8 124.7 124.8
11 129.8 129.7 129.4 128.9 129.1 129.0 129.1
12 117.0 117.1 116.9 116.2 116.3 116.4 116.3
13 145.4 145.3 145.5 145.4 145.1 145.0 145.1
14 22.4 22.6 25.5 22.0 21.9 22.8 21.9
15 36.6 36.7 35.7 36.7 36.5 36.5 30.1
16 60.3 61.3 60.7 61.3 61.4 61.9 61.4
17 74.9 74.9 76.1 75.5 75.6 75.6 75.5
18 12.9 12.8 12.6 12.7 12.7 12.7 13.1
19 123.7 123.8 121.2 121.8 122.3 121.9 122.3
20 128.9 128.7 129.8 131.6 129.6 131.3 129.6
21 52.2 52.3 52.7 52.5 52.5 52.5 55.1
22 169.8 170.8 171.9 172.2 172.0 172.3 172.0
23 170.6 170.5 171.9 171.7 171.5 172.1 171.5
24 169.9 169.8 170.3
25 20.5 20.4 20.6
CO2Me 53.5 53.4 52.9 52.7 52.6 52.7 52.6
10-O-Me
30-O-Me 56.5 61.3 56.9 57.1 57.1
40-O-Me 56.5 57.0 56.7 61.4 61.4
50-O-Me 61.3 57.1 57.1
N(1)-Me
10 127.8 130.5 136.6 128.7 131.5 136.6 131.5
20 113.3 107.8 129.8 113.7 108.0 129.6 108.0
30 150.7 155.0 130.1 150.9 155.1 130.2 155.1
40 154.6 143.4 133.5 154.6 143.6 133.6 143.6
50 112.9 155.0 130.1 112.7 155.1 130.2 155.1
60 124.1 107.8 129.8 124.0 108.0 129.6 108.0

a TFA salt in CD3OD.

Figure 1. Selected 2D NMR correlations for alstiphyllanine I (1).
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Compound 10 caused concentration-response relaxation with
maximum response at 100 lM in +EC rings (Fig. 3). The relaxation
induced by 10 was partly attenuated in –EC rings and in the pres-
ence of NG-monomethyl-L-arginine (L-NMMA, 100 lM), an inhibi-
tor of nitric oxide synthase (NOS), suggesting that effects induced
by 10 partially mediated the NO release from endothelial cells
(Fig. 3). However, vasorelaxant effect of 10 on �EC rings still re-
mained. Hence, subsequent investigations were focused on the di-
rect effect of 10 on vascular smooth muscle cells using �EC rings.

To investigate the involvement of K+ channel, the vasorelaxant
effect of 10 in PE-contracted �EC rings was examined by pretreat-
ment of tetraethylammonium chloride [TEA (nonselective large-
conductance Ca2+-activated K+ channel (BKCa) inhibitor). The con-
centration-dependent response was not altered by TEA (Fig. 4),
which suggested that vasorelaxant effect of 10 did not involved
K+ channel.

Cumulative addition of isotonic high-K+ (10–80 mM) elicits a
concentration-dependent contraction by Ca2+ influx via VDC. High
K+-induced contractile response was significantly decrease by pre-
treatment of 10 (Fig. 5). Therefore, the relaxant effect of 10 was
thought to be due to inhibitory effect on VDC-dependent Ca2+

influx.

In addition, we investigated the involvement of ROC. After pre-
treatment with PE and nicardipine in Ca2+-free modified Krebs–
Henseleit solution (KHS), the contractile response induced by CaCl2

showed dose-dependent manner from 10 lM to 1 mM, presum-

0

20

40

60

80

100

vehicle 1 2 4 5 6 7 8 9 10 11 12 13

5 min

10 min

15 min 

30 min

60 min

re
la

xa
tio

n 
(%

)

Figure 2. Relaxation responses induced by isolated compounds (1, 2, 4–13) at 30 lM on the rat aortic rings precontracted with 0.3 lM phenylephrine. Values are the mean ±
S.D. (n = 3).

Figure 3. Concentration-dependent relaxation by 10 in +EC or �EC rings precontracted with PE (A). Vasorelaxant effect of 10 on +EC rings precontracted with PE in the
presence or absence of L-NMMA (B). Values are the mean ± S.E.M. (n = 3) ⁄P <0.05 and ⁄⁄P <0.01 respectively, versus +EC group.

Figure 4. Vasorelaxant effect of 10 on PE-precontracted �EC rings in the presence
or absence of TEA. Values are the mean ± S.E.M. (n = 3)
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ably due to the influx of Ca2+ via ROC. The addition of 10 signifi-
cantly inhibited CaCl2-induced contraction dependent on ROC, sug-
gesting that 10 also has inhibitory effect on Ca2+ influx via ROC
(Fig. 6).

In conclusion, we isolated seven new ajmaline type alkaloids,
alstiphyllanines I–O (1–7) from the leaves of Alstonia macrophylla
together with six related alkaloids (8–13). Structures and stereo-
chemistry of 1–7 were fully elucidated and characterized by 2D
NMR analysis. A series of alstiphyllanines I–O (1–7) as well as
the known ajmaline type alkaloids (8–13) showed that they re-
laxed PE-induced contractions against rat aortic ring. The presence
of a hydroxy group at C-17 and an N(4)-oxide reduced the potency
of vasodilation. On the other hand, the presence of substituents at
N(1) and the geometry at C-19 might affect slightly on vasorelaxa-
tion activity. Among them, vincamedine (10) showed potent
vasorelaxant activity, which may be mediated through inhibition
of Ca2+ influx through VDCs and/or ROCs as well as partially med-
iated the NO release from endothelial cells.

2. Experimental section

2.1. General methods

1H and 2D NMR spectra were recorded on a Bruker AV 400 spec-
trometer and chemical shifts were reported using residual CD3OD
(dH 3.31 and dC 49.0) as internal standards. Standard pulse se-
quences were employed for the 2D NMR experiments. 1H–1H COSY,
HOHAHA, and NOESY spectra were measured with spectral widths

of both dimensions of 4800 Hz, and 32 scans with two dummy
scans were accumulated into 1 K data points for each of 256 t1

increments. NOESY spectra in the phase sensitive mode were mea-
sured with a mixing time of 800 ms. For HMQC spectra in the phase
sensitive mode and HMBC spectra, a total of 256 increments of 1 K
data points were collected. For HMBC spectra with Z-axis PFG, a
50 ms delay time was used for long-range C-H coupling. Zero-
filling to 1 K for F1 and multiplication with squared cosine-bell
windows shifted in both dimensions were performed prior to 2D
Fourier transformation.

2.2. Material

The leaves of Alstonia macrophylla were collected at Ngliyep,
East Java, Indonesia in 2008. The botanical identification was made
by Ms. Sri Wuryanti, Purwodadi Botanical Garden, Indonesia. A
voucher specimen has been deposited in the herbarium at Purwod-
adi Botanical Garden, Pasuruan, Indonesia.

2.3. Extraction and isolation

The leaves of A. macrophylla (900 g) were extracted with MeOH
to give the extract (154 g). The MeOH extract (59 g) was treated
with 3% tartaric acid (pH 2) and then partitioned with EtOAc. The
aqueous layer was treated with satd aq Na2CO3 aq to pH 9 and ex-
tracted with CHCl3 to give alkaloidal fraction (2.0 g). The alkaloidal
fraction was purified by LH-20 column (CHCl3/MeOH, 1:0) and SiO2

column (CHCl3/MeOH, 1:0?0:1) and the fractions eluted by CHCl3/
MeOH (50:1 to 20:1) were purified by ODS HPLC (59–61% MeOH
with 0.1% CF3CO2H; flow rate, 2 mL/min; UV detection at
254 nm) to afford alstiphyllanines I (1, 5.6 mg, 0.0016% dry
weight), J (2, 12 mg, 0.0039%), K (3, 1.5 mg, 0.0004%), L (4,
15.2 mg, 0.0029%), M (5, 7.2 mg, 0.0021%), N (6, 1.5 mg, 0.0004%),
and O (7, 1.5 mg, 0.0004%), together with six known alkaloids,
alstiphyllanine A (8),9 alstiphyllanine H (9),9 vincamedine (10),10

vincamajine (11),11 vincamajine-17-O-veratrate (12),12 and vinca-
majine-17-O-30,40,50-trimethoxybenzoate (13).12

2.3.1. Alstiphyllanine I (1)
Brown amorphous solid; ½a�26

D �90 (c 1.0, MeOH); IR (film) mmax

1750 and 1670 cm�1; UV (MeOH) kmax 297 (e 9600), 276 (11,300),
217 (24,700) and 202 (30,900) nm; 1H and 13C NMR data (Tables 1
and 2); ESIMS m/z 559 (M+H)+; HRESITOFMS m/z 559.2455
[(M+H)+, D +1.1 mmu, calcd for C32H35N2O7, 559.2444].

2.3.2. Alstiphyllanine J (2)
Brown amorphous solid; ½a�26

D �94 (c 1.0, MeOH); IR (film) mmax

1750 and 1680 cm�1; UV (MeOH) kmax 293 (e 9600), 277 (e 35,800),
219 (5000), and 201 (10,600) nm; 1H and 13C NMR data (Tables 1
and 2); ESIMS m/z 589 (M+H)+; HRESITOFMS m/z 589.2548
[(M+H)+, D �0.2 mmu, calcd for C33H37N2O8, 589.2550].

2.3.3. Alstiphyllanine K (3)
Brown amorphous solid; ½a�26

D �20 (c 1.0, MeOH); IR (film) mmax

1750 and 1680 cm�1; UV (MeOH) kmax 293 (e 1900), 268 (2400),
219 (5000) and 201 (10,600) nm; 1H and 13C NMR data (Tables 1
and 2); ESIMS m/z 499 (M+H)+; HRESITOFMS m/z 499.2220
[(M+H)+, D �1.3 mmu, calcd for C30H31N2O5, 499.2233].

2.3.4. Alstiphyllanine L (4)
Brown amorphous solid; ½a�26

D �68 (c 1.0, MeOH); IR (film) mmax

3420, 1730, and 1670 cm�1; UV (MeOH) kmax 286 (e 8400), 273
(9200), 220 (21,700) and 202 (37,300) nm; 1H and 13C NMR data
(Tables 1 and 2); ESIMS m/z 517 (M+H)+; HRESITOFMS m/z
517.2347 [(M+H)+, D +0.8 mmu, calcd for C30H33N2O6, 517.2339].

Figure 5. Concentration–response curves for isotonic high K+-induced contractions
in �EC rings in the presence or absence of 10. Values are the mean ± S.E.M. (n = 3)
⁄P <0.05 versus control group.

Figure 6. Effect of 10 on CaCl2-induced contraction of �EC rings pretreated with PE
and nicardipine in Ca2+-free medium. Values are the mean ± S.E.M. (n = 3) ⁄P <0.05,
⁄⁄P <0.01, and ⁄⁄⁄P <0.001 respectively, versus control group.
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2.3.5. Alstiphyllanine M (5)
Brown amorphous solid; ½a�26

D �62 (c 1.0, MeOH); IR (film) mmax

3420, 1730, and 1670 cm�1; UV (MeOH) kmax 293 (e 9200), 273
(15,000), 213 (41,100) and 202 (62,500) nm; 1H and 13C NMR data
(Tables 1 and 2); ESIMS m/z 547 (M+H)+; HRESITOFMS m/z
547.2429 [(M+H)+, D �1.5 mmu, calcd for C31H35N2O7, 547.2444].

2.3.6. Alstiphyllanine N (6)
Brown amorphous solid; ½a�26

D �62 (c 1.0, MeOH); IR (film) mmax

3420, 1730, and 1670 cm�1; UV (MeOH) kmax 291 (e 6300), 271
(8800), 218 (11,100) and 202 (49,100) nm; 1H and 13C NMR data
(Tables 1 and 2); ESIMS m/z 457 (M+H)+; HRESITOFMS m/z
457.2132 [(M+H)+, D +0.5 mmu, calcd for C28H29N2O4, 457.2127].

2.3.7. Alstiphyllanine O (7)
Brown amorphous solid; ½a�26

D �53 (c 1.0, MeOH); IR (film) mmax

3420, 1730, and 1670 cm�1; UV (MeOH) kmax 293 (e 9200), 271
(15,000), 218 (41,100) and 202 (62,500) nm; 1H and 13C NMR data
(Tables 1 and 2); ESIMS m/z 547 (M+H)+; HRESITOFMS m/z
547.2429 [(M+H)+, D �1.5 mmu, calcd for C31H35N2O7, 547.2444].

2.4. Vasodilation assay13

The thoracic aorta between the aortic arch and the diaphragm
was harvested from a male Wistar rat weighting 260 g and placed
in oxygenated, modified KHS (118.0 mM NaCl, 4.7 mM KCl,
25.0 mM NaHCO3, 1.8 mM CaCl2, 1.2 mM NaH2PO4, 1.2 mM MgSO4,
and 11.0 mM glucose). After removing loosely adhering fat and
connective tissue, the aorta was cut into ring preparations 3 mm
in length. The aorta was placed in bath filled well-oxygenated
(95% O2, 5% CO2) KHS at 37 �C with connection to a force-displace-
ment transducer (Nihon Kohden, TB-611T, Tokyo, Japan). The aorta
ring was equilibrated for 60 min under a resting tension of 1.0 g.

After equilibration, each aorta ring was contracted by treatment
with PE (0.3 lM). Aortic rings with 80% relaxation by acetylcholine
(ACh, 10 lM) were regarded as endothelium-intact aorta (+EC
rings). Following washout, these rings were contracted once again
with the same concentration of PE. When the PE-induced contrac-
tion reached a plateau, each sample (30 lM) or ACh (1 nM–10 lM)
was added cumulatively. IC50 of ACh (positive control) was approx-
imately 1 lM in this experimental system.

To test for the involvement of endothelium-dependency in
relaxation response, the endothelial cells were removed by rubbing
and were confirmed by observing the loss of ACh-induced relaxa-
tion (�EC rings). When PE-induced contractions reached a plateau,
vincamedine (10) was added cumulatively.

To test for the involvement of K+ channel, TEA (1 mM; nonselec-
tive large-conductance Ca2+-activated K+ channel (BKCa) inhibitor)
was applied to the aortic rings 30 min prior to precontraction by
PE. Cumulative concentration-response of 10 was compared with
or without TEA.

To investigate the involvement of VDC in the vasorelaxant re-
sponse by 10, aortic rings were equilibrated in KHS for 60 min.
Ca2+-free high K+ solution (10–80 mM as KCl) was then added for
observation of contractile response (control). When maximum
contraction was achieved, the ring was washed and equilibrated
for 60 min. After pretreatment of 10 at 30 lM for 30 min, Ca2+-free
high K+ solution was added once again. A KCl-induced contractile
response with or without each sample was compared.

To clarify the involvement of ROC-dependent Ca2+ influx, a con-
tractile response induced by Ca2+ was recorded twice. Firstly, aortic
rings were equilibrated in Ca2+-free KHS with 0.01 mM EGTA for
60 min. After pretreatment with nicardipine (1 lM) for 30 min
and following PE-prestimulation, aorta ring was contracted by
cumulative addition of CaCl2 (10 lM–1 mM). After the confirma-
tion of maximum contraction, the ring was washed and equili-

brated for 60 min to carry out second contractile experiment.
Vincamedine (10) was added before PE-stimulation, and Ca2+-
induced contractile response was recorded as same as first contrac-
tile experiment. These two contractile responses by Ca2+ with/
without 10 were evaluated.

All tested compounds were dissolved in DMSO and diluted with
saline. The final concentration of DMSO in the organ bath was less
than 0.1%, and did not show any effects on contraction or relaxa-
tion. All other drugs were dissolved in saline.

All results are expressed as means ± S.E.M. Statistical analysis
was done by Student’s paired or unpaired t-test. P <0.05 was con-
sidered statistically significant.

These animal experimental studies were conducted in accor-
dance with the Guiding Principles for the Care and Use of Labora-
tory Animals, Hoshi University and under the supervision of the
Committee on Animal Research of Hoshi University, which is
accredited by the Ministry of Education, Science, Sports Culture,
and Technology of Japan.
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