THE RESERVE OF THE STATE OF

hys war

and the second second second

SERVICE SERVICE

The second secon

Sillerature somewhere to

The Manager to Manager the Company of Compan

Second of the Park B

Brand to the control of the control

KOREAN JOURNAL OF OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY

The former of a ferrical gold

Personal Appropriate and Comprehensive Sections of Comprehensive Section 2 (Section 2)

Bloomers & serving and bulleting that the property

Bookson a Barrer of Control

indicate and the second of the first of the second second

Reserved Sciences and Experienced Processing

CZCOSZE - British whiterman a common of the common and a common of the c

in a land the land of the land

ACCESS

Select Language ▼

Advanced Search

Head and neck

elSSN: 2092-6529

E-SUBMISSION

E-MAIL ALERTS

AUTHOR'S INDEX

1. Metrics

ENDNOTE STYLE FILE

Meise Middle ear neak steinstills Hearing Loss

Thurst

Maxillary sinus Allergic

Video clip

Korean J Otorhinolaryngol-Head

Korean Society of Otorhinolaryngologi Head and Neck Surgery

KoreaMed

KMG #

Science Central

Google Scholar

■ Crossref mionty Char

Crossref

(Check for updates

Crossref

ORCID

Neck Surg 2017; kiorl-hns.2017.00304

>

>

>

0

OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY

AROUT

KOREAN JOURNAL OF

BROWSE ARTICLES

SPECIALTIES

FOR AUTHORS AND REVIEWERS

Previous issue

> Previous issue

Table of Contents | February, 2020 Vol. 63 No.2

Previous Issue | Next Issue | Archive

ENGLISH KOREAN

In this issue:

- ▶ Review
- **▶** Original Article
- ▶ Case Report
- ▶ Quiz
- ▶ Self-Test Examination

Review

51 Management of Skull Base Osteoradionecrosis

Sung-Woo Cho, Tae-Bin Won

PubResder

Korean J Otorhinolaryngol-Head Neck Surg. 2020;63(2):51-58. Published online February 21, 2020 DOI https://doi.org/10.3342/kjorl-hns.2019.00885

eBook(ePub)

CrossRef - TDM

Original Articles

Full text

Otology

59 Noise Induced Hearing Loss in Ground Handling Workers at Juanda Airport Surabaya

Citra Dwi Novastuti, Nyilo Purnami, Nugraenny Affianti Korean J Otorhinolaryngol-Head Neck Surg. 2020;63(2):59-63. Published online February 21, 2020 DOI: https://doi.org/10.3342/kjorl-hns.2019.00353

Full text

PubReader

eBook(ePub)

CrossRef - TDM

PDF

1					
41 254	(exa)	kė ma	Epilana)	line)	Teal
		HEE	HE	330	r au
3-F	1	nex	53C	325	3 115
Z-4	1	SES	55C	1177.00	2.4 1
%-9		515	116	2:23	ZAT
Tw'		1,029,	223	2.5.5	9 125

Cesde	loù an mar	(le)ansa)	histori	Total
151	340	5 KK	LE E	THE
an)	663-	1937	3.Th	PR3
lai	5,43	133	Y T.U	3 W

Pedrag Record (pessa)	lei en sessi	Column 1	lina)	Ini
м	376	128	310	XXX
78	BRA	150	112	2.32
O.M	115	:27	1427	147
0-21	174	120	our	0.45
C	162	19.8	:35	733
lai	CER	127	3 22	32

in laster se	loti na recui	(h)mi	libra	[m]
Š	322	ite	5 A.5	3.5
i	803	346	P 0,3	43.5
la:	1,013	233	322	372

-	- terres	-	-	-	1
	Canas .	1.15	1.0	-	
	metalist.	115	10.1	3.5	213
	MIP .	-	100	.0	
	THE R. ST. LEPTON	1.75	111		
		1.0	100		1 >
	W-4	111	fusc.	OC.	14.
		11.	103	23.5	125
	(m. 3	110		100	100
in and other s.	the same of the sa	111	1		
	- ·	1.00	146		
		1111		7.50	6
THE PLATE	4.50		1.	17	
	CAPACIDA IN ACTOR	1 24	1	200	Е
A	2775	1000	11.0		E
	Page 1	7.5	110	200	10

64 The Clinical Implications of Simultaneous Bilateral Chronic Ear Surgery for Patients with Asymmetric Hearing

Sang-Yoon Han, Jeong-Yeon Ji, Ye Ji Shim, Min-Hyun Park Korean J Otorhinolaryngol-Head Neck Surg. 2020;63(2):64-70. Published online January 16, 2020 DOI: https://doi.org/10.3342/kjorl-hns.2019.00423

Full text

PubResner

eBook(ePub)

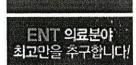
CrossRef - TOM

Head and Neck

71 Comparative Study between Transoral Laser Microsurgery and Transoral Videolaryngoscopic Surgery in Benign Laryngeal Tumors

Ji Ah Song, Chang Hoi Kim, Jun Sang Cha, Sung Won Kim, Kang Dae Lee, Hyoung Shin Lee Korean J Otorhinolaryngol-Head Neck Surg. 2020;63(2):71-75. Published online November 5, 2019 DOI: https://doi.org/10.3342/kjorl-hns.2019.00241

Full text


PubReader

eBook(ePvb)

CrossRef - TOM

PDF

MED®FL

www.kjorl.org/current/index.php?vol=63&no=2

| Home | E-Submission | Sitemap | Editorial Office |

Select Language ▼

Advanced Search

KOREAN JOURNAL OF OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY

ACCESS elSSN: 2092-6529

Ħ

ABOUT

BROWSE ARTICLES

SPECIALTIES

FOR AUTHORS AND REVIEWERS

76 A Case of Nasal Angiomyolipoma in Young Man

Min Chul Ko, Sung Jae Heo, Jung Soo Kim

Korean J Otorhinolaryngol-Head Neck Surg. 2020;63(2):76-80. Published online October 8, 2019

DOI: https://doi.org/10.3342/kjorl-hns.2019.00024

PubReader

eBook(ePub)

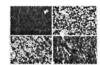
CrossRef - TDM

A Case of Myeloid Sarcoma in the Nasal Cavity Occurred in the Patient with Leukemic Transformation in Myelodysplastic Syndrome

Dong Hoo Lee, Sung Yool Park, Ha Young Park, Seong Kook Park Korean J Otorhinolaryngol-Head Neck Surg. 2020;63(2):81-84. Published online October 8, 2019 DOI: https://doi.org/10.3342/kjorl-hns.2019.00017

Full text

PubReader


eBook(ePub)

CrossRef - TDM

PDF

A Case of a Temporary Endotracheal Stent for Airway Management in a Patient with **Primary Thyroid Lymphoma**

Young Chul Kim, Seong-Chul Yeo, Jin Pyeong Kim, Jung Je Park Korean J Otorhinolaryngol-Head Neck Surg. 2020;63(2):85-90. Published online November 5, 2019 DOI: https://doi.org/10.3342/kjorl-hns.2019.00297

Full text

PubReader

eBook(ePub)

CrossRef - TOM

PDF

Quiz

91 Rhinology

Korean J Otorhinolaryngol-Head Neck Surg. 2020;63(2):91-91. Published online February 21, 2020

Full text

PubReader

eBook(ePub)

CrossRef - TDM

Self-Test Examination

92 Self-Test Examination

Korean J Otorhinolaryngol-Head Neck Surg. 2020;63(2):92-95. Published online February 21, 2020

Full text

PubReader

eBook(ePub)

CrossRef - TDM

Editorial Office

Korean Society of Otorhinolaryngology-Head and Neck Surgery 103-307 67 Seobinggo-ro, Yongsan-gu, Seoul 04385, Korea TEL: +82-2-3487-6602 FAX: +82-2-3487-6603 E-mail: kjorl@korl.or.kr

Copyright © Korean Society of Otolaryngology-Head and Neck Sürgery. All rights reserved.

Developed in M2com@unity

About | Browse Articles | Current Issue | For Authors and Reviewers

| Home | E-Submission | Sitemap | Editorial Office |

Select Language ▼

KOREAN JOURNAL OF OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY

ABOUT

BROWSE ARTICLES

SPECIALTIES

FOR AUTHORS AND REVIEWERS

Editorial Board

> About > Editorial Board

Editor

Yoo-Sam Chung

Asan Medical Center, College of Medicine, University of Ulsan

Editorial Board

Dong-Kyu Kim

Hallym University College of Medicine

Hyong-Ho Cho

Chonnam National University College of Medicine

Hyun-Jik Kimf

Seoul National University College of Medicine

Jae Hwan Kwon

Kosin University College of Medicine

Jin Woong Choi

Chungnam National University School of Medicine

Ju Wan Kang

Jeju National University Hospital

Jun-Ook Park

The Catholic University of Korea College of Medicine

Juyong Chung

Wonkwang University College of Medicine

Myung Hoon Yoo

Kyungpook National University School of Medicine

Se-Hwan Hwang

The Catholic University of Korea College of Medicine

Seog-Kyun Mun

Chung-Ang University College of Medicine

Seok Jin Hong

Hallym University College of Medicine

Seung Hoon Wood

Dankook University College of Medicine

Yong Bae Ji

Hanyang University College of Medicine

Yoo Seob Shin

Ajou University School of Medicine

Young Ho Jung

Seoul National University College of Medicine

Young Min Park

Yonsei University College of Medicine

Young-Gyu Eun®

Kyung Hee University School of Medicine

International Editorial Board

Akihiro Shlotani

Keio University, School of Medicine, JAPAN

Alessa Mohammad Ali M(6)

King Abdullah Medical City Makkah, SAUDI ARABIAN

Eugine Chang

The University of Arizona College of Medicine, U.S.A

Khardali Mohsen Hussain

Ministry Of Health, SAUDI ARABIAN

Koji Araki

National Defense Medical College, JAPAN

Meijin Nakayama

Yokohama City University, JAPAN

Robson Capasso

Stanford University Medical Center, U.S.A

Sangyong Jung

National University of Singapore, SINGAPORE

Tatsanachat Jittreetat

Rajavithi hospital, THAILAND

Yehoash Raphael

The University of Michigan, U.S.A

KOREAN SOCIETY OF HEAD AND NECK SURGERY

Yong Bae Ji

Hanyang University, College of Medicine

Ajou University School of Medicine

Inn-chul Nam

Incheon St. Mary's Hospital The Catholic University of Korea

Hyung Kwon Byeon

Yoo Seob Shin®

Soonchunhyang University College of Medicine

KOREAN OTOLOGIC SOCIETY

OPEN (ACCESS elSSN: 2092-6529

>

>

>

0

Q

Advanced Search

E-SUBMISSION

E-MAIL ALERTS

AUTHOR'S INDEX

ENDNOTE STYLE FILE

ال. Metrics

Middle ear Allergic Hearing Loss

laser iss Head and neck Sinus **Rat** Thyroid Polyr

= Hearing

Video clip

22

00.00 00:53

Korean J Otorhinolaryngol-Head Neck Sura 2017:

kjorl-hns.2017.00304

KoreaMed

KeWS

Science Central

Google Scholar

Check for updates

ENT 의료분야 최고만을 추구합니다

| Home | E-Submission | Sitemap | Editorial Office |

Select Language ▼

Advanced Search

KOREAN JOURNAL OF OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY

OPEN ACCESS
elSSN: 2092-6529

♠ ABOUT

BROWSE ARTICLES

SPECIALTIES

FOR AUTHORS AND REVIEWERS

KOREAN ACADEMY OF FACIAL PLASTIC AND RECONSTRUCTIVE SURGERY

Jae Hwan Kwon

Kosin University College of Medicine

Soo Jin Moon

Pusan National University Yangsan Hospital

Tae Young Jung

Maryknoll Medical Center

Woo Sub Shim

Chungbuk National University College of Medicine

Dong-Kyu Kim

Hallym University College of Medicine

KOREAN SOCIETY OF PEDIATRIC OTORHINOLARYNGOLOGY

Young Ho Jung

Seoul National University College of Medicine

KOREAN BRONCHOESOPHAGOLOGICAL SOCIETY

Young-Gyu Eun

Kyung Hee University School of Medicine

Editorial Manager

Seung Min Lee

Korean Society of Otorhinolaryngology-Head and Neck Surgery

Editorial Office

Korean Society of Otorhinolaryngology-Head and Neck Surgery 103-307 67 Seobinggo-ro, Yongsan-gu, Seoul 04385, Korea TEL: +82-2-3487-6602 FAX: +82-2-3487-6603 E-mail: kjorl@korl.or.kr

Copyright © Korean Society of Otolaryngology-Head and Neck Surgery. All rights reserved.

About | Browse Articles | Current Issue | For Authors and Reviewers

Developed in Mazcom@unity

Noise Induced Hearing Loss in Ground Handling Workers at Juanda Airport Surabaya

Citra Dwi Novastuti, Nyilo Purnami®, and Nugraenny Affianti

Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, Indonesia

Received May 9, 2019 Revised August 16, 2019 Accepted August 23, 2019 Address for correspondence Nyilo Purnami, PhD Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Prof. Dr. Moestopo 6-8, Surabaya 60286, Indonesia Tel +62-815-5100-081 Fax +62-31-5010887 E-mail nyilo@fk.unair.ac.id

Background and Objectives The airport ground handling workers are most vulnerable to noise exposure from the sound of aircraft engines that are quite loud and, if exposed continuously, they may experience hearing loss. This study describes the profile of noise induced hearing loss in ground handling workers at Juanda Airport Surabaya.

Subjects and Method The descriptive cross sectional approach is employed, and the noise level in the work environment is measured by airport apron, physical ear examination, distortion product otoacoustic emission (DPOAE) and pure tone audiometry, which were conducted for 89 ground handling workers at the airport.

Results The age range that experienced hearing loss the most is 50-59 years (19.10%). The male: female ratio of subjects who experienced hearing loss was 50%:53.24%. The highest percentage of subjects with hearing loss was found in the Area II (export-import cargo) with 68%. Workers who experience hearing loss the most have been working for 17-21 years (76%). The ratio of hearing loss between continuous users of ear protectors and occasional or non-users of protectors was 22.47%:30.34%. Of the 89 total research subjects, 47 were found with hearing based on the DPOAE refer results; of these subjects, 30 (33.7%) experienced hearing loss due to noise (NIHL), 9 suffered in the right ear (10.11%), 9 in the left ear (10.11%) and 12 in both ears (13.48%).

Conclusion Based on the DPOAE results, 52.81% of the ground handling workers at Juanda airport Surabaya were found with hearing loss; of these workers, 33.7% workers experienced NIHL with 10.11% observed in each ear and 13.48% in both ears.

Korean J Otorhinolaryngol-Head Neck Surg 2020;63(2):59-63

Key Words Hearing loss · Noise-induced · Occupational.

Introduction

Hearing loss is currently still a world health problem. The World Health Organization (WHO) reports that 466 million people in the world currently suffer from hearing loss. WHO also warned 1 in 10 people at the global level, or more than 900 million people would be at risk of losing their hearing senses by the year 2050.1) WHO data reports that 16% of hearing loss in adults is due to occupational noise exposure. The incidence rate will continue to increase, especially on

developing countries.2)

Noisy is an unwanted sound with various negative effects. Noise can cause health problems in the form of noise induced hearing loss (NIHL). The NIHL description of the audio inspection in the form of a notch at a frequency of 4000 Hz and 6000 Hz was first discovered by Fowler in 1939.3 One work environment that can cause noise is at the airport. At the airport we can find noise that is quite loud especially in the ground handling section. This noise comes from the sound of the aircraft engine.

The Indonesian Government through the Ministry of Labor and Transmigration has set a maximum threshold value of 85 dB (A) for the exposure time of 8 hours a day and 40

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

hours a week. This is in accordance with the Ministry of Labor and Transmigration of the Republic of Indonesia Regulations number 13/MEN/X/2011 concerning the threshold value of physical factors and chemical factors in the workplace. If workers in the ground handling section are exposed to noise continuously, then it is possible that the worker will experience hearing loss.⁴⁾

This study aims to provide an overview of the profile of hearing loss in ground handling workers at Juanda Airport Surabaya.

Subjects and Method

Type of research is a descriptive study with a cross sectional approach, datas were collected at 89 ground handling workers at Juanda Airport in Surabaya. The inclusion criteria include subject agreed to be research sample by filling out informed consent, aged between 20-60 years, working period of more than 2 years, good health condition and not in a state of illness. Exclusion criteria include subject had a middle ear infection or other ear disease that causes hearing loss, anatomical abnormalities or tumors in the ear, nose and throat area. Subjects were selected by random sampling technique among 215 ground handling workers at Juanda airport. Independent variable in this study is noise level at the working areas Juanda airport, while dependent variable is the hearing threshold of ground handling workers at Juanda airport Surabaya. This study has been validated for ethical clearance at Faculty of Medicine Universitas Airlangga with Institutional Review Board No. 245/EC/KEPK/FKUA/2018.

The research instrument used was Benetech GM 1356 sound level meter (Shenzhen Jumaoyuan Science and Technology Co., Ltd, shenzhen, China), GSI Arrow Audiometer (Grason Stadler, Eden Prairie, MN, USA), Biologic AudX Pro II-e3 DPOAE (Natus Medical Incorporated, Mundelein, IL, USA), and questionnaires. This research was conducted on October 2018 at the Juanda airport apron in Surabaya, inside 2nd floor building with noise level measurement results below 40 dB. Research procedures included the selection of research subjects according to inclusion and exclusion criteria then the samples were managed based on complete history, ENT clinical examination, pure tone audiometry and distortion product otoacoustic emission (DPOAE) examination. Noise level measurement was carried out at several points of the working areas at airport apron. The datas collected were grouped and presented in tables. The results were analyzed

by IBM Corp., version 23 for Windows (Armonk, NY, USA). Chi-square test were used for the assessment of level of significance.

Results

Data on research subjects were divided based on a certain range. From the data, the majority of the research subjects were between 40–49 years old, there were 31 subjects (34.83%). From these data, the mean value is 41.01 (Standard deviation±10.39). Based on Table 1, it can be seen that in the age range of 20–29 years, the age range of 30–39 years, and the age range of 40–49 years, the most are workers with normal hearing, whereas in the age range of 50–59 years more hearing loss occurs bilateral type (13.48%). Unilateral and bilateral hearing loss most occur at the age of 50–59 years (19.10%), followed by age 40–49 years (17.98%). There are differences in the distribution of hearing loss based on age with level of significance (p=0.02).

Based on the data of the subjects in this study, the gender of the research subjects was mostly dominated by men, namely as many as 77 subjects (86.52%), while the female subjects in this study were 12 people (13.48%). The gender ratio of male and female subjects in this study was 6.4:1. The percentage of subjects who experienced hearing loss based on male compared to women was 50%:53.24%. There is no difference in the distribution of hearing loss based on gender with level of significance (p=0.83) (Table 2).

The data shows that the subjects in this study had a majori-

Table 1. Distribution of hearing loss based on age according to the ear affected

Both normal	Unilateral	Bilateral	Total
11 (12.36)	3 (3.37)	3 (3.37)	17 (19.10)
11 (12.36)	5 (5.62)	3 (3.37)	19 (21.35)
15 (16.85)	5 (5.62)	11 (12.36)	31 (34.83)
5 (5.62)	5 (5.62)		22 (24.72)
42 (4719)	18 (20.23)		89 (100)
	11 (12.36) 11 (12.36) 15 (16.85) 5 (5.62) 42 (4719)	11 (12.36) 3 (3.37) 11 (12.36) 5 (5.62) 15 (16.85) 5 (5.62) 5 (5.62) 5 (5.62)	11 (12.36) 3 (3.37) 3 (3.37) 11 (12.36) 5 (5.62) 3 (3.37) 15 (16.85) 5 (5.62) 11 (12.36) 5 (5.62) 5 (5.62) 12 (13.48) 42 (4719) 18 (20.23) 29 (32.58)

Variables are presented as number (percentage). p=0.02

Table 2. Distribution of hearing loss based on gender according to the ear affected

Gender	Both ears normal	Unilateral	Bilateral	Total
Male	36 (40.45)	15 (16.86)	26 (29.21)	77 (86.52)
Female	6 (6.74)	3 (3.37)	3 (3.37)	12 (13.48)
Total	42 (47.19)	18 (20.23)	29 (32.58)	89 (100)

Variables are presented as number (percentage). p=0.83

ty of their working period between 7–11 years, namely as many as 25 people (28.09%). Subjects whose working period is between 2–6 years are 24 people (26.96%). Subjects whose working period was 17–21 were 17 people (19.10%). Subjects whose work period was ≥22 years were also 17 people (19.10%). And as many as 6 people (6.75%) have worked for 12–16 years. Unilateral and bilateral hearing loss most occur in workers with a work period of 17–21 years (76%). There are differences in the distribution of hearing loss based on

Table 3. Distribution of hearing loss based on working periode to the ear affected

Working Periode (years)	Both ears normal	Unilateral	Bilateral	Total
2-6	15 (16.86)	4 (4.49)	5 (5.62)	24 (26.96)
7 –11	14 (15.73)	5 (5.62)	6 (6.74)	25 (28.09)
12-16	3 (3.37)	2 (2.25)	1 (1.12)	6 (6.75)
17-21	4 (4.49)	3 (3.37)	10 (11.24)	17 (19.10)
≥22	6 (6.74)	4 (4.49)	7 (7.87)	17 (19.10)
Total	42 (47.19)	18 (20.22)	29 (32.59)	89 (100)

Variables are presented as number (percentage). p=0.01

Table 4. Distribution of hearing loss based on the use of ear protectors to the ear affected

Ear protectors usage	Both ears normal	Unilateral	Bilateral	Total
Yes	23 (25.84)	5 (5.62)	15 (16.85)	43 (48.31)
No	19 (21.35)	13 (14.61)	14 (15.73)	46 (51.69)
Total	42 (47.19)	18 (20.23)	29 (32.58)	89 (100)

Variables are presented as number (percentage). p=0.15

working periode with level of significance (p=0.01) (Table 3).

From the data, it was found that from 89 subjects in this study, 46 people (51.69%) did not use ear protectors (EP) in the form of ear plug/ear muff, and 43 (48.31%) used ear protection devices in the form of ear plug/ear muff. The percentage of workers who experience hearing loss between those using EP compared with those who do not or rarely use EP is 22.47%:30.34%. There is no difference in the distribution of hearing loss based on the use of ear protectors with level of significance (p=0.15) (Table 4).

The working area is divided into 5 areas with the results of measurement with sound level meters. The results are mean or average noise in each area as shown in Table 5. Each of working area is further divided into several sections of work. The data shows that the subjects in this study mostly worked on the silver ramp section as many as 18 people (20.23%) and also on the apron services section with a total of 18 research subjects (20.23%). The percentage of workers who experience the most unilateral and bilateral hearing loss is in area II (export-import) which is 68%. While the percentage of workers who experienced the least impaired hearing was in area I (Administration), which was 44%. There are no differences in the distribution of hearing loss based on working area in the airport apron with significance level (p=0.74).

The data in Table 6 shows 47 workers (52.81%) with DPOAE refer results. The data in Table 7 shows that workers with DPOAE refer got 17 workers (19.11%) experiencing

Table 5. Distribution of hearing loss based on working area, working section to the ear affected

Working area	Working section	Both ears normal	Unilateral	Bilateral	Total
Area I	Human capital	2 (2.25)	0 (0)	0 (0)	2 (2.25)
administration (\pm 57.8 dB)	Finance & accounting	0 (0)	1 (1.12)	0 (0)	1 (1.12)
	Ground station	0 (0)	1 (1.12)	0 (0)	1 (1.12)
	General Affair services & procurement	3 (2.25)	0 (0)	2 (3.37)	5 (5.62)
Area II	Control cargo	0 (0)	2 (2.25)	0 (0)	2 (2.25)
export-import (\pm 66.2 dB)	Import cargo	1 (1.12)	1 (1.12)	2 (2.25)	4 (4.49)
	Porter	1 (1.12)	2 (3.37)	2 (2.25)	5 (5.62)
<u>:</u>	Export cargo	4 (4.49)	1 (1.12)	3 (3.37)	8 (8.99)
Area III	Check in & gate silver	0 (0)	1 (1.12)	0 (0)	1 (1.12)
passengers coordinator	Passenger services	2 (2.25)	2 (2.25)	0 (0)	4 (4.49)
(±70.5 dB)	Avsec	7 (7.87)	0 (0)	5 (5.62)	12 (13.48)
Area IV	Load master	1 (1.12)	0 (0)	0 (0)	1 (1.12)
luggage supervisor (±73.1 dB)	Ground support equipment & maintenance services	2 (4.49)	2 (0)	3 (3.37)	7 (7.87)
Area V	Apron services	10 (11.24)	3 (3.37)	5 (5.62)	18 (20.23)
aircraft coordinator (±83.7 dB)	Ramp silver	8 (8.99)	4 (4.49)	6 (6.74)	18 (20.23)
[otal		42 (47.19)	18 (20.23)	29 (32.58)	89 (100)

Variables are presented as number (percentage). p=0.74

SNHL and 30 workers (33.7%) experiencing noise induced hearing loss (NIHL). Workers who experienced NIHL as many as 9 workers in the right ear (10.11%), 9 workers in the left ear (10.11%) and 12 workers in both ears (13.48%). There is no difference in the distribution of hearing loss based on DPOAE and pure tone audiometry (PTA) results with significance level (p=0.051). SNHL determined from DPOAE refer result and PTA result where air conduction and bone conduction are more than 25 dB and no air bone gap. While NIHL determined from PTA result where there is notch at high frequency 4000 Hz and 6000 Hz (Table 7). In this study we didn't measured the average hearing thresholds in subjects.

Discussion

In this study, the age of the research subjects who experienced the most hearing loss was in the age range of 50-59 years, then followed by the age range of 40-49 years. Statistical analysis shows significant differences in the distribution of hearing loss based on age. This is in line with research conducted by Rahayu and Pawenang⁵⁾ which shows that the age of ≥40 years is the age at risk of hearing loss and variables that have a significant relationship with the incidence of hearing loss are age variables. Smedje, et al.,⁶⁾ in his study concluded that hearing ability decreases with increasing age.

In this study it was found that out of a total of 89 research subjects, the number of subjects with male sex was more than women. However, there is no difference in the distribution of hearing loss based on gender. WHO data in 2011 showed that the male population experienced more hearing loss than women with a ratio of 56%:44%.¹⁾

In this study workers who experience the most hearing loss

Table 6. Distribution of hearing loss based on DPOAE

DPOAE	Pass	Re	fer		
DIOAL	rass	Unilateral	Bilateral	— Total	
Total	42 (47.19)	18 (20.23)	29 (32.58)	89 (100)	
Variables	are presente	d as number (r	percentage)	DPOAE: die	

Variables are presented as number (percentage). DPOAE: distortion product otoacoustic emission

Table 7. Distribution of hearing loss based on pure tone audiometry

Audiogram	Normal SNU		NIHL			
Audiogram Norma	NOITIGI	Right ea	Left ear	Bilateral	- Total	
Total	42 (47.19)	17 (19.11)	9 (10.11)	9 '(10.11)	12 (13.48)	89 (100)

Variables are presented as number (percentage), p=0.051. SNHL: sensory-neural hearing loss, NIHL: noise induced hearing loss

in workers with a working period of 17-21 years. Statistical analysis shows there are differences in the distribution of hearing loss based on working periode. This is also in line with the theory delivered by Bashiruddin, namely that the longer a person is exposed to noise, the person is more susceptible to hearing loss. Workers who have or are working in a noisy environment for a long period of time, namely 5 years or more. These results are also in accordance with the research conducted by Tantana⁸⁾ shows that the factors significantly influenced is the exposure period. There is correlation between working periode and hearing loss due to ears exposed to noise. An increase in hearing threshold at first occurs temporarily (temporary threshold shift), but over time the ears no longer feel disturbed because there has been an increase in the hearing threshold, which is the accumulation of residual deafness from the temporary threshold shift then changes to become permanent.

Ear protectors (EP) provided by the company are uncorded with reduction power of 33 dB. The highest noise intensity at the airport is 93.4 dB at a distance of about 5 meters from the aircraft, so the EP provided is effective in reducing noise to below 85 dB for 8 hours of work hours per day. But in reality on the ground there are still many workers who have not used EP while working because they feel uncomfortable. In this study, workers who rarely or did not use EP had more hearing loss than those who used EP. However, from statistical analysis, there is no difference in the distribution of hearing loss based on the use of EP. Previous research by Hong, et al., 9 shows that workers using EP continuously experience fewer hearing problems than workers who rarely or do not use EP.

In this study, most research subjects worked in the silver ramp and apron services section. The workers who experience the most hearing loss are in the export-import cargo area, and the least experienced hearing loss is in the administration area. However, statistical analysis shows no differences in the distribution of hearing loss based on working area in the airport apron. Previous research by Kawatu, et al., 10 namely mild hearing loss in groung handling workers of 53.30% in the right ear, 30% in the left ear, while in the administration only 10% in both ears.

The results of the study obtained 47 workers (52.81%) with the results of the DPOAE refer. Of these, 17 workers (19.11%) and those who experienced NIHL were 30 workers (33.7%). Workers who experienced NIHL were 9 workers in the right ear (10.11%), 9 workers in the left ear (10.11%) and 12 workers in both ears (13.48%). In this study there is no difference in the distribution of hearing loss based on DPOAE and PTA re-

sults. This result in accordance with the study by Manyakori, et al., 11) concluded that DPOAE and audiometry examinations did not make a significant difference in detecting hearing loss due to noise (NIHL).

The results of research from 89 research subjects, as many as 47 (52.81%) workers with DPOAE refer examination results. A total of 30 people (33.7%) of whom suffered from NHL 9 in the right ear (10.11%), 9 in the left ear (10.11%) and 12 in the right-left ear (13.48%). Further research with larger samples is needed to get more complete and good results. The hearing loss conservation program needs to be implemented immediately in the work environment of Juanda airport in Surabaya.

ORCID

Nyilo Purnami

https://orcid.org/0000-0002-2090-0992

Author Contribution

Conceptualization: Citra Dwi Novastuti, Nyilo Purnami, Nugraenny Affianti. Data curation: Citra Dwi Novastuti. Formal analysis: Nyilo Purnami. Funding acquisition: Citra Dwi Novastuti. Investigation: Nyilo Purnami. Methodology: Citra Dwi Novastuti, Nugraenny Affianti. Project administration: Citra Dwi Novastuti, Nugraenny Affianti. Resources: Citra Dwi Novastuti, Nugraenny Affianti. Software: Nugraenny Affianti. Supervision: Nyilo Purnami. Validation: Citra Dwi Novastuti, Nyilo Purnami. Visualizaticn: Citra Dwi Novastuti, Nyilo Purnami, Nugraenny Affianti. Writing—original draft: Citra Dwi Novastuti. Writing—review & editing: Nyilo Purnami.

REFERENCES

1) who.int [homepage on the Internet]. Deafness and hearing loss.

- Geneva: World Health Organization [cited 2018 Nov 10]. Available from: URL: http://www.who.int/mediacentre/ factsheets/fs300/en/.
- Hong OS, Kerr MJ, Poling GL, Dhar S. Understanding and preventing noise-induced hearing loss. Dis Mon 2013;59(4):110-8.
- Azizi MH. Occupational noise-induced hearing loss. Int J Occup Environ Med 2010;1(3):116-23.
- 4) Iskandar M. Peraturan menteri tenaga kerja dan transmigrasi Republik Indonesia Nomor 13/MEN/X/2011 tentang nilai ambang batas faktor fisika dan faktor kimia di tempat kerja. Jakarta: Ministry of Manpower and Transmigration of The Republic of Indonesia; 2011.
- Rahayu P, Pawenang ET. Faktor yang berhubungan dengan gangguan pendengaran pada pekerja yang terpapar bising di unit spinning di PT. Sinar Pantja Djaja Semarang. Unnes Journal of Public Health 2016;5(2):140-8.
- Smedje G, Lunden M, Gärtner L, Lundgren H, Lindgren T. Hearing status among aircraft maintenance personnel in a commercial airline company. Noise Health 2011;13(54):364-70.
- Bashiruddin J. Program konservasi pendengaran pada pekerja yang terpajan bising industri. Maj Kedokt Indon 2009;59(1):14-9.
- 8) Tantana O. Hubungan Antara Jenis Kelamin, Intensitas Bising dan Masa Paparan dengan Risiko Terjadinya Gangguan Pendengaran Akibat Bising Gamelan Bali Pada Mahasiswa Fakultas Seni Pertunjukan. E-Jurnal Medika Udayana 2014;3(3).
- Hong O, Kerr MJ, Poling GL, Dhar S. Understanding and preventing noise-induced hearing loss. Dis Mon 2013;59(4):110-8.
- 10) Kawatu PAT, Rattu JAM, Tampubolon YD. Perbedaan nilai ambang dengar antara tenaga kerja ground handling dengan pegawai administrasi di bandar udara Sam Ratulangi Manado [dissertation]. Manado: Universitas Sam Ratulang;2012.
- 11) Nyilo P, Serafika Permoni Putri M. The association of reactive oxygen species levels on noise induced hearing loss of high risk workers in Dr. Soetomo General Hospital Surabaya, Indonesia. Indian J Otolaryngol Head Neck Surg 2018;71(1):1-4.

KoMCI Web

KoMCI Journal Web

About

Korean Medical Citation Index

General Search | Cited Reference Search | Journal Browser | Help

Apr

Powered by M Synapse

Journal List > Korean J Otorhinolaryngol-Head Neck Surg

Journal History 0

Korean Journal of Otorhinolaryngology-Head and Neck Surgery: 2009 (v52 n7) to Present pISSN 2092-5859 eISSN 2092-6529

Korean Journal of Otorhinolaryngology-Head and Neck Surgery: 2007 (v50 n7) to 2009 (v52 n6)

pISSN 1225-035X

Korean Journal of Otolaryngology-Head and Neck Surgery: 1958 (v1 n1) to 2007 (v50 n6) pISSN 1225-035X

Korean Journal of Otorhinolaryngology-Head and Neck Surgery: 2009 (v52 n7) to Present

2019					
v62 n1	v62 n2	v62 n3	v62 n4	v62 n5	v62 n6
Jan	Feb	Mar	Apr	May	Jun
v62 n7	v62 n8	v62 n9	v62 n10	v62 n11	v62 n12
Jul	Aug	Sep	Oct	Nov	Dec
2018			19		
v61 n1	v61 n2	v61 n3	v61 n4	v61 n5	v61 n6
Jan	Feb	Mar	Apr	May	Jun
v61 n7	v61 n8	v61 n9	v61 n10	v61 n11	v61 n12
- Jul	Aug	Sep	Oct	Nov	Dec
2017					
v60 n1	v60 n2	v60 n3	v60 n4	v60 n5	v60 =6
Jan	Feb	Mar	Apr	May	v60 n6 Jun
y60 n7	v60 n8	v60 n9	v60 n10	v60 n11	v60 n12
Jul	Aug	Sep	Oct	Nov	Dec
2016					
2016 v59 n1	F0 - 0				
Jan	v59 n2 Feb	v59 n3	v59 n4	v59 n5	v59 n6
	reb	Mar	Apr	May	Jun
v59 n7	v59 n8	v59 n9	v59 n10	v59 n11	v59 n12
Jul	Aug	Sep	Oct	Nov	Dec
2015					
2015 v58 n1					
Jan	v58 n2 Feb	v58 n3	v58 n4	v58 n5	v58 n6
	reb	Mar	Apr	May	Jun
v58 n7	v58 n8	v58 n9	v58 n10	v58 n11	v58 n12
Jul	Aug	Sep	Oct	Nov	Dec
2017				201	
2014 v57 n1	. v E7 n2				
Jan	v57 n2 Feb	v57 n3	v57 n4	v57 n5	v57 n6
		Mar	Apr	May	Jun
v57 n7	v57 n8	v57 n9	v57 n10	v57 n11	v57 n12
Jul	Aug	Sep	Oct	Nov	Dec
2013					
v56 n1	v56 n2	v56 n3	VE6 -4	FC =	22
Jan	Feb	Mar	v56 n4 Apr	v56 n5	v56 n6
V56 -7				May	Jun
v56 n7 Jul	v56 n8 Aug	v56 n9	v56 n10	v56 n11	v56 n12
, Jul	Aug	Sep	Oct	Nov	Dec

2012						
v55 n1	v55 n2	v55 n3	v55 n4	v55 n5		
Jan.	Feb	Mar	Apr	May	v55 n6 Jun	
v55 n7	v55 n8	v55 n9	v55 n10	v55 n11		
Jul	Aug	Sep	Oct	Nov A22 UTT	v55 n12 Dec	
				7,01	Dec	
2011						
v54 n1	v54 n2	v54 n3	v54 n4	v54 n5	v54 n6	
Jan	Feb	Mar	Apr	May	Jun	
v54 n7	v54 n8	v54 n9	v54 n10	v54 n11	v54 n12	
Jul	Aug	Sep	Oct	Nov	Dec	
2010						
2010 v53 n1						
Jan	v53 n2 Feb	v53 n3	v53 n4	v53 n5	v53 n6	
		Mar	Apr	May	Jun	
v53 n7	v53 n8	v53 n9	v53 n10	v53 n11	v53 n12	
Jul	Aug	Sep	Oct	Nov	Dec	
2009		W				
v52 n7	v52 n8	vE2 =0				
Jul	Aug	v52 n9 Sep	v52 n10	v52 n11	v52 n12	
		Зер	Oct	Nov	Dec	
Korean Journ	al of Otoshinal					
n6)	al of Otorhinola	aryngology-He	ad and Neck St	urgery: 2007 (v	50 n7) to 2009	(v52
17						
3000						
2009 v52 n1						
Jan	v52 n2 Feb	v52 n3	v52 n4	v52 n5	v52 n6	
3 7	Teb	Mar	Apr	May	Jun	
2008						
v51 n1	v51 n2	v51 n3	v51 n4	v51 n5		
Jan	Feb	Mar	Apr	May	v51 n6 Jun	
v51 n7	v51 n8	v51 n9	v51 n10	**************************************		
Jul	Aug	Sep	Oct	v51 n11 Nov	v51 n12	
		5582 950. • 61		1404	Dec	
2007						
v50 n7	v50 n8	v50 n9	v50 n10	v50 n11	v50 n12	
Jul	Aug	Sep	Oct	Nov	Dec	
Korean Journa	l of Otolaryngo	logy-Head and	Neck Surgery	: 1958 (v1 n1) t	o 2007 (v50 n6)	
				(,,-	- 2001 (400 110)	r.
2007						
v50 n1	v50 n2	v50 n3	v50 n4	vE0 ~E		
Jan	Feb	Mar	Apr	v50 n5 May	v50 n6 Jun	
			,	· idy	3011	
2006						
v49 n1	v49 n2	v49 n3	v49 n4	v49 n5	v49 n6	
Jan	Feb	Mar	Apr	May	Jun	
v49 n7	v49 n8	v49 n9	v49 n10	v49 n11	v49 n12	
Jul	Aug	Sep	Oct	Nov	Dec	
2005						
2005 v48 n1						
Jan	v48 n2 Feb	v48 n3	v48 n4	v48 n5	v48 n6	
		Mar	Apr	May	Jun	
v48 n7 Jul	v48 n8	v48 n9	v48 n10	v48 n11	v48 n12	
Jui	Aug	Sep	Oct	Nov	Dec	
2004						
200 4 v47 n1	v47 n2	v47 = 2		50 <u>0</u> 000 1000		
Jan	Feb	v47 n3 Mar	v47 n4 Apr	v47 n5	v47 n6	
<i>6</i> ∨47 n7	v47 n8			May	Jun	

v47 n7

Jul

v47 n8

Aug

v47 n9

Sep

v47 n10

Oct

v47 n11

Nov

v47 n12

Dec

KoMCI.org

v46 n1 Jan	v46 n2 Feb	v46 n3 Mar	v46 n4 Apr	v46 n5 May	v46 n6 Jun
v46 n7	v46 n8	v46 n9	v46 n10	v46 n11	v46 n12
Jul	Aug	Sep	Oct	Nov	Dec
2002					
v45 n1	v45 n2	v45 n3	v45 n4	v45 n5	v45 n6
Jan	Feb	Mar	Apr	May	Jun
√ 45 n7	v45 n8	v45 n9	v45 n10	v45 n11	v45 n12
Jul	Aug	Sep	Oct	Nov	Dec
2001					
v44 n1	v44 n2	v44 n3	v44 n4	v44 n5	v44 n6
Jan	Feb	Mar	Apr	May	Jun
v44 n7	v44 n8	v44 n9	v44 n10	v44 n11	v44 n12
Jul	Aug	Sep	Oct	Nov	Dec
*					
2000					
v43 n1	v43 n2	v43 n3	v43 n4	v43 n5	v43 n6
Jan	Feb	Mar	Apr	May	Jun
v43 n7	v43 n8	v43 n9	v43 n10	v43 n11	v43 n12
Jul	Aug	Sep	Oct	Nov	Dec