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EFFECT OF PREVENTATIVE ZINC SUPPLEMENTATION ON DAMAGE TO
INTESTINAL INTEGRITY CAUSED BY ESCHERICHIA COLI
LIPOPOLYSACCHARIDE ADMINISTRATION: EXPERIMENTAL STUDY IN
AN ANIMAL MODEL
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Article history: ABSTRACT
Received: Zinc is widely used as a therapy for gastrointestinal diseases and as a food

9 March 2019 supplement. Research has suggested beneficial effects of zinc
Accepted: supplementation; however, there is limited knowledge on the effect IS

20 September 2019 on intestinal integrity. The aim of this study to investigate the effect =

Keywords: on damage to the intestinal integrity induced by treatment with Eschf_m;;@;
Zinc; coli-derived lipopolysaccharide (LPS). Thirty-two male Wistar rats were
Villi length; randomised into eight experimental groups that consumed either a normal
Enterocyte amount; diet or zinc-deficient diet, comprising a control group, LPS group (parenteral
Intestinal integrity; LPS administration on day 36), zinc group (parenteral zinc administration
Lipopolysaccharide; for 14 days), and zinc + LPS group (parenteral zinc administration for 14

days with additional LPS on day 36). All groups were sacrificed on day 43,
and the ileum was removed for histological analysis. The villi length and
number of enterocytes were measured on histological slices of the ileum.
The results of this study, in the normal diet group treated with LPS, zinc
supplementation improved the villi length (p<0.0001) and enterocyte
number (p<0.0001). Zinc supplementation of rats in the deficient diet group
treated with LPS showed improved villi length (p<0.0001) and enterocyte
number (p<0.0001). In rats fed a normal diet, there were significant
differences in villi length and enterocyte number in LPS-treated rats
compared to those that were not exposed to LPS. In animals fed a zinc-
deficient diet and treated with LPS, zinc supplementation improved villi
length and enterocyte number.

1. Introduction
Data indicate that 21% of the global

population suffers from zinc deficiency. This is
an important problem worldwide, but especially
in developing countries (Brown et al., 2002).
Indonesia is a high-risk country for zinc
deficiencies, as more than 25% of the
Indonesian population have suffered from zinc
deficiencies (Samman, 2007).

In 2004, the World Health Organization
(WHO) and UNICEF published guidelines for
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diarrhoea therapy with zinc and oralit for a
period of 10-14 days, where administration of
zinc can decrease the incidence of diarrhoea for
the next 2-3 months, preventing an estimated
90% of  diarrhoea-related morbidity
(WHO/UNICEF, 2004). Zinc is a component of
many enzymes that are essential for basic
cellular function during all stages of the cell
cycle. It is also essential for normal growth
(WHO, 2006), as it acts as an antioxidant,
improves intestinal absorption (Wapnir, 2000)
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and immune response (Duggan ef al., 2002), and
also has bactericidal effects (Surjawidjaja et al.,
2004). However, the mechanism of zinc to
prevent damage to intestinal function and
structure induced by lipopolysaccharide (LPS)
produced by Escherichia coli infection remains
unclear. At present, many zinc supplements are
sold as vitamins to aid in prevention; however,
research supporting the effect of zinc
supplementation on improving intestinal
integrity is lacking. This study used LPS derived
from E. coli serotype O55:B5 as a model of
bacterial endotoxin, which was administered at
a non-lethal dose that could still generate the
expected response. The objectives of the present
study were to investigate the effects of zinc on
damage to intestinal integrity caused by
administration of E. coli-derived LPS.

2. Materials and methods
2.1. Samples

This study received ethical approval from
the Animal Care and Use Committee (ACUC) of
the Veterinary Medicine School, Airlangga
University (Indonesia). Male Wistar rats (n = 32,
5 weeks old, approximately 80 g) were housed
in 16 cages (two per cage), and each cage was
supplied with either a zinc-adequate (30 ppm) or
a zinc-deficient (0.5 ppm) diet for 6 weeks. Rat
were fed according to four dietary treatments,
consisting of a normal diet (30 ppm of ZnSO,),
normal diet with zinc supplementation (60 ppm
of ZnSO4), zinc-deficient diet (0.5 ppm of
ZnS04) or zinc-deficient diet with zinc
supplementation (120 ppm of ZnSO4), based on
a preliminary study conducted by Soemyarso ef
al. (2019). Zinc supplementation was orally
administered through a ZnSQ; solution on day
15 in half of the animals that received the normal
diet (n = 8) and half of the zinc-deficient rats (n
= 8). Rats had ad libitum access to a feed diet
containing 0.02-0.04 ppm zinc, and rats were
routinely monitored for body weight (BW) and
daily intake.
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After 5 weeks of the dietary treatments, half
of the animals receiving the normal diet (n = §)
and the deficiency diet (n = 8) were exposed to
oral saline (control), and the other half receiving
the normal diet (n = 8) and the deficiency diet (n
= 8) were administered oral LPS (250 pg/kg BW
in 0.2 ml) on day 36 to simulate a bacterial
challenge. Administration of LPS would induce
intestinal distress, similar to other diarrhoea
models. One week after the LPS challenge,
euthanasia by cervical dislocation was
performed for all rats. This study examined the
effects of zinc supplementation on intestinal
morphology in LPS-challenged rats through the
histological evaluation of intestinal tissue
sections. Histological analysis of intestinal
samples included evaluation of villi length and
the number of enterocytes.

2.2. Small intestine tissue collection

Tissue sample collection was performed
immediately after euthanasia, and blood was
collected into heparinised tubes. The small
intestine of each rat was dissected into sections
of the ileum approximately 3 cm in length. Each
intestinal sample was immediately washed with
cold saline and then rinsed with 10% formalin.
The sections were filled with phosphate-
buffered formalin solution for 24 h and then
moved to the morphohistology laboratory for
histological preparation. Histological
preparation of the ileal tissue was carried out
through several stages beginning with
dehydration, clearing, impregnation, embedding
and finally fixation in paraffin. Sections were
stained with haematoxylin and eosin and viewed
through an Olympus CX 21 microscope under
200x magnification for villi length assessment
and 1000x magnification to count the number of
enterocytes in four areas. The villi length was
measured from the tip of the villi to the villous
crypt junction. The number of enterocytes was
measured by counting the enterocytes per villi.
Both villi length and enterocyte amount are
expressed relative to the result of the control
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group (normal diet and deficiency diet group).
This observation was carried out in the
Department of Anatomy and Pathology Dr
Soetomo General Hospital and the Faculty of
Math and Science at the Universitas Brawijaya
Malang.

2.3. Statistical analysis

Intestinal morphology was analysed by
analysis of variance (ANOVA). All data
analyses were performed using SPSS software,
version 17. Significance was assessed at p<0.05.

3. Results and discussions

Figures 1A-H present the variation in villi
length and enterocyte number for each of the
eight groups.

Figure 1A and B. Repesentative ge of the small intestine of rats fed the
ementation. Enterocytes are indicated by black arrows.

(]»_Z’.‘)_'le(_)qp?l diet with zinc suppl

Figures 1A-H show the wvariation in wvilli
length for each group, in addition to enterocytes
(black arrows) and damaged cells (red arrows).
The difference between the normal diet group
(Figure 1A) and the normal diet group with zinc
supplementation (Figure 1B) is that the zinc
supplementation group had longer villi. Figure
1C represents the normal diet group treated with
LPS, showing blunt villi and multiple damaged
epithelial cells, which differs from Figure 1D,
representing LPS-treated animals on a normal
diet with zinc supplementation, as zinc
supplementation ameliorated these negative
effects, evidenced by longer villi, fewer
damaged cells and more intact epithelium.

(A) normal diet and

derived lipopolysaccharide (LPS) fed the (C) normal diet and (D) normal diet with zinc
supplementation. Enterocytes are indicated by black arrows and cell damage is shown by red arrows.
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Figure 1E shows epithelial damage and
blunt villi in the group fed the zinc-deficient
diet. When zinc-deficient animals were
supplemented with zinc (Figure 1F), animals
showed longer villi and intact epithelium. Figure
1G represents the zinc-deficient group treated
with LPS, showing blunt villi and damaged
epithelial cells. In Figure 1H, animals in the
zinc-deficient diet group treated with LPS which
received zinc  supplementation showed
decreased epithelial cell damage. Zinc
supplementation in the normal diet group had a
protective effect on villi length (p = 0.001),
while zinc supplementation in deficient animals
protected the number of enterocytes (p <0.0001)
and villi length (p < 0.0001; Table 1).
Administration of LPS to animals fed a normal
diet led to significantly decreased villi length (p

= 0.001) and number of enterocytes (p <
0.0001), and zinc-deficient animals showed a
decrease in villi length (p < 0.0001) and
enterocyte amount (p < 0.0001; Table 2). Zinc
supplementation in both the normal and zinc-
deficient groups protected the number of
enterocytes (p < 0.0001) and villi length (p <
0.0001). Zinc supplementation in LPS-treated
animals fed a normal diet and deficient diet
resulted in improved villi length (p < 0.0001)
and number of enterocytes (p <0.0001; Table 3).
Administration of LPS to animals fed a normal
diet and supplemented with zinc led to a
decrease in the number of enterocytes, and LPS
administration in zinc-deficient animals that had
been given zinc supplementation resulted in
decreased villi length (Table 4).

Figure 1E and F. Representative image of the small intestine of rats fed the (E) zinc-deficient diet

and (F) zinc-deficient diet with zinc supplementation. Enterocytes are indicated by black arrows and
cell damage is shown by red arrows.

The results of this study suggest that zinc
supplementation in a normal diet could help to
maintain villi length (p = 0.001) and protect
against anatomical intestinal damage. In a zinc-
sufficient condition (normal diet), zinc
supplementation can improve the endogenous
zinc reserve and induce metallothionein
synthesis in intestinal cells. This metallothionein
could provide anatomical protection against
intestinal damage. Higher serum concentrations
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of zinc are usually associated with increased
synthesis of metallothionein in the intestinal
mucosa (Martinez et al., 2004; Carlson et al.,
2007). Metallothionein is a binding protein that
regulates the quantity of zinc absorbed by
binding dietary zinc in mucosal cells, thereby
controlling its transfer across the basolateral
membrane into the circulation, and its
subsequent deposition in the liver and intestine
(Richards & Cousins, 1975).
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#
?

Figu re 1G and H. Representative image of the small intestine or rats treated with Escherichia

coli-derived lipopolysaccharide (LPS) fed the (G) zinc-deficient diet and (H) zinc-deficient diet with
zinc supplementation. Enterocytes are indicated by black arrows and cell damage is shown by red
arrows. ‘

Table 1. Different effects of zinc supplementation in normal diet and zinc-deficient diet groups.

G Villi length (mm) ] Enterocyte number p
g Mean + SD Mean + SD
Normal diet 15.095 + 0.843 0.001* 22.187 +1.231 0.871
Normal diet + zinc 21.235 +2.597 22.312 +0.375
Deficient diet 8.390 + 0.388 <0.0001* 12.250 + 0.540 <0.0001*
Deficient diet + zinc 19.640 + 0.618 26.750 + 2.131

*Significance, p < 0.05.

Zinc deficiency may enable oxidative
damage to the structural integrity of cell
membranes, which could alter the function of
permeability channels and transport proteins in
cell membranes (Hambidge ef al., 1986). In the
current study, we showed that zinc deficiencies
can cause damage to intestinal anatomy and

function, and zinc supplementation in deficient
animals could protect villi length (p < 0.0001)
and the number of enterocytes (p < 0.0001).
Thus, in conditions of deficiency, zinc
supplementation  could protect against
anatomical and functional intestine damage.

Table 2. Different effects of lipopolysaccharide (LPS) administration in normal diet and zinc-

deficient diet groups.
Villi length (mm) p Enterocyte number p
Group
Mean + SD Mean + SD

Normal diet 15.095 + 0.843 0.001* 22.187 +1.231 <0.0001*

Normal diet + LPS 9.095 +1.566 10.000 + 0.204
Deficient diet 8.390 +0.388 <0.0001* 12.250 + 0.540 <0.0001*

Deficient diet + LPS 6.095 + 0.495 5.375+1.050

*Significance, p < 0.05.

Damage to the intestinal mucosal

epithelium is

a characteristic feature of

numerous gastrointestinal diseases such as
infectious diarrhoea or inflammatory bowel
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diseases. The intestinal epithelium has
enormous regenerative capabilities that allow
rapid healing after damage. Firstly, cells beneath
the damaged epithelial surface migrate into the
wound within minutes to hours to seal the
denuded area, a process that has been termed
epithelial restitution. Secondly, cells proliferate
to replenish the reduced cell pool. Finally,
epithelial cells differentiate to mature
enterocytes with diverse functional abilities
within the intestinal epithelium (Goke &
Podolsky, 1996).

The LPS challenge in rats fed a normal diet
affected the vwilli length (p = 0.001) and
enterocyte number (p < 0.0001), which was also
observed in the zinc-deficient group, affecting
villi length (p < 0.0001) and enterocyte number
(p < 0.0010). Administration of LPS derived
from E. coli in normal diet groups and deficient
groups was found to destroy intestinal integrity,
evidenced by decreases in villi length and
enterocyte  number.  This  experiment
demonstrates that an oral LPS challenge is
sufficient to induce intestinal inflammation.
Excessive inflammation in the intestine may

reduce the enterocyte barrier function, allowing
additional ~ bacterial and  inflammatory
challenges to occur. An adequate zinc status
prevents barrier disruption in the enterocyte
monolayer, as well as bacterial adhesion and
internalization. Serum zinc status should be
influenced to show positive developmental
changes to intestinal integrity and immune
function during the suckling period and after
weaning. In “this context, dietary
supplementation with 3000 mg/kg zinc oxide
was previously found to reduce the incidence of
LPS-induced translocation of E. coli into
mesenteric lymph nodes (Huang et al., 1999),
and it also improved small intestinal mucosal
epithelial morphology in recently weaned pigs
(Li et al., 2001). Administration of LPS results
in ischemia and destroys mature cells, and can
also disrupt the growth and maturation of
immature cells (Ruemmele, 2007). LPS derived
from E. coli of an enteropathogenic serotype can
be used as a pathogen because this endotoxin
determines the innate immune response
(Andonova et al., 2001) and increases bacterial
translocation in the intestine (Huang et al.,
1999).

Table 3. Different effects of lipopolysaccharide (LPS) administration and zinc supplementation in
normal diet and zinc-deficient diet groups.

Villi length (mm) p Enterocyte number P
Group Mean + SD Mean + SD
Normal diet + zinc + LPS 15.562 + 2.016 0.001* 18.375 + 1.689 <0.0001*
Normal diet + zinc 21.235 + 2.597 22.312+0.375
Deficient diet + zinc + LPS 13.737 + 0.739 <0.0001* 12.750 + 1.513 <0.0001*
Deficient diet + zinc 19.640 + 0.618 26.750 + 2.131

*Significance, p < 0.05.

Zinc has been implicated in diarrhoea
due to its effect on intestinal mucosal
permeability (Rodriguez et al., 1996), and
dietary zinc can help prevent or alleviate
intestinal diseases. At pharmacological levels,
this effect may be due to the antimicrobial
properties of zinc (Owusu-Asiedu ef al., 2003)
and disruption of bacterial-enterocyte binding,
as well as subsequent bacterial translocation
(Huang et al., 1999).
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We found that zinc supplementation in LPS-
treated rats fed a normal diet or deficient diet
helped to prevent damage to the intestine
anatomy and  function.  Thus, zinc
supplementation in the normal diet group and
deficient diet group infected by LPS protected
the intestinal integrity, showing improved villi
length (p<0.0001) and number of enterocytes
(p<0.0001). This study also demonstrated that
zinc supplementation in rats in the group fed a
normal diet with LPS treatment protected the
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number of enterocytes (p < 0.0001), and zinc
supplementation in the deficient diet group
treatment with LPS protected villi length (p <
0.0001) and the number of enterocytes (p <
0.0001). LPS administration in rats fed a normal
diet and provided zinc supplementation before
only destroyed intestine function because
anatomical structure had not yet been disrupted.
There was likely a decrease in intestinal function

due to the increased number of immature
enterocytes, which were not yet functioning
optimally. Immature enterocytes were increased
due to the increased cell proliferation.
Administration of LPS in deficient animals that
had been given zinc supplementation showed a
destroyed intestinal anatomical structure, but the
function was not disrupted.

Table 4. Different effects of lipopolysaccharide (LPS) administration and zinc supplementation in
normal diet and zinc-deficient diet groups.

Group Villi length (mm) p Enterocyte number p
Mean + SD Mean + SD
Normal diet + zinc + LPS 15.562 +2.016 <0.0001* 18.375 + 1.689 <0.0001*
Normal diet + LPS 9.095 +1.566 10.000 +0.204
Deficient diet + zinc + LPS 13.737 £ 0.739 <0.0001* 12.750 + 1.513 <0.0001*
Deficient diet + LPS 6.095 +0.495 5.375 + 1.050

*Significance, p < 0.05.

In general, measurements of villus
height and crypt depth provide an indication of
the maturity and functional capacity of
enterocytes (Roselli, 2003). Considering the role
of zinc in RNA and DNA synthesis, these
increases may be explained by an increase in cell
proliferation and protein synthesis promoted by
supplementary zinc (Hampson, 1986). Dietary
zinc supplementation was found to exert a
beneficial effect on intestinal morphology
through increasing IGF-I expression in the small
intestinal mucosa, which results in increased
mucosal growth, brush border activity and
nutrient absorption (Tako et al., 2005; Carlson
et al., 2004). This is in agreement with other
studies that reported no differences in the villus
height and crypt depth of weaned pigs fed diets
supplemented with zinc oxide (Li et al., 2006).

Enterocyte renewal in LPS-challenged
rats might have been increased to maintain
intestinal integrity in order to prevent bacteria
from crossing the mucosal epithelial barrier.
There is a relationship between intestinal
architecture and the prevention of diarrhoea, as
increased villus height and shorter crypt depth
may have a higher absorption capacity and a
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lower rate of secretion from secretory cells,
thereby helping to prevent diarrhoea (Namkung
et al., 2006).

It is generally known that a lack of zinc
may impair DNA synthesis and therefore
decrease cell division and proliferation (Nabuur
et al., 1993). Others have shown that zinc may
promote the repair of wounded monolayers of
cultured vascular endothelial cells through the
lipo-oxygenase pathway via fibroblast growth
factor signalling (Williams, 1989). Additionally,
intracellular zinc may regulate various
metalloproteins, transcription factors and other
ligands in the intestinal epithelium. Thus, zinc
may initiate several intracellular signal
transduction pathways that directly or indirectly
enhance cell migration. The effects of zinc on
epithelial cell restitution in vitro are not as
potent as the effects described previously for
various cytokines and growth factors, for
example TGF-alpha, epidermal growth factor,
interferon-gamma and interleukin-1 beta, which
were found to induce 2.3-5.5-fold enhancement
of IEC-6 cell restitution in vitro (Kaji et al.,
1994).
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The protective role of zinc on resisting
intestinal disease is well known (Brown ef al.,
2002). Zinc plays an important role in
maintaining membrane function and stability.
Some researchers suggest that the mechanism of
this activity involves the stabilisation of the
membrane structure. The integrity of this
intestinal barrier is fundamental to epithelial
cells (Cario, 2000). Zinc plays a role in
maintaining epithelial barrier integrity and
function (Lu & Walker, 2001).

Zinc oxide has been shown to improve
gastrointestinal tract function by increasing
mucosal thickness, villi height and width of the
small intestine (Li ez al., 2001). Zinc primarily
affects tissues with a high turnover rate, such as
those of the gastrointestinal tract and immune
system. Zinc is needed in these tissues for DNA
and protein synthesis. Zinc stabilises the
membrane structure and may modify membrane
function, protect membranes from the effects of
infectious agents, and may act at the tight
junction to prevent the increased intestinal
permeability associated with malnutrition or
tumour necrosis factor. Zinc may also stimulate
immune defences while minimising the adverse
effect of immune cell activation by bacterial
translocation on the epithelial layer (Huang et
al., 1999).

4. Conclusions

Zinc supplementation led to improved villi
length in animals fed a normal diet, and
improved the villi length and enterocyte number
in rats fed a zinc-deficient diet. In rats fed a
normal diet, there were significant differences in
villi length and enterocyte number in LPS-
treated rats compared to those that were not
exposed to LPS. In animals fed a zinc-deficient
diet and treated with LPS, zinc supplementation
improved villi length and enterocyte number.
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