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SUMMARY: In Indonesia, the highly pathogenic avian influenza A/H5N1 virus has become endemic
and has been linked with direct transmission to humans. From 2013 to 2014, we isolated avian
influenza A/H5N1 and A/H3N6 viruses from poultry in Indonesia. This study aimed EE}eveal their
pathogenicity in mammals using a mouse model. Three of the isolates, Av154 of A/H5N1 clade 2.3.2. 1¢,
Av240 of A/H5N1 clade 2.1.3.2b, and Av39 of A/H3N6, were inoculated into BALB/c mice. To assess
morbidity and mortality, we measured body weight daily and monitored survival for 20 d. Av154- and
Av240-infected mice lost 25% of their starting body weight by day 7, while Av39-infected mice did
not. Most of the Avl54-infected mice died on day 8, while the majority of the Av240 infected mice
survived until day 20. A 50% mouse lethal dose was calculated to be 2.0 x 10' 50% egg infectious
doses for Av154, 1.1 = 10° for Av240 and = 3.2 * 10° for Av39. The Av154 virus was highly virulent
and lethal in mice without prior adaptation, suggesting its high pathogenic potential in mammals. The
Av240 virus was highly virulent but modestly lethal, whereas the Av39 virus was neither virulent nor
lethal. Several mammalian adaptive markers of amino acid residues were associated with the highly
virulent and lethal phenotypes of the Avl54 virus.

Indonesia (4). In February 2014, we isolated a virus

lN@ODUCTION

In Indonesia, the ¥¥8hly pathogenic avian influenza
A/H5NI virus has been endemic in poultry since 2003
and causes sporadic infection in humans (1). [ndonesia
is a country with high cumulative number of human
infections with the virus, recording 200 cases with 168
mortalities from 2003 to 2019, which is the highest
mortality rate in the world (2). Viruses of 15 HA clade
2.1 had been exclusively circulating infEJultry until
2012 in Indonesia. Incursion of viruses of clade 2.3.2.1¢
was reported for the first time in September 2012 (3). In
September 2013, we isolated a virus of clade 2.3.2.1¢c,
Av154, from an outbreak at a murkey farm in East Java,
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of clade 2.1.3.2b, Av240, from an ill chicken at a live
poultry market. To indicate the place of emergence,
the virus of clade 2.1.3.2b was identified as being of
Indonesian lineage since it evolved from clade 2.1
in Indonesia whereas the virus of clade 2.3.2.1c was
identified as being of Eurasian lineaEJince it evolved
in Eurasia. In addition, we isolated an avian influenza
A/H3NG virus, Av39, from a mildly ill duck at a live
poultry market in June 2013 (4). This was the first
isolate of avian influenza A/H3NG virfln Indonesia. A
previous serological study suggested a high prevalence
of subclinical infection with avian influenza A/H5N1
viruses among workers in live poultry markets in
Indonesia; 84% and 34% were positive for antibody
activity against Av154 of Eurasian lineage and Av240
of Indonesian lineage, respectively; none of the workers
had had severe acute respiratory illness during the
previous year (;

Because the potential risk of infection with avian
influenza viruses and resulting disease in humans
is not fully understood, it is important to study the
pathogenicity of the viruses in a mammal model. The




Pathogenicity of A/H5N1 and A/H3N6 Viruses in Mice

Table 1. Fifty percent mouse lethal dose of Av154, Av240, and Av39 avian influenza virus isolates”

Virus Isolate  Hemagluti-nation Titer

50% Egg Infectious Dose

0, . - y
50% Mouse Lethal Dose EID., per MLD,,

(EID,,) (MLD,)
Avls4 480 2.0 % 10%mL 1.0 = 10mL 2.0 = 10"
Av240 1.280 3.2 % 10%mL 3.0 x 10°7mL 1.1 %10°
Av39 160 3.2x107mL < 10/mL =3.2x10°

" Fifty percent mouse lethal dose was calculated ﬁumae data shown in Fig. 2 by using the method of Reed and
Muench (8). Av154: Ajturkey/East Java/Av154/2013(H5N1) clade 2.3.2.1.¢ Eurasian lineage, Av240: A/chicken/
East Java/Av240/2014(H5NT) clade 2.1.3.2b Indonesian lineage, Av39: A/duck/East Java/Av39/2013(H3N6).

mouse model has been used for many years to assess
pathogenicity, because mice are susceptible to avian A/
H5NI wviruses without prior virus adaptation. BALB/c
mice have 02,3-linked sialic acid residue®Evhich act as
receptors for avian influenza virus, in the ciliated airway
epithelial cells and type II alveolar epithelial cells (5),
in addition to 2,6-linked sialic acid residues for human
influenza virus (6) and, therefore, avian influenza virus
infect them concomitant with pathological changes.
In this study, we aimed to reveal the pathogenicity
of three isolates of avian influenza type A viruses in
mammals using a mouse model.

MATERIALS AND METHODS

¥%Juse model: BALB/c female mice were provided
by the Stem Cell Research and Development Center,
Airlangga University, Surabaya, Indonesia. They
were raised with standard feed and water in sterilized
conditions. The cage was placed in a ventilated micro-
isolator enclosure under negative pressure with HEPA-
filtered air in a biosafety cabinet. After completion of
the[Bperiments, all surviving mice were sacrificed
by injection of a high dose ketamine (100 mg/kg
body weight) and xylasin (10 mg/kg body weight)
intraperitoneally.

Virus: As virus inoculum, we used viruses from
three isolates, Av154 of A/HSNI HEEhsian lineage (A/
turkey/East Java/Av154/2013, H5 HA clade 2.3.2.1¢),
Av240 of A/H5N1 Indonesian lineage (A/chicken/
East Java/Av240/2014, H5 HA clade 2.1.3.2b), and
Av39 of A/H3N6 (A/duck/East Java/Av39/2013), to
assess theifflathogenicity in mice. Each virus was
propagated in 10-day-old embryonated chicken eggs
for 2 days at 37°C. The allantoic fluids were harvested
and tested for hemagglutination activity and infectivity
(hemagglutination titers and 50% egg infectious doses
(EID.,) are shown in Table 1). Infectious allantoic
harvests were pooled and the affjuots were stored
in a freezer at —80°C until use. The whole-genome
sequences of the fises were determined (manuscript in
preparation) and submitted to the GISAID database with
Isolate 1Ds as follows: A/turkey/East Java/Av154/2013,
EPI_ISL_307002:@chicken/East Java/Av240/2014,
EPI_ISL_307019; A/duck/East Java/Av39/2013, EPI_
ISL_307026.

Virus inoculation: Av154 and Av240 viruses were
serially diluted from 10" to 10° and Av39 was diluted
from 10"to 10™ with 0.2% bovine serum albumin (BSA)
in Tris-buffered sali€l containing glucose (TGS; 25
mM Tris-HCIL, 140 mM NaCl, 5 mM KCI, 0.7 mM

Na,HED.-12H,0, 5.6 mM glucose, pH7.4). After
being lightly anesthetized with ketamine (20 mg/kg
body weight) and xylasin (2 mg/kg body weight) via
intraperitoneal i{fEBtions, BALB/c mice (10-week-old
females, n = 5) were inoculated intranasally with 50
UL of each dilution of the viruses. The control mice (n
= 10) were mock inoculated with 50 uL of 0.2% BSA
in TGS. All groups of mice were observed for survival
and their body weights, an alternative indicator of
infection, were mEsured daily for a period of 20 days
after inoculation. The 50% mouse lethal dose (MLD,)
was determined by assessing the numbers of dead and
surviving mice on day 20, according to the method of
Reed and Muench (7). All procedures were performed
in the BSL3 laboratory of the Institute of Tropical
Diase, Airlangga University.

This study was approved by the Animal Care and Use
Committee (ACUC), Faculty of Veterinary Medicine,
Universitas Airlangga; the document identifier is 515-
KE. All treatments for mice were administered under
anesthesia and all necessary measures were taken to
minimize animal suffering.

Analysis of amino acid sequences: The amino
acid sequences of the viral proteins decoded from
the genome nucleotide sequences were analyzed for
mutations that could putatively confer the observed viral
phenotypes, according to the evaluation of phenotypic
markers described by Mertens et al. (8); similar or
identical sequences containing mutations that were
previously reported were also analyzed.

RESULTS

Loss of body weight by infection: After virus
inoculation, we measured body weight loss, a sensitive
indicator of pathogenic viral infection in mice. Fig.
1A illustrates the changes @he body weight of mice
after intranasal inoculation with serial 10-fold dilutions
of Av154, ranging from 10'-10". At the dilution of
107" (russet line), weight loss began on the first day
after inoculation, decreasing day by day to 75% of the
initial body weight until the mice died. At the dilutions
from 10°-10%, the body weight decreased to less than
80% of the initial measurement and most mice died.
At the dilution of 10™ (purple line), no significant
differences compared to control mice weffkeen. Fig. 1B
illustrates the changes after inoculation with serial 10-
fold dilutions of Av240 ranging from 107'-10. At the
dilutions of 10" (russet line) and 10™ (red line). weight
loss began on the first day and decreased day by day
to 75% of the initial body weight at around day 7 to 14
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Av240, and Av39 of avian influenza virus isolates. BABB/c
female mice (n = 5) were inoculated intra nasally with a 50 pL
of serial 10-fold dilutions of each virus and the body weights
were measured daily for 20 days. The average body weights
(% of day 0) were plotted with standard errors: Avi54 E-1 to
Av154 E-6 represent for the mice inoculated with 107 to 10™
dilution, re\.pe(.lively. of Alturkey/East Java/Av154/2013(H5N1)
Eurd\mn llnedge virus pool (A), Av240 E-1 to Av240 E-6
with 107 to 107 dilution, respectively, of A/chicken/East Java/
Av240/2014(H5NI1) Indonesian lineage virus pool (B), and Av39
E-0 to Av39 E-3 with 10° to 107 dilution, respectively, of A/
duck/East Java/Av39/2013(H3N6) (C). Control represents for
mock-control mice (n = 10) inoculated with the diluent (0.2%
bovine serum albumin in Tris-buffered saline containing glucose)
(A, B, and C).

Fig. 1. (Color online) Weight loss of mice infected wil% 54,

post-inoculation. In contrast to the Av154 infection, the
majority of the mice survived and regained 90-100% of
thelr 1mt1al body weight by day 20. At the dilutions from
107107, the body weight decreased to less than 90% on
around days 10 to 14 and the majority of mice survived,
regaining 90-100% of their body weight by day 20. At
the dilution of 10™ (purple line), no significant decrease
from the initial body weight was observed. Fig. 1C
illustrates the body weight changes after the inoculation
of Av39. No significant changes compared to the control
group were observed at any of the dilutions tested.
Mortality by virus infection: We monitored the
survival rate of inoculated mice for a period of 20
d after inoculation to determine the lethality of the
infection. Fig. 2 shows survival curves of mice infected
with Av154, Av240, and Av39 Fo]]owmg inoculation
with Av154 at d]]ut]ons of 107'-107, no mice survived
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Fig. 2. (Color online) Mortality of mice infe with avian
influenza virus isolate Av154, Av240, or Av39. B/c female
mice (n = 5) were inoculated intra nasally with a 50 puL of serial
10-fold dilutions of the virus pools (the hemagglutination titers
and 50% egg infectious doses (EIDyy) were shown in Table 1)
and observed for survival daily for a period of 20 days post-
inoculation. Percent survival wdigplotted for each day. Avl54:
Alturkey/East Java/Av154/2013(F5N1) clade 2.3.2.1¢ Hasian
lineage, Av240: A/chicken/East Java/Av240/2014(H5N1)
clade 2.1.3.2b Indonesian lineage, Av39: A/duck/East Java/
Av39/2013(H3N6). E-0 to E-6: 10" to 10 dilutions.

till day 20 and most of them died by day 7 or 8. One
mouse survived at the dilution of 10™ and three mice at
the dilution of 10", In contrast to Avl 54, the majority of
the mice inoculated with any dilution of Av240 surwved
to day 20, with the exception of the dilution at 107,
where two mice survived and three died. As for the mice
inoculated with Av39 most of them survived, except
one died at the 10" and one at the 107 dilution. From the
data shown in Flg 2, the titers of MLDsqwere calculated
to be 1.0 » 107/mL for Av154, 3.0 = 107/mL for Av240,
and < 10/mL for Av39. The MLDsﬂwas calculated to be
20 EID,, for Av154, 1.1 x 10° for Av240, and > 3.2 x
10° for Av39, as shown in Table 1.

Amino acid sequence comparison: Table 2
summarizes the results of the analysis of amino
acid sequences of each virus for receptor-binding,
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Table 2. Amino acid sequence comparison of the receptor binding site, glycosylation site, and cleavage site in HA and deletions in NA
and NSI

Amino acid mutation Amino acid residue”

) Phenotype
(HS numbering) Avls4? Av240" Av39" P
E186G/D E E E &reased virus binding to 42,6 (13, 14,15)
G21D G G G Change in receptor binding affinity from avian to human
Substitution tors (16,17)
at receptor Change in @3eptor binding recognition from 12,3 to 12,6
binding site Q222L Q Q Q (18,19,20), Increased virus binding to 02,6 (21), Airhome
(12) transmissible in mammals (22,23)
HA G224 G G G Increased virus binding to v2,6 (21, 24}, Airborne
es ! ! ! transmissible in mammals (22)
LI}“ UF] ) 154-156 Lost Not lost Lost Increase virus binding to 02,6 and pathogenicity in mice
fﬂ"ﬂ“’"’ ation . (DNA) (NST) (GST)  (24,25,26)
Multiple basic
amino acid;; in 321-330 RIEI?]%EG RII;%R(-E{S],G ?_]:E_I;‘?g Increased virulence in mice (27,28,29, 30,31,32)
cleavage site
NA  Deletion 49-68 Deleted Deleted Notdeleted Enhance virulence in mice (33,34)
NS1  Deletion 80-84 Deleted Deleted Nf(,';.l]f;;jd Enhance virulence in mice associated with D92E shift (35)

" Mammalian adaptive amino acid resuluea highlighted by bold and light grey of background color.
P Av154: Alturkey/East Java/Av154/2013(H5SN1) clade 2.3.2.1.c Eurasian lineage.
Y Av240: A/chicken/East Java/Av240/2014(H5N1) clade 2.1.3.2b Indonesian lineage.

Y1 Av39: A/duck/East Java/Av39/2013(H3ING).

Table 3. Amino acid substitutions related to mammalian adaptation (8)

. . . an . 1
Amino acid substitution Amino acid residue

(HS5 numbering) AVISAY Av2407 Av39Y Phenotype
T339K T T K Enhanced polymerase activity, Increased virulence in mice
R3680) Q R R ler polymerase activity and Enhance virulence in mice
PB2 K3526R K R K Increased polymerase activity, Increased virulence in mammals and birds
Vo671 v \Y | Enhanced transmission
K702R K K R Human host marker
PBI R207K K R K Increased polymerase activity in mammalian cells
PA A4048 S A A Human host marker
NI154D D N G Airbomne transmissibility in mammals
SI155N N S S Increased virus binding to 2,6, Increased replication in mammals
HA Ti56A A T T Increased virus binding to 2,6, Airborne transmissible in mammals
KI89R R M N Increased virus binding to «2,6, Increased replication in mammals
V2101 v V 1 Increased virus binding to 2,6
A263T T A S Increased virulence in mammals
MI VISUT I I \Y eased virulence in mammals
V2TA 1 A v Reduced susceptibility to amantadine and rimantadine
M2 SIIN/G 5 N 5 Reduced susceptibility to amantadine and rimantadine
L55F L L F Enhanced transmission
DRTE E D D ased virulence in mammals
NS1 T/DO92E E D D Increased virulence in mammals, Escape of antiviral host response
T/DIVIR/AL2TN T A N Increased virulence in mammals
NS2 AATT T A A Increased IFN antagonism

" Mammalian adaptive amino acid residua; highlighted by bold and light grey of background color.
7 Av154: Ajturkey/East Java/Av1354/2013(H5N1) clade 2.3.2.1.c Eurasian lineage.

¥ Av240: Afchicken/East Java/Av240/2014(H5N 1) clade 2.1.3.2b Indonesian lineage.

U Av39: A/duck/East Java/Av39/2013(H3N6).
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glycosylation, and cleavage sites in the HA protein.
At the receptor binding site, all viruses had E-186,
G-221, Q-222, and G-224 (HS numbering), which
were compatible with the avian receptor a2,3-linked
sialic acid. Av240 had a glycosylation site NST at
position 154—156, while N at 154 was substituted
with D for Av154 and G for Av39, 1§3ng the
glycosylation site. For Av154 and Av240, the amino
acid sequences at the cleavage sites were PQRE-
RRRKR and PQRESRRKKR, respectively, possessing
five consecutive basic amino acid residues, a typical
characteristic of highly pathogenic avian influenza
A viruses. For Av39, the amino acid sequence was
PEKQT----R with only one basic amino acid residue R,
a typical feature of viruses possessing low pathogenicity.
In addition, Table 2 compares deletions in the NA and
NSI proteins; Av154 and Av240 had deletions at 49-68
of NA and 80-84 of NSI1, while Av39 did not have
those deletions.

Mertens et al. (8) listed 152 phenotypic markers or
amino acid substitutions for avian influenza viruses
related to pathogenicity in mammals and transmission
from birds to mammals. We compared the reported
phenotypic markers or amino acid substitutions with
those of our three isolates; Table 3 summarizes the
results. In total, there were 12 amino acid residues
related to adaptation to a mammalian host in Avl54, 4
in Av240, and 7 in Av39. Only Av154 had the adaptation
markers of Q-368 in PB2; S-404 in PA; D-154, N-155,
A-156, R-189, and T-263 in HA; E-87 and E-92 in NSI;
and T-47 in NS2.

DISCUSSION

In this study, we compared the morbidity and
mortality in mice due to infection with the three isolates
of avian influenza type A viruses that we isolated from
2013 to 2014 in East Java, Indonesia. The isolates
showed distinctive differences in pathogenicity in mice;
Av154 was highly virulent and lethal with an MLD,,
of 20 EID,,. Av240 was highly virulent and modestly
lethal with 1.1 * 10°, and Av39 was neither virulent nor
lethal with > 3.2 x 10° (Figs. 1 and 2). Several studies
have reported the variations in pathogenicity of different
strains of avian influenza viruses in mouse models
(9-11).In terms(@f infection with influenza virus,
oligosaccharides terminated by o2,3-linked sialic acid
(SA) in thfJepithelial cell receptor are the preferential
target for avian strains and those terminated by o2,6-
linked SA are the preferential targe%uman strains.
It has been reported that in the mo ften used as a
model for studying influenza viruses, the o2,3-linked SA
receptor is expressed in the ciliated airway and type I
alveolar epithelial cells, which is targeted for infection
by avian influenza viruses (5.6). We confirmed infection
of the three viruses in murine lungs through the
detection of viral messenger RNA using RT-PCR with
oligo(dT)18VN as the ré]er for reverse transcription
(unpublished data). The deduced amino acid sequences
of HA indicated that all of the three {l@uses had the
amino acid residues E-186, G-221, Q-222, and G-224
at the receptor binding site of HA (12) (Table 2),
suggesting their a2,3-SA binding specificity (13-21).
Av154 has the amino acid residues N-155, A-156, and

R-189 in HA (Table 3); these residues are mammalian
adaptive markers for increased virus binding to 02.6-SA.
According to Ha Y et al. (22), avian H5 hemagglutinins
were capable of binding to avian and human receptors,
and Maines et al. (23) showed that a singl ino
acid mutation of K189R resulted in increased binding
to 02,6-linked sialic acid without a loss of binding to
2,3-linked sialic acid. This explains ipart the high
lethality shown by Av154, because the u2.6-linked SA
receptor is also expressed in mEZRe epithelial cells (6).
Unlike Av154, Av240 has an N-linked glycosylation
site at position 154—156; viruses with a glycosylation
site at this position were relatively less virulent and
loss of the carbohydrate at position 154 increased the
binding affinity to the re@l?)rs. particularly SA-u-2,6-
Gal (24,25). In addition, viruses with loss of the 154N
glycosylation site showed increased pathogenicity,
systemic spread, and pulmonary inflammation in mice
(26), which corresponded to the genetic traits of the
highly viknt Av154.

Avian imfluenza type A viruses are classified into two
groups: highly pathogenic and low pathogenic. They
differ in the sensitivity of the viral HA protein to host
proteases to be cleaved, thereby activating the fusiof)
function. Most of the low pathogenic viruses have a
single arginine residue in the HA cleavage site, which
can be cleaved by trypsin-like-extracellular proteases
and is limited to the airways or intestine (27,28). The
EBhly pathogenic viruses, on the other hand, possess
multiple basic amino acid residues in the HA cleavage
site, so that HA can be cleaved by various intracellular
protease enzymes, such as furin-like-proteases. This
cleavage leads to systemic infection, resulting in
damage to multiple organs (29-32). Av154 and Av240,
ERBich were highly pathogenic, had five consecutive
basic amino acid residues in the cleavage site, while
the low pathogenic virus Av39 had a single arginine
(R) residue (Table 2). This may be the main reason that
Av39 was not lethal in mice. Av154 had a deletion of a
single residue S at the site proximal to the multiple basic
residues comnfffld to Av154 and Av240. The deletion
was typical for A/H5N1 clade 2.3.2.1 viruses (3) but the
biological meaning is not yet understood.

It is known that the level of virulence or severity
of illness is in line with the decrease of body weight
as well as MLD,,. Av154- and Av240-infected mice
lost 25% body weight by day 7 with almost the same
kinetics as typically seen at the dilution of 10" (Figs. 1A
and 1B), while the body weight of mice infected with
any dilution of Av39 increased at a similar rate to mock-
infected control mice (Fig. 1C); Avl54 and Av240 were
highly v@&lent and Av39 was not virulent. Interestingly,
most of the mice inoculated witllv154 died on day 7
or 8 (Fig. 2), while the majority of the mice inoculated
with Av240 survived till day 20 and regained body
weight (Fig. 2 and Fig. 1B). Thus Av240 showed 5,500-
fold less lethality than Av154, as the EIDs, per MLDy,
was 110,000 for Av240 and 20 for Av 154 (Table 1).
Both Av154 and Av240 had a deletion of 20 amino
acids at position 49-68 in the stalk region of NA, which
was implicated in enhanced virulence in mice (E2334)
(Table 2). This mutation has been observed in highly
pathogenic avian influenza A/H5N1 viruses and their
human isolates for all we know. Av154 also had deletion
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residues 80 to 84 associated with D92E shift in the

NS1 protein (Tables 2 and 3), which has been shown

to
(3

confer enhanced virulence in chickens and mice
5). Av154 had marker amino acid residues listed by

Mertens et al. (8) for increased virulence in mammals of
-368 in PB2, T-263 in HA, and E-87 and E-92 in NS1.

increased IFN antagonism, it had T-47 in NS2. For

increased virus binding to a2,6-SA, it also had N-155,

A-

156, and R-189 in HA. In contrast, Av240 had none

of these mammalian adaptive phenotype markers (Table
3). Lack of these mammalian adaptive markers in
Av240 might be responsible for the survival of Av240-
infected mice. Further research is needed to reveal its
mechanism.

was shown in this study that the Av154 virus of

A/H5NI1 clade 2.3.2.1¢ Eurasian lineage was highly
virulent and lethal in mice without prior adaptation,
suggesting its highly pathogenic potential in mammals.
The Av240 virus of A/H5NI clade 2.1.3.2b Indonesian
lineage was highly virulent and modestly lethal; the
majority of the infected mice survived and regained
their body weight. Av39 of A/H3NG6 was neither virulent
nor lethal. Several mammalian adaptive markers of
amino acid residues were associated with the highly
virulent and lethal phenotypes of the Av154 virus.
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