Editorial Team

Editor in Chief
Prof R K Sharma
Former Head, Department of Forensic medicine & Toxicology
All-India Institute of Medical Sciences, New Delhi, India
E-mail: editor.ijfmt@gmail.com

Editor
Prof. Adarsh Kumar
Forensic Medicine & Toxicology,
All-India Institute of Medical Sciences, New Delhi, India

EDITORIAL ADVISORY BOARD

1. Prof Sudhir K Gupta, Head, FMT. AIIMS, New Delhi, India
2. Prof Mete Gulmen, Cukurova University, TURKEY
3. Prof. Leandro Duarte De Carvalho, Minas Gerais, Belo Horizonte, BRAZIL
4. Dr. Valery Gunas, National Pirogov Memorial Medical University, Vinnytsya, UKRAINE
5. Prof T. Nataraja Moorthy, Forensic Science, Faculty of Health & Life Sciences, Management & Science University, MALAYSIA
6. Dr. Rahul Pathak Forensic Science, Dept of Life Sciences, Anglia Ruskin University, Cambridge, UNITED KINGDOM
7. Prof Emilo Nuzzalese, University of Turin, Italy
8. Dr Noha A. Magdy Elrafie, Forensic Toxicology, Ain Shams University, Cairo, EGYPT
9. Dr Rituja Sharma, Associate Prof, Law, Banasthali Vidyapeeth Jaipur
10. Dr Shankar Bakkanwar (Associate Professor) Forensic Medicine, Kasturba Medical College, Manipal, Karnataka
11. Dr K. Ravikumar, Raksha Shakti University, Ahmedabad, Gujrat.
12. Dr C. Behera (Addl. Prof) Dept of FMT, AIIMS, New Delhi
13. Dr. Kanak Lata Verma, Deputy Director, Toxicology, RFSL, Chanakyapuri New Delhi
14. Dr. Asha Srivastava (Senior Scientific Officer) Forensic Psychology, Central Forensic Science Laboratory, CBI, Delhi
15. Dr. Raghvendra Kumar Vidua, (Associate Prof), FMT, AIIMS Bhopal
16. Ms Aparna R. Asst. Prof. Forensic Serology & Biology, Jain University, Bengaluru
17. Dr. Deepali Jain, Asst Prof, Forensic Science, BB Ambedkar University, Lucknow
18. Prof. SK Dhattarwal, Forensic Medicine, PGIMS, Rohtak, Haryana
19. Prof. NK Aggrawal Forensic Medicine, UCMS, Delhi
20. Prof. Manoj Kumar Mohanty, Forensic Medicine, AIIMS, Bhubneshwar, Odisha
21. Prof. Amar Jyoti Patowary, Forensic Medicine, NEIGRIHMS, Shillong, Meghalaya
22. Prof. S. Venkata Raghava, Forensic Medicine, Bangalore Medical College, Bengaluru
23. Prof. Shalini Gupta Oral Pathology and Microbiology, Faculty of Dental Sciences, King George Medical University, Lucknow
24. Prof. Virender Kumar Chhoker Forensic Medicine, Santosh Medical College, Ghaziabad, UP
25. Prof. Dayanand G Gannur, Forensic Medicine, Shri BM Patil Medical College, Hospital & Research centre, Bijapur, Karnataka
26. Prof Praveen Arora, Forensic Medicine, SAIMS, Indore, MP
27. Prof. Barkha Gupta, Saraswathi Institute of Medical Sciences, Hapur, Uttar Pradesh India
28. Prof. M Prashant Apollo Medical College, Hyderabad
29. Prof. Dimple Patel, Anatomay, AMC MET Medical College, Ahmedabad, Gujarat
30. Dr. Mohammed Nader Shalaby, Associate Professor of Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt

Current Issue

Make a Submission

Browse

Open Journal Systems

Information

For Readers

For Authors
Vol. 14 No. 4 (2020): Indian Journal of Forensic Medicine & Toxicology

DOI: https://doi.org/10.37506/ijfmt.v14i4

Published: 2020-11-27

Articles

Age Estimation from Second & Third Molar by Modified Gleiser and Hunt Method: A Retrospective Study
Abirami Arthanari1, Nagabhushana Doggali2, Vidhya A3, Sushma Rudraswamy4
1-8

Knowledge Attitude and Practice of Usage of Anti-Anxiety Drugs in Paediatric Patients among General Dental Practitioners
Ahsana A1, M. Dhanraj2
9-13

Effect of Silver Diamine Fluoride Treatment on the Quality of Life of Children
Ahsana. A1, Deepa Gurunath2
14-18
A Pilot Study on Snake Bite Deaths in the District of Malda, West Bengal, India
Aloke Mazumder1, Tanushree Mondal2, Partha Pratim Mukhopadhyay3
19-25

Profile of Dowry Death Cases Reported for Autopsy in Thoothukudi Medical College - A Retrospective Study
Seethalakshmi M.1, Rajalakshmi S.2, Rajesh R.3, Vinoth K.V.4
26-28

Closed Mitral Valvotomy (as a Surgical Treatment Option) - Does it has any Medico Legal Bearings in the Present Scenario
Amit Chaudhary, Amit Singh2
29-32

Chest Injury Outcomes due to Road Traffic Accidents - an Institutional Experience
Amit Chaudhary1, Amit Singh2, Roopak Aggarwal3
33-38

Assessment of Factors Influencing Academic Performance of Nursing Students
Amoldeep1, Bhawna Sharma2, Sudhir Gupta3, Jyoti Sarin4
39-45

A Descriptive Correlation Study on Stress and Psychological Wellbeing among Nursing Students in Selected Nursing Institutes of Ambala, Haryana
Anamika Gautam1, Srinivasan P2, Gurvinder Kaur3, Jyoti Sarin4
46-50

Observations on Inter-Rater Agreement in Assessing Fusion Activities at Elbow, Wrist and Pelvis by Conventional and Digital X-Ray Films
Aniruddha Das1, Srimoyee Mukherjee2, Arani Majumder3, Debasish Sarkar4, Partha Pratim Mukhopadhyay5
Contriving an Opinion of Cause of Death in Autopsies
Anu Sasidharan1, Nadia M. Al-Kandary2
58-62

A Study of Patterns of Thoracic Injuries in the Victims of Vehicular Incidents Brought to the GMCH Mortuary for Medicolegal Autopsies
Anurupa Choudhury1, Himangshu Das 2, Ravi Kumar Sharma3
63-70

Assessment of Knowledge and Attitude Towards Medical Ethics among Medical Students
Arti Ajay Kasulkar1, Ayushi Keoliya2, Madhur Gupta3
71-76

Different Types of Diatoms Seen in the River Narmada in India
Arushi Chawla1, Dhwani Patel2
77-83

A Study of Age Estimation by Radiological Assessment of Ossification Centers at Hand Wrist and Elbow Joint at a Tribal Teaching Medical College of Adilabad
B Shekhar Rao1, Mohd Inayatulla Khan2
84-89

Admission, Transfer and Discharge Procedure in Hospital: Review Article
Bhawna Sharma1, Pratibha Thakur2, Amoldeep3, Sudhir Gupta4
90-96

Descriptive Study on Emotional Intelligence Amidst Nursing Undergraduates of Chossed Nursing Institute
Binal Joshi1, Franny Joel Emmanuel2, Vipin Vageriya3
97-101
Effect of Oral Contraceptive Pills on Levels of Calcium and Vitamin D in women in Al-Najaf Province
Alaa Abd Kadim1, Suha Hussein Mohammed1
739-743

Clinical study on the therapeutic effects of Quercus infectoria galls as oral powder in gingivitis and plaque patients
Ali Hasanain Alhamadani1, Hiba Ahmed Saeed2, Hussein Asli Khayoon3
744-748

Effectiveness of Nursing Management Educational Program upon Head Nurses Knowledge Regarding Patient Management
Ali Hussein Ali Al-Jazaeri.1, Muna. A. Khaleel
749-751

The Willingness of Dental Medicine Students in Handling Positive HIV Patients
Alya Sahilla Fahri1, Nurhana Binti Suhaimi1, Balwinjit Kaur Sidhu1, Yaaliny A/P Krishnamurthi1, Oretha Patrick Balinu1, Mohd Rashid Bin Mohd Abu Bakar1, Regina Purnama Dewi Iskandar2
752-756

Drugs used for Weight Reduction among Iraqi Population Sample, a Comparative Study
Amani Anees Abdoddy1, Rua Abbas Alhamdy2, Zakariya Al-Mashhadani 3, Nabaa Nabeel4, Hussien Ahmed5
757-763

Nanocurcumin Protective Effect on Lipid Peroxide of Lead Acetate Induced White Rats (Rattus norvegicus) Ovarian Granulosa Cells
Anis Satus Syarifah1,2, Sri Agus Sudjarwo3, Hendy Hendarto4, Reny I'tishom5
764-769
Nanocurcumin Protective Effect on Lipid Peroxide of Lead Acetate Induced White Rats (Rattus norvegicus) Ovarian Granulosa Cells

Anis Satus Syarifah1,2, Sri Agus Sudjarwo3, Hendy Hendarto4, Reny l’tishom5
1Doctoral Program Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. 2Assistant Professor Nursing Professional Education Program, STIKES Pemkab Jombang, Indonesia. 3Professor Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia. 4Professor Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. 5Associate Professor Department of Medical Biology, Fakultas Kedokteran, Universitas Airlangga, Surabaya, Indonesia

Abstract

Objective: This study aims to investigate the protective effect of nanocurcumin on lipid peroxidation of rat ovarian granulosa cells induced by lead acetate (Pb).

Methods: A total of 45 mice were divided into a negative control group (C-) receiving corn oil, a positive control group (C+) receiving corn oil and lead acetate (Pb) 40 mg/kg bw/day, experimental group 1 (E1), experimental group 2 (E2), experimental group 3 (E3) receiving 50, 100 and 200 mg/kg/day nanocurcumin dissolved in corn oil and lead acetate (Pb) 40 mg/kg bw/day. The treatment was given orally and the treatment time was daily at 08.00 AM for 26 days. Ovaries were removed for immunohistochemical analysis of MDA expression.

Result: The positive control group had the highest MDA expression of ovarian granulosa cells (94.2 ± 10.5) and was significantly different (p<0.05) from negative control group (1.5 ± 1.4), experimental group 1 (17.4 ± 10.5), experimental group 2 (11.4 ± 8.5) and experimental group 3 (7.2 ± 4.0).

Conclusion: Nanocurcumin as a protective oxidative stress on ovarian granulosa cells due to exposure to lead acetate, by protecting lipid peroxidation.

Key words: Lead acetate, nanocurcumin, malondialdehyde (MDA).

Introduction

Lead acetate (Pb) is a heavy metal compound that pollutes the environment, toxic and interfering various organ functions, including hematopoietic tissue, liver, kidney, brain, and testes1 and interfering the function of digestive system, nervous system, respiratory system and reproductive system.2, 3 Lead exposure has been shown to cause toxicity in rat testes4, 5 and alter normal histology and physiology of the ovaries and uterus of rats.6 Exposure to lead acetate causes disruption to the body’s organs through increased oxidative stress cell by destroying the balance between prooxidants and antioxidant systems, resulting in excessive production of reactive oxygen species (ROS) and depletion of cellular antioxidants.7 Increased oxidative stress causes lipid peroxidation, the reaction between ROS and lipids in cell membrane system, especially the unsaturated lipids, and producing malondialdehyde (MDA), a cell-damaging toxic material.8

Malondialdehyde (MDA) is a secondary product of lipid peroxidation that can be used as a biomarker of
toxicity in ovaries induced by lead acetate (Pb). Increased MDA level indicates a decrease in antioxidant activity to inhibit the formation of excessive free radicals. The use of natural antioxidants is currently being a concern of researchers to reduce oxidative stress due to exposure to lead acetate.

Turmeric (Curcuma longa, Family Zingiberaceae) rhizome as a natural antioxidant contains 3 main components: curcumin, demethoxycurcumin and bisdemethoxy-curcuminoids in a ratio of 77: 17: 3. Curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl) -1, 6 heptadiene-3, 5-dione), which is widely contained in the rhizome, has many benefits, especially as an antioxidant. Although curcumin has an antioxidant effect, the bioavailability of curcumin is less understood. Nanotechnology is used to overcome problems related to the solubility, stability, and bioavailability of biological curcumin. Nanocurcumin produced from curcumin nanotechnology has stronger potential compared to curcumin. The aim of this study was to investigate the activity of nanocurcumin to decreasing lipid peroxidation in ovarian granulosa cells of white rats (Rattus norvegicus) exposed to lead acetate (Pb).

Materials and Methods

Chemicals

Curcumin (Curcuma longa (turmeric) powder, 65%, Product No.: CAS 458-37-7 molecular weight (MW): 368.38 g/mol, product of China), and Lead acetate (Pb) (Product No.: CAS 6080-56-4, molecular weight (MW): 379.53 g/mol. Linear formula: Pb (CH3CO2) 2.3H2O), purchased from Sigma-Aldrich Co., USA.

The making process of nanocurcumin

Nano Nanocurcumin was made at the Physics Laboratory, Universitas Airlangga, Surabaya, Indonesia. The method used was milling using the High Energy Milling (HEM) engine. Curcumin powder from curcuma longa (turmeric) rhizome was milled with collision by cubic zirconia balls, with a ratio between curcumin and cubic zirconia balls = 1 : 10. Curcumin and cubic zirconia balls were inserted into the tube and milled in a High Energy Milling (HEM) machine. The milling time was 20 minutes with a setting of 5 minutes milling and 5 minutes rest until the effective amount of processing time reaching 20 minutes outside the rest period.

Nanocurcumin characteristics analysis

Analysis of nanocurcumin size characteristics was performed at the Robotics Laboratory, ITS, Surabaya, Indonesia, using Scanning Electron microscopy (SEM) method. Curcumin morphology before and after milling were compared. Curcumin morphology before milling appeared as irregular plates with a mean diameter of more than 1000 nm. Morphology of curcumin after milling had a more regular crystal shape with a mean diameter of less than 200 nm as shown in Figure 1.

Figure 1 Morphology of nanocurcumin by Scanning Electron microscopy (SEM) examination. (a) Prior to milling with irregular plate, > 1000 nm in diameter. (b) After milling with a more regular crystal shape with a diameter <200 nm.
The making of nanocurcumin solution

Nanocurcumin was dissolved with corn oil, because corn oil is the best carrier compared to butter, milk and water. The solution was made by dissolving 2 grams of nanocurcumin with corn oil to 200 ml, so that 1 ml solution contained 10 mg of nano curcumin.

Experimental animals

Female rats (Rattus norvegicus) with a mean body weight of 200-250 gr and an average age of 2.5-3 months were obtained from Institut Teknologi Bandung, Bandung, Indonesia, for experimental purposes. The rats were kept in plastic cages in air-conditioned rooms with temperatures of 26 ± 2° degrees C and maintained with 12 hours of light and 12 hours of darkness. The rats were given with standard commercial food for rats and drinking water was given ad libitum.

Experimental design

A total of 45 rats were divided into negative control group (C-) receiving corn oil and one hour later receiving distilled water, positive control group (C+) receiving corn oil and one hour later receiving lead acetate (Pb) of 40 mg/kg bw/day, experimental group 1 (E1) receiving 50 mg/kg/day nanocurcumin dissolved in corn oil and one hour later receiving lead acetate (Pb) of 40 mg/kg bw/day), experimental group 2 (E2) receiving nanocurcumin 100 mg/kg bw/day dissolved in corn oil and one hour later receiving lead acetate (Pb) of 40 mg/kg bw/day), and experimental group 3 (E3) receiving 200 mg/kg bw/day nanocurcumin dissolved in corn oil and one hour later receiving lead acetate (Pb) of 40 mg/kg bw/day. The treatment was given orally and the treatment time was every day at 08.00 AM for 26 days. On day 27 the rats were sacrificed by dislocation on the nape of the neck. Approximately 2 minutes after dislocation, the rats did not move, the eyes dimmed and the body did not move. Surgery was performed to remove the ovary. The ovaries were cleaned from connective tissue, then washed with 0.9% physiological NaCl and put in Bouin’s fixation solution (with saturated picric acid composition : pro-analysis formalin : glacial acetic acid = 15 : 5 : 1) for 24 hours. After the ovaries were fixed, the solution was replaced with 70% alcohol (stopping point) so that the tissue could be stored for a long time.

Immunohistochemical analysis of MDA expression in rats ovarian granulosa cells

The removed ovarian tissues were embedded in paraffin blocks. Next, the slicing was carried out, and representative slices from the sample tissues were selected for immunostaining procedure. Each slice was stained using the streptavidin method by immunoperoxidase. The slicing of serial paraffin block in a thickness of 4 - 6 um was done. The best slices were chosen to calculate the MDA expression at 400X magnification. The presence of MDA was marked by the intensity of dark brown color. Observations were made quantitatively by counting the number of positive cells per visual field, counted up to 10 fields. The number of positive cells in each field was summed and divided by 10, and the final result was the average number of positive cells per visual field.

Statistical Analysis

Data were presented with mean ± standard deviation. Comparison test using Kruskall-Wallis Test was conducted to determine differences between groups, followed by Mann-Whitney test to determine differences between groups.

Results

Kruskal-Wallis test showed MDA differences between groups (Kruskal-Wallis H = 33.697; df = 4; p = 0.000). Then, we performed an analysis using Mann-Whitney test, with results as seen in Table 1.
Table 1. Effects of nanocurcumin on MDA expression of rat ovarian granulosa cells induced by lead acetate (Pb) (mean ± standard deviation)

<table>
<thead>
<tr>
<th>Groups</th>
<th>n</th>
<th>MDA</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control</td>
<td>9</td>
<td>1.5 ± 1.4a</td>
<td>0</td>
<td>4.4</td>
</tr>
<tr>
<td>Positive control</td>
<td>8</td>
<td>94.2 ± 10.5b</td>
<td>40.0</td>
<td>158.6</td>
</tr>
<tr>
<td>Experimental 1</td>
<td>9</td>
<td>17.4 ± 10.5c</td>
<td>8.0</td>
<td>37.2</td>
</tr>
<tr>
<td>Experimental 2</td>
<td>9</td>
<td>11.4 ± 8.5c</td>
<td>3.0</td>
<td>26.5</td>
</tr>
<tr>
<td>Experimental 3</td>
<td>8</td>
<td>7.2 ± 4.0d</td>
<td>2.2</td>
<td>13.0</td>
</tr>
</tbody>
</table>

a, b, c, d Different superscript within each column indicates significant difference between the means (p < 0.05).

Table 1 shows that the positive control group had the highest MDA expression of ovarian granulosa cells and was significantly different (p < 0.05) from negative control group, experimental groups 1, 2 and 3.

These results indicated that the administration of nanocurcumin of 200 mg/kg body weight of rats provided the greatest protection of white rats ovary cell lipid peroxide induced by lead acetate (Pb) of 40 mg/kg bw compared to the administration of 50 mg/kg bw nanocurcumin and 100 mg/kg bw. The administration of nanocurcumin of 50 mg/kg bw was the same as the administration of nanocurcumin of 100 mg/kg bw in lipid peroxide protection of white rat granulosa cells induced by lead acetate (Pb) of 40 mg/kg bw. The difference is presented in Figure 2.

Figure 2. MDA expression of white rats (*Rattus norvegicus*) ovarian granulosa cells, C- (negative control group); C+ (positive control group); E1 (experimental group 1); E2 (experimental group 2); E3 (experimental group 3). Observation used light microscope with 400X magnification.
Figure 2 shows the differences in MDA expression in various groups. MDA expression is in dark brown (examples are pointed with arrows) mostly in C+ group, and the least in C- group.

Discussion

Lead acetate as one of heavy metals has a tendency to catalyze oxidative reactions and cause the formation of reactive oxygen species (ROS).14 The results of this study indicated that lead acetate (Pb) exposure increased MDA expression of ovarian granulosa cells in white rats (Rattus norvegicus) compared to control group. However, the administration of nanocurcumin was significantly able to provide protection against lipid peroxide which was marked by a significant decrease in MDA expression.

If exposure to ROS cannot be offset by anti-oxidant enzymes or scavenger enzymes, where the ratio of ROS is higher than antioxidant enzymes, the cell experiences oxidative stress. Oxidative stress causes a reaction between ROS and lipids in cell membrane system, especially the unsaturated lipids (8). Oxidative stress due to increased ROS will cause lipid peroxidation, DNA damage and also a decrease in antioxidant defense system in the cells.14

Lipid peroxidation produces MDA which is a cell-destroying toxic substance.8 MDA is the final product of lipid peroxidation in lead toxicity that induces oxidative stress.8 High MDA concentration indicates oxidation process in cell membrane. MDA is also referred to as a highly reactive compound which is the final product of lipid peroxidation and is used as a biological biomarker of lipid peroxidation to assess oxidative stress.15

The inhibition of lipid peroxide can be induced by the nanocurcumin through: (1) the process of neutralizing free radicals involved in peroxidation by capturing hydroxy radicals (OH*) produced by Fenton reaction and Haber Weiss reaction16 and; (2) inhibition of hydroxyl radical (OH*) formation. Lipid peroxidation can occur due to the increase in oxidative stress. Oxidative stress occurs because radical production exceeds the body's ability to neutralize it. This imbalance is present resulting from the decreased production of anti-oxidants or over-production of free radicals.17

Nanocurcumin has antioxidant activity because it has a phenolic hydroxyl group that functions as a free radical scavenger by inhibiting lipid peroxidase. Nanocurcumin has two aromatic rings that contain phenolic hydroxy, both of which are connected by short chains conjugated with β-ketones. Nanocurcumin also has a methoxy group in its aromatic ring which acts as an electron booster so that it makes it easier for the compound to capture hydroxy radicals. In nanocurcumin the dissociation energy of phenolic O-H is 5.04 kcal/mol lower than the dissociation energy of C-H binding in β-diketone group so that the tendency to donate H atoms from the phenolic group is higher.16

The inhibition of nanocurcumin in decreasing the expression of MDA by capturing hydroxy radicals (OH*) is taking place because curcumin donates hydrogen atoms (H) from its phenolic hydroxyl (OH) groups when reacting with free radicals (R*). This reaction will produce a curcumin phenoxyl radicals or flavonoid (KO*/FO*) which is less reactive because curcumin phenoxyl or flavonoid (KO*/FO*) can experience a change in resonance structure by redistributing unpaired electrons in the conjugated double bond structure in its aromatic ring. Phenoxyl curcumin or flavonoids (KO*/ FO*) will react further to form unreactive compounds, which possibly takes place through the radical termination reactions.18

Another means of the inhibition of nanocurcumin in reducing MDA expression is by inhibiting the formation of hydroxyl radicals (OH*). The inhibition of OH* formation is to prevent Fenton reaction and Haber Weiss reaction by binding the transition metal (Fe++ (Cu+), an OH* catalytic.19

In conclusion, this study proved that the administration of nanocurcumin provided a protective effect of lipid peroxidation in ovarian granulosa cell induced by lead acetate (Pb) through free radical neutralization and the inhibition of hydroxyl radical formation. It is necessary to develop nanocurcumin for free radical protection due to lead exposure, so that it can be applied for supplementary therapy for women who have a risk of lead exposure.

Conflict of Interest: We declare that there is no conflict of interest.
Source of Funding: None

Ethical Clearance: Taken from Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.

References

Source details

Indian Journal of Forensic Medicine and Toxicology

Scopus coverage years: from 2008 to Present
Publisher: Institute of Medico-Legal Publications
SSN: 0973-9122 E-ISSN: 0973-9130
Subject area: Social Sciences: Law, Medicine: Pathology and Forensic Medicine, Pharmacology, Toxicology and Pharmacuetics: Toxicology, Environmental Science: Health, Toxicology and Mutagenesis
Source type: Journal

CiteScore 2020 0.1
SJR 2020 0.115
SNIP 2020 0.243

Improved CiteScore methodology
CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more

CiteScore 2020

0.1 = 387 Citations 2017 - 2020
3,509 Documents 2017 - 2020
Calculates on 05 May, 2021

CiteScore rank 2020

<table>
<thead>
<tr>
<th>Category</th>
<th>Rank</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Sciences</td>
<td>#639/722</td>
<td>11th</td>
</tr>
<tr>
<td>Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicine</td>
<td>#183/191</td>
<td>4th</td>
</tr>
<tr>
<td>Pathology and Forensic Medicine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

About Scopus
What is Scopus
Content coverage
Scopus blog
Scopus API

Language
日本語に切り替える
切換到簡体中文
切換到繁體中文
Русский язык

Customer Service
Help
Contact us
Indian Journal of Forensic Medicine and Toxicology

COUNTRY
India

SUBJECT AREA AND CATEGORY
- Environmental Science
- Health, Toxicology and Mutagenesis
- Medicine
- Pathology and Forensic Medicine
- Pharmacology, Toxicology and Phamacareutics
- Toxicology
- Social Sciences
- Law

PUBLISHER
Indian Journal of Forensic Medicine and Toxicology

H-INDEXT
20

PUBLICATION TYPE
Journals

ISSN
09739122, 09739130

COVERAGE
2008-2020

INFORMATION
- Homepage
- How to publish in this journal
- editorijfmt@gmail.com

Scopus Indexed Jo
Call for Papers August 1st
Fast Track Peer Reviewed Publ
society.net

SCOPE
"Indian Journal of Forensic Medicine & Toxicology" is a double-blind peer reviewed international journal. The frequency is quarterly. It deals with Forensic Medicine, Forensic Science, Toxicology, DNA fingerprinting, sexual medicine, environmental medicine, Forensic Pathology, legal medicine and public health laws.

Join the conversation about this journal

https://www.scimagojr.com/journalsearch.php?q=19700174671&tip=0&clean=0
Scopus Indexed Journal
Fast Track Peer Reviewed Publication.
How to Claim a Review

All your peer reviews will be certified by journals and you earn credits to get benefits.

reviewscredits.com

Metrics based on Scopus® data as of April 2021

A
Aloto Ximenes Bele Amaral 2 months ago

hello sir/madam,

indian journal of forensic medicine and toxicology 'Coverage 2008-2019'
is the journal out of Scopus? or somedother reason?

thank you and please let me know.

reply

Melanie Ortiz 2 months ago

Dear Alota,

Thank you very much for your comment.

All the metadata have been provided by Scopus /Elsevier in their last update sent to
SCImago, including the Coverage's period data. The SJR for 2019 was released on 11
June 2020. We suggest you consult the Scopus database directly to see the current index
status as SJR is a static image of Scopus, which is changing every day.

Best Regards, SCImago Team

S
sekar anggun gp 5 months ago

how can i see the impact factor of Indian Journal of Forensic Medicine

reply

Melanie Ortiz 5 months ago

Dear Sekar, thank you very much for your comment. SCImago Journal and Country Rank
uses Scopus data, our impact indicator is the SJR (check it on our website). We suggest
you consult the Journal Citation Report for other indicators (like Impact Factor) with
a Web of Science data source. Best Regards, SCImago Team