The Effects of Probiotic and Prebiotic Administration in Children with Acute Diarrhea at Day-Care Centers (article /334e159ebf357f672f2203282f3490732)

Subantjo Marto Sudarmo, Reza Gunadi Ranuruh, Alpha Farhad Aliyyah, Andy Darma, Viranya Diana, Boerhan Idoljai, Siti Nurul Hidayati, Anang Indrayanto
Published: 1 February 2022 by New Century Health Publishers LLC (publisher/13950) in International Journal of Probiotics and Prebiotics (journal /308001)
Show hide abstract

Blood Pressure Lowering Effect of Lactobacillus-Containing Probiotic (article/afa79f9bb2078a1f193a383eb33f7398)
N.P Hartjo Lugito, R. Djijwita, A. Adisasmita, M. Sismibrata
Published: 27 January 2022 by New Century Health Publishers LLC (publisher/13950) in International Journal of Probiotics and Prebiotics (journal /308001)
Show hide abstract

Binding to Intestinal Epithelial Cells and Anti-Inflammatory Activity of Lactobacillus fermentum PL9988 (article /4a9381dcb0855be438fb9f531267446)
J. Paik, B.C. Kang, H. Yang, Y. Lee
Published: 11 January 2022 by New Century Health Publishers LLC (publisher/13950) in International Journal of Probiotics and Prebiotics (journal /308001)
Show hide abstract

Combination of Specific Probiotic Strains and Dietary Polyphenols Exhibit Synergistic Cellular Antioxidant and Anti-Inflammatory Potentials (article/f69f97ad737eaa0b76960c582e27d15171)
Xing Lin Ho, Wai Mun Loke
Published: 8 June 2021 by New Century Health Publishers LLC (publisher/13950) in International Journal of Probiotics and Prebiotics (journal /308001)
Show hide abstract

Indigenous Lactic Acid Bacteria from Halloumi Cheese as a Probiotics Candidate of Indonesian Origin (article)

Back to Top
Effect of Chicken Extract on Breast Milk Production in Primiparous Mothers in Japan: A Randomized Clinical Trial (article/21ac67358c67efcc1b093855b4481ae56)

M. Awano, K. Koike, T. Sawada, Xu Feng, Ho, N. Suzuki
Published: 22 January 2021 by New Century Health Publishers LLC (publisher19365) in International Journal of Probiotics and Prebiotics (journal/76CD01)
Showhide abstract

Metabolism of Wheat Dextrin, Partially Hydrolysed Guar Gum and Inulin by Bifidobacterium lactis or Lactobacillus acidophilus in an In Vitro Gut Model Fermentation System (article/ad00a3ae6184ba294d512de3cafc7f815)
S. Pyle, R.A. Rastall, G.R. Gibson
Published: 4 January 2021 by New Century Health Publishers LLC (publisher13950) in International Journal of Probiotics and Prebiotics (journal/63CD00)
Showhide abstract

Changes in the Intestinal Microbiota and Systemic Immune Responses by Dietary 1-Ketose Supplementation in Healthy Dogs (article/b6f1b177085d438c5718edc3ff4d1e430)
Published: 1 December 2020 by New Century Health Publishers LLC (publisher13950) in International Journal of Probiotics and Prebiotics (journal/63CD00)
Showhide abstract

Sensory Attributes and Other Properties of Yogurt Fortified with Immobilized Lactobacillus Plantarum and Soybean Residue (Okara) (article/11c6c978346667406e6894dd3ed3e0)
I.N.D. Pawlun, N.A. Kamsanding, N. Ismail, S. Sharanuddin
Published: 8 November 2020 by New Century Health Publishers LLC (publisher13950) in International Journal of Probiotics and Prebiotics (journal/63CD00)
Cited by 1 (articlesearch?reference_ids=K3454BD3140737571268d898&newest=1)
Showhide abstract
Advisory Board

Prof. Giovanni Abramo

Affiliation
Institute for System Analysis and Computer Science (IASI-CNR), National Research Council of Italy, Via dei Taurini, 19-00185 Roma, Italy

Research Interests
strategic management of research; research evaluation; technology transfer; bibliometrics

Dr. Yi Bu

Affiliation
Department of Information Management, Peking University, Beijing 100871, China

Research Interests
science of science; research evaluation; scholarly communication
Affiliation
Library of the University of Silesia, Bankowa 11a, 40 007 Katowice, Poland

Research Interests
library and information science; bibliometrics

Dr. Robin Haunschild
Affiliation
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany

Research Interests
scientometrics; bibliometrics; altmetrics

Prof. Dr. Zhigang Hu
Affiliation
Wise Lab, Dalian University of Technology, Dalian 116024, China

Research Interests
citation analysis; science of science; scientometrics; bibliometrics; mapping knowledge domains
Professor Dr. Kun Lu

Affiliation
School of Library and Information Studies, University of Oklahoma, Norman, OK 73019, United States

Research Interests
information access and retrieval; text mining; organization of information; science informatics

Prof. Dr. Yannis Manolopoulos

Affiliation
1. Faculty of Pure and Applied Sciences, Open University of Cyprus, 2220 Nicosia, Cyprus
2. Data and Web Lab, Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Research Interests
data management; data science; databases; data mining; scientometrics

Professor Dr. Jin Mao

Affiliation
Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China

Research Interests
information organization; scholarly data mining; science of science

Prof. Dr. Candela Ollé
(https://scipropfiles.com/profile/473622)
Affiliation
Faculty of Information and Communication Sciences, Universitat Oberta de Catalunya
08035 Barcelona, Spain

Research Interests
open access; open science; scientific communication, journalism, academic

Dr. José Luis Ortega
(https://jortega.scienceontheweb.net/)
(https://scipropfiles.com/profile/author/N0Ztc05pd3IPdUxJyVD2yS3Y5dTrKaisOnY9BMGe1TWtra3FBYz8PaitcOD0=)
Affiliation
Institute for Advanced Social Studies (IESA-CSIC), Campo Santo de los Mártires, 7 14004 Córdoba, Spain

Research Interests
scientometrics; altmetrics; academic search engines; scholarly social networks
Dr. Vladimir Pislyakov

Affiliation
Library, HSE University, Moscow 109028, Russia

Research Interests
scientometrics; citation databases; bibliometric indicators; library and information science

Prof. Dr. Daniel Torres-Salinas

Affiliation
Department of Information and Communication, University of Granada, 18011 Granada, Spain

Research Interests
research evaluation; bibliometrics; altmetrics; scientific communication; scientific information sources

Dr. Nees Jan van Eck

Affiliation
Centre for Science and Technology Studies (CWTS), Leiden University, Kolffpad 1, 2333 BN Leiden, The Netherlands

Research Interests
bibliometrics; big data; data mining; network analysis; scientometrics; text mining; visualization

Professor Dr. Dangzhi Zhao

Affiliation
School of Library and Information Studies, University of Alberta, Edmonton T6G, Canada

Research Interests
information systems; bibliometrics; scholarly communication; knowledge network analysis

Prof. Dr. Ping Zhou

Affiliation
Department of Information Resources Management, School of Public Affairs, Zhejiang University, Hangzhou 310059, China

Research Interests
research evaluation; scientometrics and informetrics; science policy
Probiotic Lactobacillus plantarum IS-10506, Expression of Glial Fibrillary Acidic Protein and Platelet Endothelial Cell Adhesion Molecule-1 by Astrocytes and Endothelial Integrity: The Importance of Intestinal Microbiota as Blood Brain-Barrier Stabilizer

Reza Gunadi Ranuhi, Alpha Fardah Athiyyah, Andy Darma, Wibi Riawan, Prastiya Indra Gunawan, Ingrid Suryanti Surono and Subijanto Marto Sudarmo

Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia; Department of Biomedical Laboratory, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia and Wood Technology Department, Faculty of Engineering, Airlangga University, Surabaya, Indonesia

Received February 11, 2022; Accepted March 1, 2022
Communicated By: Dr. Muhammad Miftahussurur

Gut microbiota is a complex community that helps maintain the dynamic metabolic ecological balance of the brain through the gut–brain axis and keeps the blood–brain barrier structure intact. However, the knowledge of how the gut microbiota responds to xenogenous influences on the blood–brain barrier structure remains limited. This study hypothesizes that probiotic Lactobacillus plantarum IS 10506 supplementations could ameliorate the disruption of the blood–brain barrier structure. To this end, we examined effect of the probiotic L. plantarum IS 10506 on the expression of glial fibrillary acidic protein and platelet endothelial cell adhesion molecule-1 in the control and E. coli serotype O55:B5 lipopolysaccharide treated blood–brain barrier disruption model of Wistar rats. The rats receiving L. plantarum IS 10506 alone or along with E. coli serotype O55:B5 lipopolysaccharide exhibited upregulation of the expression of glial fibrillary acidic protein and platelet endothelial cell adhesion molecule-1. In conclusion, the probiotic L. plantarum IS-10506 stimulates the restoration of blood–brain barrier disruption.

Keywords: Blood–brain barrier, Brain injury, Glial fibrillary acidic protein, Gut microbiota, Lactobacillus plantarum IS-10506, Platelet endothelial cell adhesion molecule-1, Probiotic

Corresponding Author: Dr. Reza Gunadi Ranuhi, Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia; E-mail: rezagunadi@gmail.com

INTRODUCTION

The blood–brain barrier (BBB) functions as a gatekeeper to control the passage and exchange of molecules and nutrients between the circulatory system and the brain parenchyma. It is essential as a physical barrier for maintaining a precisely regulated intracerebral microenvironment, ensuring homeostasis of the central nervous system (CNS) to brain development and function (Banks et al., 2015; Moretti et al., 2015; Wimmer et al., 2019). BBB characteristics limit paracellular diffusion while allowing larger molecules’ tightly controlled receptor-mediated endocytosis and the transporter-mediated intake of smaller nutrients such as glucose, insulin, and iron. Endothelial cells interact closely with other CNS cells such as neurons, pericytes, and astrocytes, through adherent junctions, influx and efflux transporters, metabolic enzymes, and extracellular matrix (Abbott et al., 2006; Sharif et al., 2018; Sofroniew and Vinters, 2010). Breakdown of the BBB and increased immune cell trafficking into the CNS are hallmarks of the pathogenesis of many CNS diseases (Banks et al., 2015; Sharif et al., 2018).

Gut microbiota is a complex community that helps maintain dynamic metabolic ecological balance and keep the BBB...
structure intact. The normal structure of the BBB is essential as defender brain functions from external intruders to the CNS (Bransiet al., 2014; Logsdon et al., 2018; Varatharaj and Galea, 2017). Glial fibrillary acidic protein (GFAP) of astrocytes is a vital player in the complex cascade of cellular adaptations taking place in the CNS in response to injury and disease (Mandyam et al., 2017; Parker et al., 2020; Winger et al., 2014). Platelet endothelial cell adhesion molecule-1 (PECAM-1; CD31) is an essential factor for supporting the BBB, expressed on vascular compartment cells, and regulated vascular integrity and immune cell trafficking (Wimmer et al., 2019).

The knowledge of how gut microbiota affects the GFAP of astrocyte and PECAM-1 of the BBB regulation as a response to exogenous influence remains limited. The present study investigated whether the probiotic Lactobacillus plantarum 15 strain 10506, prevalent in Indonesia and a typical intestinal resident, can influence the BBB.

MATERIAL AND METHODS

Animals
Thirty-six male, 12-weeks old, Wistar rats weighing 100–120 g were procured from the central animal facility of the Cellular and Molecular Biology Laboratory, Faculty of Science, Brawijaya University, Malang, Indonesia. All the rats were given water and a standard pellet diet containing 20–25% protein, 5–12% fat, 2.5% fiber, and 45–60% carbohydrate ad libitum. After 14 days of acclimatization, the rats were divided into four groups of nine rats per group as follows:

Group K1: Treated with distilled water daily through gavage
Group K2: Treated with 2.5 mg/kg lipopolysaccharide (LPS) derived from the E. coli serotype O55:B5 through gavage on the first day, then treated with distilled water daily for 13 additional days
Group K3: Treated with 2.5 mg/kg LPS derived from the E. coli serotype O55:B5 through gavage on the first day, then treated with 2.5 mL of 2.67 × 10⁶ CFU/mL L. plantarum 15 strain 10506 daily for 7 following days
Group K4: Treated with 2.5 mg/kg LPS derived from the E. coli serotype O55:B5 through gavage on the first day, then treated with 2.5 mL of 2.67 × 10⁶ CFU/mL L. plantarum 15 strain 10506 daily for 13 following days.

The probiotic used was from freeze-dried powder of L. plantarum 15 strain 10506 (GenBank accession No. DC680149). The rats were examined and weighed daily. At the end of the experiment, day 14, the brain tissue was dissected. The study reported herein received ethical approval from the Animal Care and Use Committee at the Faculty of Veterinary Medicine, Brawijaya University, Malang, Indonesia (KEP:100-KEP-UB-2000).

Probiotic Supplementation
Microencapsulated L. plantarum strain 10506 (GenBank accession No. DQ860148) was packed in an aluminum foil sachet at the Pharmacy Installation of Dr. Soetomo Hospital (Surabaya, Indonesia) and dissolved in 1.5 mL sterile water and administered to the rats via a gastric tube once daily for 7 days at a dose of 2.67 × 10⁶ CFU/day. Probiotic viability was assessed 1 week prior to the treatment.

LPS
For LPS dose–response and time studies, the male Wistar rats were weighed and given an intraperitoneal injection of 3 mg/kg LPS. The LPS was derived from the E. coli serotype O55:B5 (Cat. No. L5418, Sigma-Aldrich, St. Louis, MO, USA) dissolved in sterile normal saline.

Immunohistochemistry
The brain tissues were fixed in 10% formalin solution, followed by dehydration and paraffin embedding. Serial sections of the tissues were cleaned and fixed in 10% formalin buffer solution. Then, this procedure is followed by dehydration, clearing, and embedding. The tissue sections were probed with antibodies against the GFAP (Cat. No. sc-36673, Sigma-Aldrich, St. Louis, MO, USA) of astrocyte and PECAM-CD31 (Cat. No. sc-376784, Sigma-Aldrich, St. Louis, MO, USA). The sections were observed under a light microscope (CX21; Olympus, Tokyo, Japan) and photographed with an ILCE6000 camera (Sony, Tokyo, Japan). The number of immunopositive cells in 20 random fields at 100X and 400X magnification was counted.

RESULTS

The microscope visualization of the BBB structure and the results of the normal structure can be seen in Figure 1 for the control group of brain GFAP of astrocyte expression (brown color). The GFAP manifestation of the astrocyte expression group after being exposed by the LPS was shown in Figure 2. There was an improvement of the brain GFAP in the astrocyte expression group (brown color) after being treated by L. plantarum 15 strain 10506 for 7 days (Fig. 3). However, L. plantarum 15 strain 10506 treatment for 14 days showed a better result than 7 days, proven by the increased expression of GFAP of the astrocyte. (Fig. 4). The normal structure of the PECAM-1 in rats (brown color) as the control group was provided in Figure 5. The manifestation of the PECAM-1 expression after the LPS treatment was shown in Figure 6 and the black arrow showed the downregulation of the PECAM-1 expression. The result of this study confirmed that the probiotic L. plantarum 15 strain 10506, treated for 7 days as a model of gut microbiota, improved (black arrow) disruption of PECAM-1 expression (Fig. 7). The long treatment period of 14 days also showed upregulation of the PECAM-1 expression (Fig. 8).

DISCUSSION

Gut microbiota is a complex community composed of trillions of microbes that perform several tasks which are essential to our healthy physiology and help to maintain dynamic metabolic and ecological balance and keep the structure of the BBB intact (Caspari et al., 2019; Gomes et al., 1999; Hol and Pekny, 2015; Varatharaj and Galea, 2017). Many studies using the probiotic L. plantarum
FIGURE 1 | Representative image of control group of brain glial fibrillary acidic protein (GFAP) of astrocyte expression (brown color in black arrow) in rats (100X magnification - L and 400X magnification - R); 1 bar = 0.01 mm.

FIGURE 2 | Representative image of disruption brain GFAP of astrocyte expression (disappeared brown color in black arrow) on lipopolysaccharide group in rats (100X magnification - L and 400X magnification - R); 1 bar = 0.01 mm.

FIGURE 3 | Representative image of recovery brain GFAP of astrocyte expression (appearance of brown color in black arrow) in rats treated with Lactobacillus plantarum IS 10506 (7 days) in rats (100X magnification - L and 400X magnification - R); 1 bar = 0.01 mm.

FIGURE 4 | Representative image of recovery brain GFAP of astrocyte expression (appearance clearer brown color in black arrow) treated with L. plantarum IS 15608 (14 days) in rats (100X magnification - L and 400X magnification - R); 1 bar = 0.01 mm.
FIGURE 5 | Representative image of control group of brain CD31 (platelet endothelial cell adhesion molecule-1 [PECAM-1]) expression [brown color in black arrow] in rats (100X magnification – L and 400X magnification – R); 1 bar = 0.01 mm.

FIGURE 6 | Representative image of brain CD31 PECAM-1 expression [disappeared brown color in black arrow] on LPS group in rats (100X magnification – L and 400X magnification – R); 1 bar = 0.01 mm.

FIGURE 7 | Representative image of brain CD31 PECAM-1 expression [appearance of brown color in black arrow] treated with *L. plantarum* IS 10506 (7 days) in rats (100X magnification – L and 400X magnification – R); 1 bar = 0.01 mm.

FIGURE 8 | Representative image of brain CD31 PECAM-1 expression [appearance of brown color in black arrow] on *L. plantarum* IS 10506 (14 days) in rats (100X magnification – L and 400X magnification – R); 1 bar = 0.01 mm.
Other studies report that other gut microbiota such as *Clostridium butyricum*, *C. tyrobutyricum*, and *Bacteroides thetaiotaomicron* impact the BBB integrity. These microbial-derived metabolites have essential metabolic and signaling functions, which can modulate host homeostasis, including the BBB integrity and brain function (Parker et al., 2020). These results proved the potential of gut microbes as modulators of the BBB integrity for brain health.

CONCLUSION

This study indicates that *L. plantarum* IS-10506 shore up the BBB to improve the GFAP and PECAM-1 expression as a stimulator for restoring the BBB disruption. These findings suggest that probiotics potentially promote brain defense and offer the model for investigating the effects of gut microbiota on the BBB to prevent exogenous pathogens on the CNS infections.

CONFLICT OF INTEREST DECLARATION

The authors state that there are no conflicts of interest to disclose.

ACKNOWLEDGMENTS

This manuscript is based on a paper presented at “The 6th International Symposium on Probiotics and Prebiotics (ISPP)” in conjunction with “The 1st Aireangga Faculty of Medicine International Symposium on Pediatric Gastroenterology (AFoMIS-PG)” on November 13–18, 2020 and December 5–9, 2020.

REFERENCES

Source details

International Journal of Probiotics and Prebiotics
Scopus coverage years: from 2008 to 2018, from 2020 to 2021
Publisher: New Century Health Publishers
ISSN: 1555-1431
Subject area: (Nursing; Nutrition and Dietetics) (Medicine; Public Health, Environmental and Occupational Health)
 (Veterinary; Food Animals) (Immunology and Microbiology; Applied Microbiology and Biotechnology)
Source type: Journal

CiteScore 2020 1.3
SJR 2020 0.190
SNIP 2020 0.499

Improved CiteScore methodology
CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data
papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more

CiteScore 2020
1.3 = 40 Citations 2017 - 2020
 32 Documents 2017 - 2020
Calculated on 03 May, 2021

CiteScoreTracker 2021
1.2 = 32 Citations to date
 26 Documents to date
Last updated on 06 April, 2022 - Updated monthly

Category	Rank	Percentile
Nursing | #88,722 | 28th
 | Nutrition and Dietetics

Medicine | #383,526 | 27th
 | Public Health, Environmental and Occupational Health

View CiteScore methodology | CiteScore FAQ | Add CiteScore to your site
International Journal of Probiotics & Prebiotics (ISSN: 1555-1431) is an international, interdisciplinary, broad-based peer-reviewed scientific journal for critical evaluation of research on probiotics, prebiotics and symbiotics. The major goal of this journal is to provide peer-reviewed unbiased scientific data to students, researchers, healthcare providers, and the decision-makers in the nutraceutical industry to help make informed choices about probiotics, prebiotics and symbiotics. To this end, the journal will publish original research articles and two types of review articles. First, we will publish a review of preclinical research data focusing largely on animal, cell culture and other experimental models. Such data will provide a basis for future product development and/or human research initiatives. Second, we will publish a critical evaluation of current human experimental data to help deliver products with medically proven use.

Join the conversation about this journal