Comparison of Detection of Epidermal Growth Factor Receptor (EGFR) Gene Mutation in Peripheral Blood Plasma (Liquid Biopsy) with Cytological Specimens in Lung Adenocarcinoma Patients

Laksmi Wulandari, Gatot Soegiarto, Anna Febriani, Farah Fatmawati & Sahrun

Indian Journal of Surgical Oncology
ISSN 0975-7651

Indian J Surg Oncol
DOI 10.1007/s13193-020-01046-1
Your article is protected by copyright and all rights are held exclusively by Indian Association of Surgical Oncology. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer’s website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
Indian Journal of Surgical Oncology

The Indian Journal of Surgical Oncology is the official publication of the Indian Association of Surgical Oncology. This Journal is founded to promote and encourage development and advancement of Surgical Oncology and allied specialties in India and also to provide a platform for the fellow surgeons to show-case their work at the global level. It publishes full-length papers, reviews, and other articles of academic interest on all aspects of Oncological Research. — show all

Editor-in-Chief
K S Gopinath

Publishing model
Hybrid (Transformative Journal). How to publish with us, including Open Access

105 days
Submission to first decision

61,808 (2021)
Downloads

Latest issue
Pelvic Exenteration for Locally Advanced Rectal Cancer: an Initial Experience from North-east India
Gaurav Das, Ashutosh Sahewalla ... Lopamudra Kakoti
Original Article | Published: 04 March 2022

Advanced Autologous Lower Dermal Sling Technique for Immediate Breast Reconstruction Surgery in Small and Non-ptotic Breasts
Chaitanyanand B. Koppiker, Aijaz Ul Noor ... Nutan Gangurde
Original Article | Published: 04 March 2022

“Impact of Preoperative Biliary Drainage in Patients Undergoing Pancreaticoduodenectomy” — a Prospective Comparative Study from a Tertiary Care Centre in India
Santhosh Irrinki, Kailash Kurdia ... Thakur Deen Yadav
Original Article | Published: 04 March 2022

Clinical Profile and Survival Outcome of Endometrial Cancer with p53 Mutation
Anila Tresa, Suchetha Sambasivan ... Aswin Kumar
Secondary and Quaternary Delays in the Diagnosis of Breast Cancer: Are the Physicians Responsible too?

Soumen Das, Radha Raman Mondal & Abhimanyu Basu

Original Article | Published: 03 March 2022

This journal has 11 open access articles

View all articles
About this journal

Electronic ISSN Print ISSN
0976-6952 0975-7651

Co-Publisher information
Indian Association of Surgical Oncology

Abstracted and indexed in
CLOCKSS
CNKI
CNPIEC
Dimensions
EBSCO Discovery Service
EMBASE
EMCare
Emerging Sources Citation Index
Google Scholar
INIS Atomindex
Japanese Science and Technology Agency (JST)
Naver
Norwegian Register for Scientific Journals and Series
OCLC WorldCat Discovery Service
Portico
ProQuest-ExLibris Primo
ProQuest-ExLibris Summon
PubMedCentral
Reaxys
SCImago
SCOPUS
Semantic Scholar
TD Net Discovery Service
UGC-CARE List (India)

Copyright information
Rights and permissions
Springer policies
© Indian Association of Surgical Oncology
Editors

Chairman/ Editor

Prof. K.S. Gopinath,

Director HCG, Bangalore Institute of Oncology

44/45, 2nd Cross, Raja Ram Mohan Roy Extension,

Off K.H. Double Road.

Bangalore – 560027, Karnataka, India.

President IASO

Dr. Arnab Gupta

Medical Director,

Prof. Department of Surgical Oncology,
Saroj Gupta Cancer Centre & Research Institute,
Thakurpukur, Kolkata

Immediate past president

Dr. Dhairyasheel Sawant

Consultant Surgical Oncologist,

Asian Institute of Oncology,

Off Easter Express Highway, Behind Everard Nagar

Somaiya Ayurvihar, Sion(East), Mumbai, Maharashtra 400022

President Elect IASO

Dr. Rajendra Toprani,

Senior Consultant, Head & Neck Surgical Oncologist,

Director, Aastha Oncology Associates,

Director, HCG Cancer Center,

Ahmedabad.

Vice president

Dr. Prafulla K. Das

Prof of Surgical Oncology,

Regional Cancer Institute, Cuttack, Odisha, INDIA.

Secretary IASO
Dr. Sharad Desai

Mahatma Gandhi Cancer Hospital,
Miraj - 416410.

Treasurer:

Dr. K. Chandra Mohan

Additional Professor
Department of Surgical Oncology
Regional Cancer Centre

Trivandrum 695011
Kerala India

IASO past Secretary

Dr. Rajendra Toprani,

Senior Consultant, Head & Neck Surgical Oncologist,
Director, Aastha Oncology Associates,
Director, HCG Cancer Center,
Ahmedabad.

Editorial secretary

Dr. Asuthosah Chauhan

Consultant Surgical Oncologist,

HCG – SMH, Cancer Institute, New Delhi

IASO EXECUTIVE members 2019 – 2020
Dr. Ramakrishnan

Dr. Sandeep Nayak

East Zone

Dr. Celeb Harris

Dr. Shaikat Gupta

West Zone

Dr. Atul Samaiya

Dr. Sanjay Desai

North Zone

Dr. Naveen Sancheti

Dr. Sandeep Agarwal

IJSO Website in charge

Dr. Shubam Jain,

Max Hospital, Saket, New Delhi

IJSO Executive Editorial council

IJSO Associate editors

Prof. K. Harish,

Prof. of Surgical Oncology

M.S.R Medical College.
Bangalore, India

IJSO joint editors

Prof. Arvind Krishnamurthy
Prof. of Surgery
Adyar Cancer Institute, Chennai

Dr. Narendra Hulikal
Prof & head Surgical Oncology
SVIMS, Tirupathi

Assistant to Associate Editor

Dr. Arvind S Kapali
Assistant Prof. Dept. of Surgical Oncology,
M.S.R. Medical College, Bengaluru

SECTIONAL EDITORS

Gynaconcological Oncology

Dr. D.K. Vijay Kumar
Prof. of Surgical Oncology,
Amritha Institute of Medical Science,
Kochi
Dr. Somesh Chandara –
Consultant, Surgical oncologist
Sterling hospital, Ahmedabad

Thoracic

Dr. Rajesh Mistry
Thoracic Oncologist
Kokilaben hospital
Mumbai

GI Oncology

Dr. Suraj Manjunath –
Surgical Oncologist
Vikaram Hospital, Bangalore

GI Oncology

Dr. Avinash Saklani –
Prof. of Surgical Oncologist,
Tata memorial Hospital,
Mumbai

Peritoneal Surface

Dr. Aditi Bhatt
Surgical Oncologist,

Zydus Hospital,

Ahmadabad

Breast

Dr. Vani Paramar –

Professor, Surgical Oncology,

Research and Education in Cancer (ACTREC),

Tata Memorial Centre

Kharghar, Navi Mumbai,

Maharashtra 410210

Bone & Soft tissues

Dr. Anand Raja

Prof. Surgical Oncology

Adiyar Cancer Institute

Chennai

NATIONAL ADVISORY COMMITTEE

Dr. D.D. Patel

Shaleen Complex,

Near Gh 5 circle, Sector 22,

17/22 Bus stop, Gandhi Nagar
Dr. Sanjay Sharma

Director, & prof surgical oncology,
Asian cancer institute,

Off Easter Express Highway, Behind Everard Nagar

Somaiya Ayurvihar, Sion(East), Mumbai, Maharashtra 400022

Dr. Anil D Cruz,

Director Tata Memorial Hospital

Professor & Surgeon

Chief Head Neck Services

Tata Memorial Hospital

Parel Mumbai 400012

Dr. S. P. Somashekar,

Manipal Hospital,

Bangalore

Dr. Sanjeev Misra,

Director,

AIIMS, Jodhpur , Rajasthan

Dr. G. K. Rath
Director, IRCH & NCI New Delhi

INTERNATIONAL ADVISORY COMMITTEE

Dr. Graham Poston
Royal Liverpool University Hospital,
Department of Surgery,
Greenbank Road, Liverpool, England,
Liverpool, UK.
L18 1HQ Tel: Work 0151 733 7123

Dr. Ashok Shaha
Chaiman – Head and Neck Services
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10065

Dr. Hang Wang Yang
Department of Surgery, Seoul National University
College of Medicine
101 Daehak-no, Jongno-gu, Seoul 03080 KOREA

Prof. Kazuhiro Yoshida M.D., Ph.D.
Professor, Department of Surgical Oncology
Graduate School of Medicine, Gifu University, Japan.
Prof. Nam Kyu Kim

Department of Surgery,

Yonsei University College of Medicine,

50 Yonsei-ro Seodaemun-gu,

Seoul 03722, Korea

Dr. Ashuthosh Kotari,

Guys Hospital, UK

Prof. Ismail Jatoi, USA

Dale H. Dorn Chair in Surgery

Professor and Chief, Division of Surgical Oncology and Endocrine Surgery

University of Texas Health Science Center

7703 Floyd Curl Drive, Mail Code 7738

San Antonio, Texas 78229

USA

Dr. Sai Yendamuri, USA

Associate Professor,

Department of Thoracic Oncology,

Director, Thoracic Surgery Research Laboratory, Roswell Park Cancer Institute.

Dr. Chandra Are.
Jerald L & Carolynn J Varner Professor Surgical Oncology & Global Health
Associate Dean Graduate Medical Education (DIO)
Vice Chair Education Department of Surgery
University of Nebraska Medical Center
Omaha, NE. 68198

Dr. Christopher Booth

Professor of Medical Oncology
Canada Research Chair in Population Cancer Care
Queen's University
Kingston, Canada

Dr. David Rew

Consultant Surgeon,

University Hospital of Southampton UK

Dr. Donald Weaver

Dept of Surgery

3990 John R

Detroit, Michigan 48201

USA

IJSO EDITORIAL BOARD

Dr. M.Vijay Kumar

Vice Chancellor, Yenepoya University,
Vice President, OSTOMATES INDIA

Past President, Indian Association of Surgical Oncology (2015),

Former Director,

Kidwai Memorial Institute of Oncology,

Bangalore

Dr. Ravikanth,

Director, AIIMS, Rishikesh

Dr. Arunchaturvedi

Prof. of Surgical Oncology
King George medical Hospital,

Lucknow (India)

Dr. Subramanneshwar Rao

Medical Director & Chief Surgical Oncologist

Basavataramakam Indo American Cancer Hospital & Research Centre

Road no.14, Banjara Hills

Hyderabad 500034

Telangana, INDIA

Dr. Satheesan.P
Dr. Raman Deshpande,

Chairman ICC 2021

Asian Cancer Institute,

Mumbai, India.
Volume 12, supplement issue 1, April 2021

Supplement 1 on Molecular Oncology

31 articles in this issue

V Shanta - Tribute to the Legend and a Saint
K. Harish & K. S. Gopinath
Obituary Published: 06 March 2021 Pages: 1 - 6

Molecular Biology in the Breast Clinics—Current status and future perspectives
Vani Parmar, Nita S Nair ... Garvit Chitkara
Review Article Published: 10 August 2019 Pages: 7 - 20

CanAssist Breast Impacting Clinical Treatment
Decisions in Early-Stage HR+ Breast Cancer
Patients: Indian Scenario
Genetic Counseling Clinic at AIIMS (New Delhi)
Dhritiman Maitra, Payal Manek ... Anurag Srivastava
Original Article | Published: 04 April 2020 | Pages: 30 - 33

Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies
Sanjoy Das, Bireswar Bhattacharya ... Kishan Paul
Original Article | Published: 19 August 2019 | Pages: 34 - 45

TRF2 Overexpression at the Surgical Resection Margin: A Potential Predictive Biomarker in Oral Squamous Cell Carcinoma for Recurrence
Madhabananda Kar, Mahesh Sultania ... Birendranath Banerjee
Original Article | Published: 19 February 2020 | Pages: 46 - 51

microRNAs: New-Age Panacea in Cancer Therapeutics
Neelanjana Sarkar & Arun Kumar
Review Article | Published: 06 June 2020 | Pages: 52 - 56

Molecular Oncology of Gall Bladder Cancer
Arun Chaturvedi, Vijay Kumar & Sameer Gupta
Review Article | Published: 16 November 2019 | Pages: 57 - 64
Comparison of Detection of Epidermal Growth Factor Receptor (EGFR) Gene Mutation in Peripheral Blood Plasma (Liquid Biopsy) with Cytological Specimens in Lung Adenocarcinoma Patients
Laksmi Wulandari, Gatot Soegiarto ... Sahrun
Original Article | Published: 05 February 2020 | Pages: 65 - 71

GATA-3 Expression in all Grades and Different Variants of Primary and Metastatic Urothelial Carcinoma
Meenatai Naik, B. Vishal Rao ... Sundaram Challa
Original Article | Published: 18 January 2020 | Pages: 72 - 78

Role of CAIX Expression in Conventional Renal Cell Carcinomas as a Diagnostic Marker and its Prognostic Importance
Kavitha Ramachandran, Bindhu M.R ... Appu Thomas
Original Article | Published: 20 July 2020 | Pages: 79 - 84

mRNA Expression Analysis of E-Cadherin, VEGF, and MMPs in Gastric Cancer: a Pilot Study
Puneet Kumar, Arun Sebastian ... Gopekswar Narayan
Original Article | Published: 22 May 2020 | Pages: 85 - 92

Neuropeptide Substance P Enhances Inflammation-Mediated Tumor Signaling Pathways and Migration and Proliferation of Head and Neck Cancers
Sumeet Singh, Subhashree Kumaravel ... Sanjukta Chakraborty
Molecular Signatures of Gynecological Cancers: Clinicians Perspective
TS Shylasree, Bansal Richa ... Seema Gulia
Review Article | Published: 02 February 2021 | Pages: 103 - 110

Analysis of SET and MYND Domain-Containing Protein 3 (SMYD3) Expression in Gallbladder Cancer: a Pilot Study
Pushkar Chandra, Ruhi Dixit ... Vijay Kumar Shukla
Original Article | Published: 11 July 2020 | Pages: 111 - 117

Pancreatic Cancer Immuno-oncology in the Era of Precision Medicine
Samarth Hegde
Review Article | Published: 25 August 2020 | Pages: 118 - 127

β-Catenin—a Possible Prognostic Molecular Marker for Recurrence in Histopathologically Negative Surgical Margin of Oral Cancer
Madhabananda Kar, Mahesh Sultania ... Birendranath Banerjee
Original Article | Published: 11 October 2020 | Pages: 128 - 133

Negative Prognostic Implication of TERT Promoter Mutations in Human Papillomavirus–Negative Tonsillar Squamous Cell Carcinoma Under the New 8th AJCC Staging System
Hyunchul Kim, Mi Jung Kwon ... Hyo Jung Kim
Expression of PDL1 and Her2neu in Gastric and Gastroesophageal Junction Adenocarcinoma

Animesh Saurabh, Vandana Raphael ... Umesh Das

Prevalence of Molecular Subtypes of Breast Cancer in India: a Systematic Review and Meta-analysis

Pavan Kumar Jonnada, Cherukuru Sushma ... Anvesh Dharanikota

Clinical and Histopathological Correlation of p16 and p53 Expression in Oral Cancer

Varun Kumar Agarwal, Rohit Sharma ... Amiy Arnav

Molecular Oncology in Management of Colorectal Cancer

Ramraj Nagendra Gupta Vemala, Sanjeev Vasudev Katti ... Govind Nandakumar

Bilateral Primary Ovarian Clear Cell Carcinoma in an Iranian Woman: a Case Report

Fatemeh Samiee-Rad, Mahdi Ghaebi & Arezoo Bajelan
Functional Malignant Retroperitoneal Paraganglioma with Liver Metastasis: a Rare Case Report
Sachin S. Kadam, Sujai Hegde ... Tejaswini Kadam
Case Report | Published: 05 January 2021
Pages: 186 - 192

Solitary Pancreatic Head Metastasis from Ductal Carcinoma of Breast: A Case Report
Parag Ingle, Pravin Khandare ... Ajay Mehta
Case Report | Published: 03 February 2021
Pages: 193 - 196

Dural Metastasis from Breast Carcinoma Mimicking Sub-acute Subdural Hematoma: a Case Report
Alejandro Augusto Ortega Rodriguez, Macarena Centeno Haro ... Jordi de Manuel-Rimbau Muñoz
Case Report | Published: 01 February 2021
Pages: 197 - 200

A Rare Case of Epithelioid Myofibroblastoma of Breast Mimicking Lobular Carcinoma on Trucut Biopsy: a Diagnostic Pitfall and Literature Review
Amrita Talwar, Swasti Jain ... Purnima Paliwal
Case Report | Published: 02 March 2021
Pages: 201 - 204

Liposarcoma of the Parapharyngeal Space: a Rare

S. P. Somashekhar, Rudra Acharya ... Amab Gupta

Review Article | Published: 18 November 2020 | Pages: 210 - 220

Lymphangioma of Pancreas Masquerading as a Pancreatic Cystic Neoplasm

Munita Bal, Komal Kathuria ... Shailesh V. Shrikhande

Case Report | Published: 12 March 2021 | Pages: 221 - 223

Sebaceous Cell Carcinoma of the Lower Eyelid in an Elderly Male: a Rare Case Report and Review of Literature

Sachin S. Kadam, Tejaswini Kadam ... Sanjay M. H.

Case Report | Published: 23 March 2021 | Pages: 224 - 227

For authors

https://link.springer.com/journal/13193/volumes-and-issues/12-1/supplement
Comparison of Detection of Epidermal Growth Factor Receptor (EGFR) Gene Mutation in Peripheral Blood Plasma (Liquid Biopsy) with Cytological Specimens in Lung Adenocarcinoma Patients

Laksmi Wulandari1 · Gatot Soegiarto2 · Anna Febriani1 · Farah Fatmawati1 · Sahrun3

Received: 30 April 2019 / Accepted: 27 January 2020
© Indian Association of Surgical Oncology 2020

Abstract
The ctDNA plasma testing is one of the methods to examine biomarkers for lung adenocarcinoma in order to detect a mutation of epidermal growth factor receptor (EGFR) gene. The advantages of ctDNA testing over tissue biopsy and lung tumor cytology include less invasive, faster result, cheaper, and minimum risk of complication for the patient. We analyzed and compare the detection of EGFR mutation in peripheral blood plasma (liquid biopsy) with cytological specimens of patients with lung adenocarcinoma. We conducted ctDNA testing in 124 lung adenocarcinoma patients who visited our hospital from January to December 2018. The ctDNA testing results were compared with the results of EGFR detection from the previous cytological specimen examination. Most of the patients were males, aged 55–59 years, nonsmokers, and had stage IVA lung adenocarcinoma, with most metastasis found in the pleura. We found a correlation between EGFR prevalence with nonsmoking status and patient’s age. The ctDNA plasma testing detected 27.4% common EGFR mutation and 72.6% wild-type EGFR. The figures of EGFR mutation detection from cytological specimens were 47.6% and 52.4%, respectively. Compared to cytological specimens, the EGFR mutation detection in ctDNA had a sensitivity of 48.3%, with a specificity of 90.9%, PPV of 82.35%, NPV of 66.7%, and 70.97% concordance rate. EGFR mutation with cytological specimen examination was more accurate than ctDNA.

Keywords Concordance rate · ctDNA plasma · EGFR mutation · Lung adenocarcinoma

Introduction
Lung cancer is one of the leading causes of cancer death in the world. There are two main types of lung cancer, non-small cell lung cancer (NSCLC) consisted of 80% and small cell lung cancer (SCLC) consisted of 20% of all lung cancer. The NSCLC consisted mostly of adenocarcinoma, followed by squamous cell carcinoma, and large-cell carcinoma. Lung adenocarcinoma is the most common NSCLC type found in the world [1–3].

Lung cancer is the top 3 most common cancer found in Indonesia along with breast cancer and cervical cancer. Lung cancer is a cancer with the highest prevalence in men. Based on data from Dharmais National Cancer Hospital, Jakarta, Indonesia, the prevalence of lung cancer had been increasing from 2010 to 2013, where 117 cases took place in 2010 with 38 deaths, 163 cases in 2011 with 39 deaths, 165 cases in 2012 with 62 deaths, and 173 cases in 2013 with 65 deaths [4].

The incident of lung adenocarcinoma has been increasing as well in Asia and in the USA, particularly in women, young adults, and nonsmokers. The US data showed that lung adenocarcinoma was found in 31–54% of nonsmoker men, higher than
in smoker men (25%–33%), and 49–74% of nonsmoker women, which also higher than in smoker women (33%–43%) [5].

Epidermal growth factor receptor (EGFR) mutation in NSCLC is particularly found in lung adenocarcinoma. It has an important role in the last 10 years as a target for cancer therapy. Advanced NSCLC patients with EGFR activating mutation, i.e., exon 18, exon 19, and exon 21, showed much better response when given EGFR tyrosine kinase inhibitor (TKI) as the treatment compared to standard chemotherapy [6, 7]. This advantage can only be achieved if the adequate materials or samples and tools are available. However, the success of EGFR mutation testing is often hindered by tissue availability, so that the patients often lose the opportunity to get the targeted therapy due to the insufficient tissue for histological or cytological examination.

Current mutation testing can alternatively be conducted with liquid biopsy using EGFR mutation detection from blood plasma. A study of EGFR mutation prevalence taken from tissue and blood conducted by Implementing GeNomics In pracTicE (IGNITE study) was done in Asia-Pacific and Russia and found that EGFR mutation in lung adenocarcinoma tissue was higher in Asia-Pacific than in Russia (49.3% vs. 18%). The study also found a concordance of EGFR mutation testing results between tissue and blood samples of 2581 patients (80.5% concordance rate, 46.5% sensitivity, and 95.6% specificity) [8]. The result is quite convincing, with 95.6% specificity, so that EGFR mutation testing from blood samples can be used as a screening method for NSCLC cases. Studies on this topic have not been conducted widely in Indonesia, particularly in Surabaya. Therefore, we conducted this research to determine the prevalence of EGFR mutation in NSCLC patients of adenocarcinoma histopathology at Dr. Soetomo General Hospital, Surabaya, Indonesia, and to compare the results of EGFR mutation detection in blood plasma samples to the results of cytological samples examination.

Methods

This study was an analytical observational research conducted in 124 consecutive lung adenocarcinoma patients who visited Dr. Soetomo General Hospital, Surabaya, Indonesia, from January to December 2018 (Fig. 1). The inclusion criteria were lung adenocarcinoma patients who had been previously diagnosed with cytological samples, had not received any cancer treatment, and had cytological sample slides that could be analyzed (minimum of 50 cells). Patients who had adenocarcinoma lesions in the lungs as metastases from other organs and having nonrepresentative cytological samples were excluded from this study. All eligible subjects were giving their consent. This study was approved by the Ethic Committee of Dr. Soetomo General Hospital, Surabaya (certificate No. 0209/KEPK/IV/2018).

There were 132 lung cancer patients underwent ctDNA plasma testing at Dr. Soetomo General Hospital, Surabaya, Indonesia, from January-December 2018

8 patients were excluded:
- 5 patients had non-representative sample slides of histopathologic results,
- 3 patients had metastasis of lung adenocarcinoma from other locations
- 1 patient died before ctDNA sampling, therefore only cytologic sample was available

A total of 124 patients met the inclusion criteria

Fig. 1 Flow diagram of subject recruitment

The examination of EGFR mutations status from cytological samples was done in the Pathology Anatomy Laboratory of Dr. Soetomo Hospital. The EGFR examination of cytological samples used the DNA extraction method (GeneAll E5xgene™ Cell SV), real-time quantitative PCR (high-resolution melting analysis) analyzed with LightCyuler 480 II real-time PCR (Roche, Basel, Switzerland), and AmoyDx® EGFR Adx-ARMS® (Amoy Diagnostics, Xiamen, China).

The EGFR mutation detection from patient’s blood plasma specimens was done in Prodia Laboratory, Surabaya, Indonesia. Approximately 10-mL blood sample was withdrawn from each patient, which was then centrifuged into blood plasma, stored in a special frozen container, and transferred to the laboratory. The blood plasma was then analyzed for EGFR mutation using real-time PCR Scorpion-ARMS with therascreen® EGFR plasma RGQ PCR kit (Qiagen, Manchester, UK). The target detections of this examination were exon 19 deletions, T790 M mutation in exon 20, and L858R point mutation. The detection limit was in accordance with the provisions of the corporation. The work steps for DNA extraction and for EGFR mutation detection were done according to the manufacturer’s instruction. This method had been reported previously elsewhere [9]. The results of ctDNA were then compared with the results of EGFR mutation testing from cytological samples.

A diagnostic test was conducted to determine the correlation between EGFR ctDNA results and cytological specimens, in terms of sensitivity and specificity. The concordance rate test was performed to examine the conformity between ctDNA and cytological specimens. Cross-tabulation and logistic regression tests were done to examine the relationship between disease stage, sex, age, and smoking status with the results of EGFR mutations on ctDNA with 95% confidence intervals (CI) and p value < 0.05. Statistical analysis was conducted using IBM SPSS Statistics software version 23.0 (IBM Corp., Armonk, NY, USA).
Results

Subject Characteristics

Most of the subjects were males (58.1%), in the age group of 55–59 years (22.6%). The majority of the study subjects were nonsmokers (51.6%), while 21.0% of them were active smokers (Table 1). Most of smoking subjects were in the age group of 40–49 (15.3%), and the highest number of cigarettes smoked was around 10–19 per day (24.2%).

Most of the study subjects had adenocarcinoma of the right lung (70.2%). The majority of cytological specimens’ examination for the diagnosis of lung adenocarcinoma was taken from lung fine-needle aspiration biopsy (FNAB) which was 59.7%. Most of the patients (66.9%) had stages IVA disease (Table 1). Tumor metastases were found to be diverse; most metastases were in the pleura (52.4%), followed by bone metastases (including vertebral bones, ribs, and other large bones) in 9.7% of the patients. The EGFR mutation was detected in 47.6% of patients from cytological specimens and in 27.4% of patients from ctDNA. The type of EGFR mutation was dominated by the common mutations, i.e., in exon 19 (30.6% in cytological specimens and 19.4% in ctDNA) and exon 21 L858R (14.5% in cytological specimens and 7.3% in ctDNA). The results of EGFR mutation detection by the two methods can be seen in Fig. 2.

Association of Age, Sex, Smoking Status, and Disease Stage on EGFR Mutation Results

The age and the smoking behavior of the study subjects were significantly correlated with EGFR mutations detected in ctDNA ($\beta = 0.220; p = 0.042$ and $\beta = 1.740; p < 0.001$, respectively). There was no significant correlation between sex and the EGFR mutation ($\beta = -0.030; p = 0.961$) as can be seen in Table 2.

The ctDNA detection of EGFR mutation is more likely positive in more advanced stage lung cancer. In other words, subjects with advanced disease stages had the highest probability of EGFR mutations detected in ctDNA. Most of our subjects were in stage IVA lung adenocarcinoma. Positive EGFR mutations were detected in 30.12% (25/83) of stage IVA patients but only in 16.6% (1/6) of stage IIC patients. No ctDNA detection of EGFR mutations was found in patients with stage IIA to IIB diseases (Table 3).

Concordance of ctDNA EGFR Mutation Results and Cytological Specimens

Analysis of concordance of EGFR mutation detection results between liquid biopsy (ctDNA) and cytological specimens was done to obtain the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and concordance rate. Compared to detection in cytological specimens, the EGFR mutation detection in ctDNA had a sensitivity of 48.3%, with a specificity of 90.9%, PPV of 82.35%, NPV of 66.7%, and 70.97% concordance rate (Table 4).

Discussion

Our study showed a good correlation and concordance between EGFR mutation status detected in plasma samples (liquid biopsy) and cytological specimens. Our finding was also in accord with the results of the IGNITE study which also included patients from our hospital [8]. This is of particular interest, because now we can use ctDNA or plasma biopsy to detect EGFR mutations in adenocarcinoma NSCLC patients in whom an adequate tissue sample cannot be obtained.

Most subjects in this study were in the age group of 55–59 years. This finding is consistent with some previous studies which stated that the majority of lung adenocarcinoma patients receiving EGFR-TKI treatment were more than 45 years old with an average of 61.8-year-old [10]. Another study also found that adenocarcinoma patients mostly fell in the age group of 40–49 years [11]. The largest epidemiological study of adenocarcinoma patients in Asia, the PIONEER study, reported that the average age of adenocarcinoma patients in Asia was 60 years old, ranging from 17 to 94 years old [12].

In this study, most subjects were male patients, consistent with the results of a study conducted by The International Agency for Research on Cancer (IARC). IARC reported a high incidence of lung cancer cases in male, particularly in Asia, North America, Middle East, and South Europe, with the incident rate ranging from 48.5 to 56.5 per 100,000 cases [13]. Another study also found that lung adenocarcinoma cancer was mostly (63%) found in males [11]. The ratio of lung adenocarcinoma cancer cases between males and females was 7.4:1 [14].

Smoking is one obvious risk factor for lung cancer. Some research reported that secondhand smoke decreases the function of ciliary epithelial cells. The lung’s physiological ability to expel foreign material would decrease, and it leads to adenocarcinoma in long-term period [15, 16]. In this study, most of our subjects were nonsmokers (51.6%). Our result was in accord with a study which also reported that the majority of female lung adenocarcinoma patients (86.6%) were nonsmokers [17].

In our study, most of the samples for histopathological diagnosis of adenocarcinoma were taken from lung mass (86.8%). Most of them (59.7%) were obtained via fine-needle aspiration biopsy (FNAB) technique. As had been reported in IGNITE study, FNAB was used as sampling technique as much as 51% in Indonesia compared to 40.4% in Thailand [8, 10]. Most subjects in our study were in advanced stage of disease (stage IVA 66.9% and stage IVB 11.3%). Elhidi et al. [10] also reported that most of their patients were diagnosed with stage IV lung adenocarcinoma when they were first brought to health services (44.6% stage IVA and 43.1% stage IVB). Our findings were also consistent with a previous study conducted in India, stating that lung adenocarcinoma patients presented mostly (82%) in stage IV disease at diagnosis [14].

The positive plasma EGFR mutation detected in ctDNA in our study was 27.4%. Other study, the PIONEER study, reported a proportion of positive EGFR mutation of lung adenocarcinoma in seven Asian countries ranging from 22 to 64% [12]. Similar results were also found in a study conducted by Oktaviyanti in Indonesia, which reported that 34% of

Table 2 Association between subject characteristics and EGFR mutation status of ctDNA sample

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>β</th>
<th>p</th>
<th>OR</th>
<th>CI for OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≤ 65 vs > 65</td>
<td>0.220</td>
<td>0.042</td>
<td>1.246</td>
<td>0.415-2.316</td>
</tr>
<tr>
<td>Female vs male</td>
<td>-0.030</td>
<td>0.961</td>
<td>0.970</td>
<td>0.407-4.571</td>
</tr>
<tr>
<td>Nonsmoker vs smoker</td>
<td>1.740</td>
<td>< 0.001</td>
<td>5.698</td>
<td>1.283-5.590</td>
</tr>
</tbody>
</table>

Dependent, EGFR ctDNA
adencarcinoma patients had positive EGFR mutation [11]. The type of EGFR mutations in our study was dominated by common EGFR mutation (97%), consisted of 72.7% mutations in exon 19 and 27.2% mutations in exon 21. Our finding was also consistent with results of study conducted by Pirker et al. [18] and the IGNITE study [8]. Pirker et al. found that EGFR common mutation was around 85–90%, consisted of exon 19 deletion mutations (45%) and L858R exon 21 mutations (40–45%) [18]. Likewise, the IGNITE study on populations in the Asia-Pacific region found EGFR common mutation of 91.2%, consisted of exon 19 deletion mutations (48.7%) and L858R exon 21 mutations (42.5%) [8]. Most of the metastasis in our study was in the pleura (52.4%) which is also consistent with the result of Elhidisi et al., where pleural metastases was the highest frequency of metastatic lesion in lung adenocarcinoma patients at 66.1% [10].

The ctDNA detection of EGFR mutation is more likely positive in more advanced stage lung cancer. In other words, subjects with advanced disease stages had the highest probability of EGFR mutations detected in ctDNA and would be lowest in the early stages. In our study, positive EGFR mutations were detected strongly in stage IVB (57.1%) and stage IVA (30.1%) and were not detected at all in stage I-IIIB. These findings were similar to those reported by Elhidisi et al., who found that most of EGFR mutations in lung adenocarcinoma were detected in advanced stages, i.e., stage IIIB–IV [10]. Plasma samples of patients with lung cancer contained very high DNA when compared to non-cancer patients and would increase especially in the advanced cancer stage. Most circulatory DNA release is believed to originate from cancer cells that die in the primary place or tumor metastasis [19]. Therefore, plasma DNA has proven to be a non-invasive form of genotypic information that can be used to replace tumor tissue in detecting tumor-specific molecular markers. It can also be used to access the therapeutic response and patients’ prognosis [20–22].

The association between tumor stage and the success rate of ctDNA detection has evolved through various recent studies. Those studies reported that ctDNA could be detected in 82–100% of stage IV patients, while only 47% of ctDNA was detected in patients with stage I lung tumors [23]. In our study, only age and smoking status variables had a significant correlation with positive EGFR detections from ctDNA testing. The significance value of nonsmokers was $p < 0.001$, odd ratio $= 5.698$, and R square $= 15.2%$. These results indicated a relationship of smoking status with lung adenocarcinoma EGFR mutation case, but the effect was only 15.2%, with the assumption that the EGFR mutation positivity will increased by 5.698 times greater in nonsmoker patients compared to smoker patients. These findings were consistent with a study conducted by Shigematsu et al., who found that NSCLC patients had more gene mutations in nonsmoker patients (51%), compared to smokers (10%) [24]. Thus, there is no correlation between the occurrence of EGFR mutation and the act of smoking. Patients with positive EGFR mutation will easily develop lung cancer, including the nonsmoker group. This proves that genetic inheritance is more influential than the environment, as also reported by Tsaole et al. [25].

The significance value of age was $p = 0.042$, odd ratio $= 1.246$, and R square was 15.2%. These findings indicated that the age of 65 years could increase EGFR mutation by 1.246 times greater compared to age group less than 65 years, but the effect was only 15.2%. The tendency of the data showed that the older the age, the higher the risk for cancer. A study conducted in 2014 reported that the tendency of smoking patterns according to age also influenced the occurrence of lung cancer. The age group of 50-64 years had the highest gene inactivation in the CDH1 and GSTP1 genes, while the age group

<table>
<thead>
<tr>
<th>CA</th>
<th>Positive EGFR mutation (%) $n = 34$</th>
<th>Wild type (%) $n = 90$</th>
<th>Total (%) $n = 124$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>0 (0.00)</td>
<td>2 (100.00)</td>
<td>2 (1.61)</td>
</tr>
<tr>
<td>IIIB</td>
<td>0 (0.00)</td>
<td>3 (100.00)</td>
<td>3 (2.42)</td>
</tr>
<tr>
<td>IIIA</td>
<td>0 (0.00)</td>
<td>11 (100.00)</td>
<td>11 (8.87)</td>
</tr>
<tr>
<td>IIIB</td>
<td>0 (0.00)</td>
<td>5 (100.00)</td>
<td>5 (4.03)</td>
</tr>
<tr>
<td>IIIC</td>
<td>1 (16.60)</td>
<td>5 (83.33)</td>
<td>6 (4.84)</td>
</tr>
<tr>
<td>IVA</td>
<td>25 (30.12)</td>
<td>58 (69.88)</td>
<td>83 (66.93)</td>
</tr>
<tr>
<td>IVB</td>
<td>8 (57.14)</td>
<td>6 (42.86)</td>
<td>14 (11.29)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CA</th>
<th>Positive EGFR mutation (%) $n = 34$</th>
<th>Wild type (%) $n = 90$</th>
<th>Total (%) $n = 124$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>0 (0.00)</td>
<td>2 (100.00)</td>
<td>2 (1.61)</td>
</tr>
<tr>
<td>IIIB</td>
<td>0 (0.00)</td>
<td>3 (100.00)</td>
<td>3 (2.42)</td>
</tr>
<tr>
<td>IIIA</td>
<td>0 (0.00)</td>
<td>11 (100.00)</td>
<td>11 (8.87)</td>
</tr>
<tr>
<td>IIIB</td>
<td>0 (0.00)</td>
<td>5 (100.00)</td>
<td>5 (4.03)</td>
</tr>
<tr>
<td>IIIC</td>
<td>1 (16.60)</td>
<td>5 (83.33)</td>
<td>6 (4.84)</td>
</tr>
<tr>
<td>IVA</td>
<td>25 (30.12)</td>
<td>58 (69.88)</td>
<td>83 (66.93)</td>
</tr>
<tr>
<td>IVB</td>
<td>8 (57.14)</td>
<td>6 (42.86)</td>
<td>14 (11.29)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Concordance of EGFR mutation status between cytological specimens and ctDNA (plasma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concor dence rate</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>EGFR ctDNA</td>
<td>88/124 (70.97)</td>
</tr>
</tbody>
</table>
of > 70 years had the highest tendency to inactivate the
GTSP1 and RASSF1A genes among other age groups. This
indicates that the age group above 65 years has a higher risk of
developing lung cancer compared to the population less than
65 years of age [26]. A study on cancer incidence in Korea
also showed a tendency that lung cancer occurred in men and
women over 65 years [27].

In our study, compared to detection in cytological speci-
mens, the EGFR mutation detection in ctDNA had a sensitiv-
ity of 48.3%, with a specificity of 90.9%, PPV of 82.35%,
NPV of 66.7%, and 70.97% concordance rate. This finding
was also consistent with the IGNITE study that showed a
concordance rate of 77.7% [8]. Some previous clinical trials
argued that ctDNA detection is an appropriate alternative
method for the determination of EGFR mutation status
[28–30]. In real-life condition, the ASSESS study reported
the use of plasma ctDNA derivatives, and their concordance
values were quite good according to the results of tissue/
cytology samples which is of 89% (with sensitivity of 46%,
specificity of 97%, PPV of 78%, and NPV of 90%) [31]. Some
other recent studies, including two meta-analyses of the con-
cordance of EGFR mutation between plasma and tissue,
showed a high concordance rate even though with somewhat
low sensitivity value of 62–67% [32, 33].

Conclusion

Lung adenocarcinoma patients who underwent EGFR exami-
nation at Dr. Soetomo General Hospital, Surabaya, Indonesia,
were mostly male, in the age range of 55–59 years, and non-
smokers. FNAB was the most common sampling technique
for cytological specimens testing. Most of the specimens were
taken from lung mass. Most of the patients had stage IVA
disease with pleural metastases. The EGFR mutation was
detected in 47.6% of patients from cytological specimens and in
27.4% of patients from ctDNA. The majority of EGFR muta-
tions were in exon 19 and exon 21. EGFR mutation was in-
creasingly detected as the disease stage increased, with the
strongest detection in stage IVB (51.1%). The EGFR mutation
detection in ctDNA had a high concordance rate with cytol-
ogical specimens’ examination and thus had the potential to
be used as an alternative method to determine the EGFR muta-
tion in adenocarcinoma NSCLC patients in whom an adequate
tissue sample cannot be obtained.

Acknowledgements We would like to thank AstraZeneca Indonesia Ltd.
for the support of ctDNA testing.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

References

 Bukan Sel Kecil yang Mendapatkan Inhibitor Tirosin Kinase
 Sebagai Terapi Lini Pertama di RSUD Dr. Universitas Airlangga,
 Surabaya.
 Tobing DL, Soes RS, Paramita D, Syahbudin E, tenda ED, Diana
 ES, Sussma E, Dewi FL, Djia A, Prajogi GB, Iskandar I, Hidayat
 H, Indran PZ, Zaim J, Janjuri KJ, Kadinlal RK, KHPR, Wulandari
 L, Limsawati M, Suhirno N, Lenus B, Soerono NN, Soetantyo
 N, Nohunu SA, Siegner G, Dangala P, Prasenjodhi AP, Pasleyce
 R, Sembiring RE, Ermayanty S, Anggoro SC, Tarigan SP, Andari
 SL, Gondhowiarjo S, Munir SM, Pratiwi SD, Sopo RS, Kota SI, Endardjo
 Pelayanan Kanker Paru. Kementerian Kesehatan Republik
 Indonesia, Jakarta.
 Pedoman nasional untuk diagnosis dan penatalaksanaan di
 Indonesia.
4. Vander Vossen CL, Illei PB, Lin M-T, Estinger DS, Malezi K
 (2014) Molecular alterations in non–small cell lung carcinomas
 1007/s00468-014-2102-x
 EGFR-mutated lung cancer: a paradigm of molecular oncology.
6. Le X, Fried JA, VanderLau PA, Huberman MS, Ranagchari D,
 Jorge SS, Luccaera-Araujo AR, Kobayashi SS, Balasubramaninan S,
 Detection of crizotinib-sensitive small-cell lung carcinomas with
 MET, ALK, and ROS1 genomic alterations via comprehensive
 org/10.1016/j.clc.2015.03.002
 EGFR T790M mutation in lung cancer tissues. APMIS 119(7):
8. Han B, Tjulandin S, Igaiwa K, Normanno N, Wulandari L,
 Ratcliffe MI, McCormack R, Reck M (2017) EGFR mutation
 prevalence in Asia-Pacific and Russian patients with advanced
 NSCLC of adenocarcinoma and non-adenocarcinoma histology: the
 lungcan.2017.08.021
 detection of EGFR-activating mutations in plasma cell-
 free DNA patients with advanced non-small cell lung cancer. J Mol
 004
growth factor receptor Pasien Adenokarsinoma Paru Usia Muda.
 Jurnal Respirologi Indonesia 4(36):244–247
12. Shi Y, Au JS-K, Thongprasert S, Srimivasan S, Tsai C-M, Khoa M1,
 Heeuma K, Ith Y, Comedio G, Yang P-C (2014) A prospective,
 molecular epidemiology study of EGFR mutations in Asian patients
 with advanced non-small-cell lung cancer of adenocarcinoma
 org/10.1097/JTO.00000000000000033

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
KOMITE ETIK PENELITIAN KESEHATAN
RSUD Dr. SOETOMO SURABAYA

KETERANGAN KELAIKAN ETIK
(“ ETHICAL CLEARANCE ”)

0209/KEPK/IV/2018

KOMITE ETIK RSUD Dr. SOETOMO SURABAYA TELAH MEMPELAJARI
SECARA SEKSAMA RANCANGAN PENELITIAN YANG DIUSULKAN, MAKA
DENGAN INI MENYATAKAN BAIWA PENELITIAN DENGAN JUDUL :

“ PROPOSAL PENELITIAN PERBANDINGAN DETEKSI MUTASI
GENE PIDERMAL GROWTHFACTOR RECEPTOR(EGFR)PADA PLASMA
DARAH TERPI (LIQUID BIOPSY) DENGAN HISTOPATOLOGI ANATOMI PADA
PASIENADENOKARSINOMA PARU ”

PENELITI UTAMA : Laksmi Wulandari, dr.,Sp.P(K), FCCP
PENELITI LAIN : 1. Anna Febriansi, dr., Sp.P
2. Farah Fatmawati, dr., S.P
3. Sahrun, dr.

UNIT / LEMBAGA / TEMPAT PENELITIAN : RSUD Dr. Soetomo

DINYATAKAN LAIK ETIK

Berkala dari : 19/04/2018 s.d 19/04/2019
Surabaya, 19 April 2018

KETUA

(Dr. Elizeus Hanindito, dr., Sp.An, KIC.KAP)
NIP. 19511007 197903 1 002

*) Sertifikat ini dinyatakan sah apabila telah mendapatkan stempel asli dari Komite Etik
Indian Journal of Surgical Oncology

Country
India

Subject Area and Category
- Medicine
- Oncology
- Surgery

Publisher
Springer India

H-Index
16

Publication Type
Journals

ISSN
0975-681, 09746912

Coverage
2011-2020

Information
- Homepage
- How to publish in this journal

The Indian Journal of Surgical Oncology aims to encourage and promote clinical and research activities pertaining to Surgical Oncology. It also aims to bring in the concept of multidisciplinary team approach in management of various cancers. The Journal would publish original article, review of technique, review article, case report, letter to editor, profiles of eminent teachers, surgeons and institutions - a short (up to 500 words) of the Cancer Institutions, departments, and oncologist, who founded new departments.

FIND SIMILAR JOURNALS

1. European Journal of Surgical Oncology
 - Similarity: 79%

2. Surgical Oncology
 - Similarity: 78%

3. World Journal of Surgical Oncology
 - Similarity: 78%

4. Journal of Surgical Oncology
 - Similarity: 78%

5. Surgical Oncology Clinics of North America
 - Similarity: 71%

https://www.sciangojr.com/journalsearch.php?q=21100204904&dp=eld&clean=0
Sayed M Elhewedy 10 months ago

Would you please give me the accurate impact factor of the Indian Journal of Surgical Oncology? Thanks

Melanie Ortiz 10 months ago

Dear Sayed, thank you very much for your comment. SCImago Journal and Country Rank uses Scopus data, our impact indicator is the SJR (Check it on our website). We suggest you consult the Journal Citation Report for other indicators (like Impact Factor) within the Web of Science data source. Best regards, SCImago Team

Vijay 2 years ago

I wanted to know the indexing information of Indian Journal of Surgical Oncology

Thanks

Melanie Ortiz 2 years ago

Dear Vijay, Thank you for contacting us.

SJR is a portal with bibliometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request referring to the index status. We suggest you consult Scopus database for the current status of the journal or other databases for further information. You can also check the information in the journal’s website or contact directly with the editorial staff. Best regards, SCImago Team