Editor in Chief

Prima Dewi Kusumawati, S.Kep., Ns., M.Kes [Google Scholar | Scopus]
Institut Ilmu Kesehatan STRADA Indonesia

Editorial Board Members

Yanuar Fahrizal, S.Kep., Ns., M.Kep [Google Scholar | Scopus]
Universitas Muhammadiyah Yogyakarta, Indonesia

Dewy Haryanti Parman, S.Kep., Ns., M.Kep [Google Scholar | Scopus]
Universitas Borneo Tarakan, Indonesia

Dhita Kurnia Sari, S.Kep., Ns., M.Kep [Google Scholar | Scopus]
Institut Ilmu Kesehatan STRADA Indonesia

DR. Indasah, M.Kes [Google Scholar | Scopus]
Institut Ilmu Kesehatan STRADA Indonesia
Cover, Preface and Content

DOI: https://doi.org/10.30994/sijk.v9i2

Published: 2020-11-02

Articles

Acute Moderate Intensity Exercise Decreases Oxygen Saturation In Obese Women
Cornelius Coli, Gadis Meinar Sari, Purwo Sri Rejeki
310-315

The Role of Head Nurse, Critical Thinking Nurse And Documentation of Integrated Patient Progress Note: Cross Sectional
Dwi Nopriyanto, Ruminem Ruminem, Mayusef Sukmana, Timmy Emelia
316-324

An IGF-1 Levels Decrease in SOPK-RI Model Mice After A Low-Carb Diet
Ermawati Ermawati, Budi Santoso, Widjiati Widjiati, Hany Puspita Aryani
325-331

Reflective Case Discussion (RCD) for Nurses : A Systematic Review
Haeril Amir, Sudarman Sudarman
The Protective Effect of Solanum betaceum Extract on Spermatozoa Vitality Exposed to Lead Acetate in Mice
Rima Wirenviona, Reny I'tishom, Siti Khaerunnisa
338-344

Secretion Of PGC-1α By Modulating Physical Exercise To Protect Improving Obesity Prevalence
Moch Nasmay Lupita, Desiana Merawati, Sugiharto Sugiharto
345-352

Knowledge of The Health Volunteer Team About Basic Life Support (BLS) At Indonesia University of Education
Upik Rahmi, Afianti Sulastri
353-357

Acute Response Moderate Intensity Treadmill Training On Decrease Malondialdehyde In Obesity Women
Septiana Choerul Anam, Sulistiawati Sulistiawati, Bambang Purwanto
358-367

Growth Hormone Status In Obese Subjects and Correlation With Age
Mufarrirul Ihsan, Lilik Herawati, Purwo Sri Rejeki
368-373

Playing Activities Improve Manipulative Skills: a Literature Review
Palupi Ardanari, Edy Mintarto, Abdul Rahman Syam Tuasikal, Suroto Suroto
374-380

Relationship Of Exclusive Breastfeeding Of Frequency Of Illnes Events In Baby Age 6-12 Months In Community Health Centers Banyumas
Wuri Utami, Hastin Ika Indriyastuti, Yuliawati Yuliawati
Relationship Of Knowledge Discuss Between Nurses And Leaders In The Effectiveness Of Implementing Nursing Care
Pratiwi Yuliansari, Christianto Nugroho
392-398

Effect Of Interval Exercise Versus Continuous Exercise On Increases Energy Expenditure On A Treadmill
Cakra Waritsu, Dwikora Novembri Utomo, Gadis Meinar Sari
399-404

Giving Banana 'Raja' Peel Extract (Musades Paradisiaca Sapientium) After Moderate Intensity Training Reduces MDA Levels In Rats
Andre Andarianto, Adi Pranoto, Berliana Dwi Nandita Sandy, Rias Gesang Kinanti, Mahmud Yunus
405-411

Correlation between Postpartum Traditions and the Process of Uterine Involution
Indria Nuraini
412-419

Improving Job Satisfaction Employee At Panti Waluya Sawahan Hospital Malang
Ifa Pannya Sakti, Nyoman Anita Damayanti, Thinni Nurul Rohmah
420-428

Athletic Games for The Motion of Children with Spesial Needs: a Literatur Review
Arif Budiman, Atrup Atrup, Hendra Mashuri
429-434

The Relation of Parity and Motivation With Post-Placental IUD Selection
Sri Dinengsiih, Rosyani Rosyani
435-442
The Protective Effect of Solanum betaceum Extract on Spermatozoa Vitality Exposed to Lead Acetate in Mice

Rima Wirenviona1, Reny I’tishom2, Siti Khaerunnisa3
1Master of Reproductive Health, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
2Department of Medical Biology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
3Department of Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
*rimawirva@gmail.com

ABSTRACT
Lead pollution is a serious problem that can cause the number of free radicals to exceed the body’s tolerance. This condition can cause damage to cells and body tissues. The toxic effects of lead on the reproductive system result in disruption of the process of spermatogenesis and affect the vitality of spermatozoa. Solanum betaceum extract contains high antioxidants which are useful for inhibiting free radicals in the body. The purpose of this study was to analyze the effect of giving various dosages of Solanum betaceum extract on the vitality spermatozoa mice exposed to lead acetate. This research was true experimental using randomized post-test only control group design. The total sample was 40 mice which were divided into 5 groups. Lead acetate used a dose of 75 mg/kg BW and various extracts of Solanum betaceum namely 100 mg/kg BW, 200 mg/kg BW and 400 mg/kg BW. Acclimatization was carried out for 7 days and continued with maintenance and treatment for 35 days. Statistical tests showed that there was a significant difference with (p=0.026). In conclusion, Solanum betaceum extract can be used as a protective to increase the vitality of spermatozoa exposed to lead acetate.

Key words: Lead acetate,mice, Solanum betaceum, vitality spermatozoa
BACKGROUND

Epidemiological and experimental studies have been indicated a possible association between lead exposure and the occurrence of damage to the organs of the reproductive system. Lead acetate given orally in experimental animals can increase levels of malondialdehyde (MDA) tests and cause changes in the histological features of testicular tissue where interstitial exudation, degeneration, and necrosis of spermatogenic cells are seen. This resulted in impaired spermatozoa vitality (Elgawish and Abdelrazek, 2014). Lead can induce lipid oxidation, especially in unsaturated fatty acid chains. These oxidized lipids undergo a chain reaction to form free radical products. Increasing the number of radicals will result in the decomposition of unsaturated fatty acids into lipids peroxide which is very unstable. Lipid peroxidation will cause structural damage and disruption of spermatozoa metabolism resulting in dead spermatozoa (Cheema et al., 2009).

Lead toxic effects that disrupt the process of spermatogenesis by damaging hormone synthesis and regulation (Kumar, 2018). Studies in rats exposed to lead showed a hyper response to the stimulation of the hormone gonadotropin-releasing hormone (GnRH) (Vigeh et al., 2011). Disruption of GnRH pulsation results in decreased secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Decreased FSH secretion causes the function of Sertoli cells to produce androgen binding protein (ABP). Decreased LH secretion results in decreased production of testosterone hormone in Leydig cells (Oh, 2014).

The addition of antioxidants can inhibit lipid peroxidation reactions (Ayala et al., 2014). Solanum betaceum is a fruit that contains quite high natural antioxidants such as anthocyanins, flavonoids, carotenoids, tannins, and saponins (Diep et al., 2020; Khaerunnisa et al., 2019). High antioxidants can reduce lead-induced oxidative stress in experimental animals (Wang et al., 2013). Antioxidants work by inhibiting the formation of reactive oxygen species (ROS), preventing redox reactions that produce new oxidants, and protecting lipophilic antioxidants so that they can strengthen endogenous antioxidants (Kuciel-Lewandowska et al., 2020). Solanum betaceum extract is expected to act as an antioxidant by preventing damage to biological membranes due to free radicals and potentially as a sperm protective agent from the influence of lead acetate. Spermatozoa vitality is the percentage of living and healthy spermatozoa in semen.

MATERIALS AND METHODS

Experimental animal criteria

The total samples were 40 mice. The inclusion criteria for experimental animals were male Balb/C, age ≥12 weeks and initial body weight of 25-30 grams. Criteria for the exclusion of experimental animals were sick and disabled. The criteria for drop out of experimental animals were bodyweight down > 10% and dead. The number of mice used per group was 8 divided with simple random sampling.

All procedures to use animal experiments in this study were approved by the Ethics Committee of Airlangga University, Surabaya, Indonesia, and were performed with strict adherence to the animal research guide and purpose. Mice were chosen as experimental animals because their life cycles are relatively short, easy to handle, and their anatomical and physiological characteristics are well characterized.

Solanum betaceum extract

The extracted material used in this study was the ethanol extract of Solanum betaceum. Solanum betaceum was dried by a fresh dryer. Dry powder was extracted by
maceration for 3 x 24 hours 3 times at room temperature. Ethanol extract of *Solanum betaceum* was dissolved with distilled water before giving to mice orally. The extract will be given in 3 different doses, namely P1 as much as 100 mg/kg BW, P2 as much as 200 mg/kg BW and P3 as much as 400 mg/kg BW.

Lead acetate

Lead acetate used a dose of 75 mg / kg BW. Lead is dissolved with distilled water and saved at room temperature. Lead acetate is given orally 1 hour after administration of *Solanum betaceum* extract in P1, P2, and P3 while K1 is just given lead acetate.

Standard diet and bedding

The standard diet for mice was ± 3-4 g pellets/day/tail and drinking water in the bottle ± 3 ml/day/tail. The sawdust used for the base of the cage is changed depending on needs or minimal every 3 days to keep the cage clean and for animal health. There were 5 cages with size 500 x 300 x 150 mm (length x width x height). Each cage consists of 8 mice.

Spermatozoa vitality measurement

After 35 days of treatment, the spermatozoa will be examined to determine its vitality. The procedure for checking spermatozoa vitality was carried out in each group. Spermatozoa suspension was taken using a dissecting kit to remove the epididymis organs. Subsequently, the cauda epididymis was put into a petri dish containing 1 ml of NaCl 0.9%, the proximal portion of the cauda was cut with scissors and then pressed gently until the secretion of epididymal fluid was released and suspended with NaCl 0.9%.

The technique of calculating the percentage of the life of spermatozoa or vitality was done to use eosin coloring. It works by dripping one drop of fresh cement on the tip of the object-glass using a micropipette. Eosin solution was dropped one drop near fresh semen then both were mixed. The mixture was covered with another object glass at the end which forms an angle of 45 °C and was pulled towards the other end. Let stand 30 seconds then observed at 400 x magnification. Spermatozoa die painted red while the living does not absorb the color. Count live and dead spermatozoa until they reach 200 spermatozoa, then calculated to get the percentage.

Statistical analysis

Statistical analysis was performed by one-way ANOVA. Data analysis was used by SPSS. Data were presented as means and standard errors. *P*<0.05 were considered significant.

RESULTS

The means taken in Table 1 is the percentage of live spermatozoa. The highest mean was 54.63% in the K0 group which given distilled water and the lowest mean was 36.38% in the K1 group which given lead acetate. The mean vitality of spermatozoa which were given extracts in groups P1, P2 and P3 increased with increasing doses namely 42.13%, 42.75% and 46.88%, respectively. The result of staining eosin can be seen in the Figure.

To see the spermatozoa vitality data distributed normally, a normality test was conducted with Shapiro-Wilk because the data amounted to < 50 data. Based on the normality test in Table 2 showed that the distribution of spermatozoa vitality data in each group was normal with (*P*<0.09), then the analysis is continued with a homogeneity test. Based on Table 2 homogeneity test showed the distribution of spermatozoa vitality data in each group was not homogeneous with (*p*=0.001). After the data is declared normal but did
not have a homogeneous variant then proceed with the ANOVA Brown-Forsythe test showed that there was a significant difference in the spermatozoa vitality with a (p=0.026).

DISCUSSION

Relationship between Lead Exposure and Spermatozoa Vitality

Lead poisoning can occur because metal compounds enter the body and pass through a multi-toxic environment (Wani et al., 2015). The lead will accumulate in the body and cause health problems because it can have toxic effects on various body systems including endocrine and the reproductive system (O'Grady and Perron, 2011). Lead exposure given to the K1 group resulted in many dead spermatozoa which were indicated by a significant reduction in the mean number of live spermatozoa compared to the K0 group. The difference between K1 and K0 group was quite, 18.25%. Lead exposure in this study resulted in a decrease in spermatozoa vitality due to the oxidative damage caused. This is following the same research which states that lead toxic effects can produce ROS, reduce endogenous antioxidants and cause a state of oxidative stress (Sitaresmi et al., 2017).

Membranes function to protect organs in cells and as filters on intracellular and extracellular surfaces (Walters et al., 2020). Dead spermatozoa showed that the plasma membrane is damaged due to lipid peroxidation so that the metabolism of the spermatozoa is disturbed and the permeability of the membrane is very high (Christova et al., 2004). This causes the eosin dye to pass through the membrane and cause the spermatozoa to die marked with dark pink spermatozoa. The high level of dead spermatozoa occurred in the K1 group which was only given lead acetate. Giving lead as a non-essential metal can increase ROS compounds. ROS compounds or free radicals are atoms or groups whose outer orbitals have unpaired electrons. These materials are magnetic, reactive, and oxidants that can cause cell damage or death (Samarghandian et al., 2013).

Relationship between Solanum betaceum and Spermatozoa Vitality exposed to lead acetate

The negative effects of free radicals can be overcome by administering exogenous antioxidants (Sarangarajan et al., 2017). Exogenous antioxidants can be obtained by consuming foods that contain high antioxidants such as Solanum betaceum. Solanum betaceum is thought to play an excellent role as an antioxidant against free radicals especially testicular organs exposed to lead. The testes have developed a sophisticated arrangement of antioxidant systems consisting of enzymatic and nonenzymatic constituents. Antioxidant defense systems are major importance of the testicular mechanism protecting itself from free radical damage (Aitken and Roman, 2008).

Antioxidants from Solanum betaceum extract can provide protective effects to increase the vitality of mice spermatozoa in groups P1, P2, and P3. This is following the function of antioxidants which can delay, prevent, or eliminate oxidative damage from a highly reactive target molecule such as free radicals (Lobo et al., 2010). High antioxidants can reduce lead-induced oxidative stress in animal experiments (Diana et al., 2017). Administration of antioxidants resulting in an increased percentage of spermatozoa life. The group given extract showed that the spermatozoa plasma membrane can be maintained characterized by the dye eosin not being able to penetrate the spermatozoa head so that the spermatozoa head did not absorb dyes or was white (Talwar and Hayatnagarkar, 2015).
CONCLUSION

This study showed that the administration of Solanum betaceum extract had a significant effect on spermatozoa vitality with a (p=0.026). The highest increase in the mean percentage of live spermatozoa is shown by giving the highest dose of 400 mg/kg BW. This situation can be caused by the antioxidants contained in the extract of Solanum betaceum can provide a protective effect to prevent lipid peroxidation and protect the integrity of the spermatozoa membrane.

REFERENCES

Table 1 Means and standard error of spermatozoa vitality

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>K0</td>
<td>54.63</td>
<td>2.994</td>
</tr>
<tr>
<td>K1</td>
<td>36.38</td>
<td>6.400</td>
</tr>
<tr>
<td>P1</td>
<td>42.13</td>
<td>2.567</td>
</tr>
<tr>
<td>P2</td>
<td>42.75</td>
<td>3.400</td>
</tr>
<tr>
<td>P3</td>
<td>46.88</td>
<td>2.142</td>
</tr>
</tbody>
</table>

Website: https://sjik.org/index.php/sjik Email: publikasistrada@gmail.com
Figure Sperm vitality appearance of the sample, live (⧫) and die (⬆)

Table 2 Statistical test results on the vitality of spermatozoa

<table>
<thead>
<tr>
<th>Group</th>
<th>Normality test</th>
<th>Homogeneity test</th>
<th>ANOVA test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sig.</td>
<td>Sig.</td>
<td>Sig.</td>
</tr>
<tr>
<td>K0</td>
<td>0.825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>0.097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>0.283</td>
<td>0.001</td>
<td>0.026</td>
</tr>
<tr>
<td>P2</td>
<td>0.921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>0.593</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STRADA Jurnal Ilmiah Kesehatan
eISSN : 2614350X | pISSN : 22523847
Health
STIKes Surya Mitra Husada Kediri

S3
Sinta Score

Indexed by GARUDA

8
H-index

8
H5-index

337
Citations

291
5 Year Citations