Source details

Journal of Dermatological Treatment
Scopus coverage years: from 1989 to Present
Publisher: Taylor & Francis
ISSN: 0954-6634
Subject area: Medicine: Dermatology
Source type: Journal

CiteScore 2021
5.0

SJR 2021
0.737

SNIP 2021
1.104

Improved CiteScore methodology
CiteScore 2021 counts the citations received in 2018-2021 to articles, reviews, conference papers, book chapters and data papers published in 2018-2021, and divides this by the number of publications published in 2018-2021. Learn more

CiteScore rank & trend

CiteScore rank 2021

Category	Rank	Percentile
Medicine | #23/126 | 82nd

View CiteScore methodology | CiteScore FAQ | Add CiteScore to your site
Journal of Dermatological Treatment

COUNTRY
United Kingdom

SUBJECT AREA AND CATEGORY
Medicine
Dermatology

PUBLISHER
Informa HealthCare

H-INDEX
56

PUBLICATION TYPE
Journals

ISSN
09546634

COVERAGE
1989-2021

INFORMATION
Homepage
How to publish in this journal
Alexander.Smith@tandf.co.uk

SCOPE
The journal aims to give dermatologists practical value through cutting-edge information on new treatments in all areas of
The journal's focus includes: Topical and systemic dermatological therapies, including novel biologicals; Dermatological phototherapy; Dermatological surgery and lasers; Skin pharmacology.
The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scientific influence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from. It measures the scientific influence of the average article in a journal and expresses how central to the global research landscape the average article from a journal is.

Total Documents

<table>
<thead>
<tr>
<th>Year</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>69</td>
</tr>
<tr>
<td>2000</td>
<td>61</td>
</tr>
<tr>
<td>2001</td>
<td>48</td>
</tr>
<tr>
<td>2002</td>
<td>46</td>
</tr>
</tbody>
</table>

Citations per Document

<table>
<thead>
<tr>
<th>Year</th>
<th>Cites / Doc (4 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>0.411</td>
</tr>
<tr>
<td>2000</td>
<td>0.432</td>
</tr>
<tr>
<td>2001</td>
<td>0.375</td>
</tr>
<tr>
<td>2002</td>
<td>0.459</td>
</tr>
<tr>
<td>2003</td>
<td>0.652</td>
</tr>
<tr>
<td>2004</td>
<td>1.153</td>
</tr>
<tr>
<td>2005</td>
<td>1.792</td>
</tr>
<tr>
<td>2006</td>
<td>1.828</td>
</tr>
<tr>
<td>2007</td>
<td>1.758</td>
</tr>
<tr>
<td>2008</td>
<td>1.804</td>
</tr>
</tbody>
</table>

Journal Self-citation

Evolution of the number of total citations and journal's self-citations received by a journal's published documents during the three previous years. Journal self-citation is defined as the number of citations from a journal citing article to articles published by the same journal.

External Citations

Evolution of the number of total citation per document and external citation per document (i.e. journal self-citations removed) received by a journal's published documents during the three previous years. External citations are calculated by subtracting the number of self-citations from the total number of citations received by the journal's documents.

% International Collaboration

International Collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's documents signed by researchers from more than one country; that is including more than one country address.

Citable documents vs. non-citable documents

Ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those documents.

Show this widget in your own website

Just copy the code below and paste within your html code:
Uncited documents

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>181</td>
</tr>
<tr>
<td>2000</td>
<td>155</td>
</tr>
<tr>
<td>2001</td>
<td>153</td>
</tr>
</tbody>
</table>

Metrics based on Scopus® data as of April 2022

Loading comments...

Developed by: [SCImago](https://www.scimagojr.com)
Powered by: [Scopus](https://www.scimagojr.com)
Sample our Medicine, Dentistry, Nursing & Allied Health journals, sign in here to start your FREE access for 14 days
Editorial

Should the presence of psoriatic arthritis change how we manage psoriasis?

Warren H. Chan, Rohan Singh & Steven R. Feldman
Pages: 863-865
Published online: 26 Nov 2021

Review Article

Treatment of sebaceous gland hyperplasia: a review of the literature

Lama Hussein & Conal M Perrett
Pages: 866-877
Published online: 13 Apr 2020

Psoriasis and atopic dermatitis
Article

Calcipotriol/betamethasone dipropionate aerosol foam for the treatment of psoriasis vulgaris: a review of real-world evidence (RWE)

Sascha Gerdes, Manuel Velasco, Jashin J. Wu, Mario Hubo & Karen A. Veverka

Pages: 883-893

Published online: 28 Jan 2020

296 Views 3 CrossRef citations 0 Altmetric

--

Article

In psoriasis treatment, greater improvement in skin severity predicts greater improvement in nail severity

Amanda M. Rusk & Alan B. Fleischer Jr.

Pages: 894-897

Published online: 05 Feb 2020

171 Views 1 CrossRef citations 0 Altmetric

--

Article

Correct performance of subcutaneous injections in plaque psoriasis: comparison of trained and untrained patients with different application systems in routine clinical care

Franziska Stenger. Anke König. Falk Ochsendorf. Roland Kaufmann & Andreas Pinter
Characterization of insufficient responders to ustekinumab in patients with moderate-to-severe psoriasis in the US Corrona Psoriasis Registry

Abby S. Van Voorhees, Marc A. Mason, Leslie R. Harrold, Ning Guo, Adriana Guana, Haijun Tian, Vivian Herrera & Bruce E. Strober

Published online: 27 Feb 2020

Topical treatment of psoriasis: questionnaire results on topical therapy as long-term continuous treatment and use on specific body sites

Published online: 06 Mar 2020

Dermatologist attitudes toward ciclosporin use in atopic dermatitis

Kevin Phan, Olivia Charlton, Chris Baker, Peter Foley & Saxon D. Smith

Published online: 10 Feb 2020

Efficacy and safety comparison of combination of 0.04% tretinoin microspheres plus 1% clindamycin versus their monotherapy in patients with acne vulgaris: a phase 3, randomized, double-blind study

Pages: 925-933
Published online: 05 Feb 2020

B. M. Rainer, K. G. Thompson, C. Antonescu, L. Florea, E. F. Mongodin, S. Kang & A. L. Chien

Impact of lifestyle and demographics on the gut microbiota of acne patients and the response to minocycline

Pages: 934-935
Published online: 05 Feb 2020

Erhan Ayhan, Özgür Aslan & Eşref Araç

Effect of isotretinoin (13-cis-retinoic acid) on levels of soluble VEGF receptors (sVEGFR1, sVEGFR2, sVEGFR3) in patients with acne vulgaris

Pages: 936-940
Published online: 20 Feb 2020
Cosmetics and scarring

Article

Comparison of hair reduction by intensive pulsed light device and combined intense pulsed light with a bipolar radiofrequency

Anna Erkiert-Polguj, Barbara Algiert-Zielinska, Janusz Skubalski & Helena Rotsztejn

Pages: 945-949

Published online: 10 Feb 2020

132 Views | 0 CrossRef citations | Altmetric

Article

Development of a combination therapy with silanols complexed with boron citrate and ablative-fractional laser for treatment of wrinkles and stretch marks

Klaudyna Wolak & Roksana Gruszkiewicz-Majczak

Pages: 950-956

Published online: 03 Mar 2020

102 Views | 0 CrossRef citations | Altmetric

Review Article

Targeting of keloid with TRAIL and TRAIL-R2/DR5

Pengfei Sun, Zhensheng Hu, Bo Pan & Xiaosheng Lu
Clinical and histopathological comparison of microneedling combined with platelets rich plasma versus fractional erbium-doped yttrium aluminum garnet (Er: YAG) laser 2940 nm in treatment of atrophic post traumatic scar: a randomized controlled study

N. F. Agamia, O. Sorror, M. Alrashidy, A. A. Tawk & A. Badawi

Published online: 02 Apr 2020

188 Views 5 CrossRef citations Altmetric

Article

MiR-486-5p inhibits the hyperproliferation and production of collagen in hypertrophic scar fibroblasts via IGF1/PI3K/AKT pathway

Yifeng Xiao

Published online: 21 Feb 2020

182 Views 10 CrossRef citations Altmetric

Article

Anthocyanins rich pomegranate cream as a topical formulation with anti-aging activity

Ahmed A. H. Abdellatif, Sulaiman Hamad Alawadh, Abdellatif Bouazzaoui, Ahmad H. Alhowail & Hamdoon A. Mohammed

Published online: 05 Feb 2020

306 Views 10 CrossRef citations Altmetric
Procedures

Case Report

Topical glycopyrrolate followed by microneedling: a novel treatment option for eccrine hidrocystomas

Amanda Hui Yu Kuan & Hong Liang Tey
Pages: 997-998
Published online: 23 Jan 2020

Article

Combined microneedling with tacrolimus vs tacrolimus monotherapy for vitiligo treatment

Howyda M. Ebrahim, Reham Elkot & Waleed Albalate
Pages: 999-1004
Published online: 11 Feb 2020
Infection

Article

Intralesional measles–mumps–rubella is associated with a higher complete response in cutaneous warts: a systematic review and meta-analysis of randomized controlled trial including GRADE qualification

Rachel Vania, Raymond Pranata & Sukmawati Tansil Tan

Pages: 1010-1017

Published online: 27 Jan 2020

122 Views 0 CrossRef citations 1 Altmetric

Article

‘Cryo-immuno-therapy’ is superior to intralesional Candida antigen monotherapy in the treatment of multiple common warts

Enayat Attwa, Rehab Elawady & Eman Salah

Pages: 1018-1025

Published online: 02 Feb 2020

138 Views 4 CrossRef citations 0 Altmetric

Article

Efficacy of topical epigallocatechin gallate (EGCG) 1% on the healing of chronic plantar ulcers in leprosy

C. R. S. Prakoeswa, R. N. Oktaviyanti, D. M. Indramaya, E. Hendradri, S. Sawitri, L. Astari, D. Delius & D. M. Yu

Pages: 1005-1009

Published online: 02 Feb 2020

256 Views 0 CrossRef citations 0 Altmetric
Therapeutic outcomes of pemphigus in a referral service in Northern Brazil: a retrospective study of 32 patients

Published online: 23 Jan 2020

Management of adolescents with hidradenitis suppurativa

Erin Collier, Vivian Y. Shi & Jennifer L. Hsiao

Published online: 23 Jan 2020

Topical administration of mangiferin promotes healing of the wound of streptozotocin-nicotinamide-induced type-2 diabetic male rats

Ohn Mar Lwin, Nelli Giribabu, Eswar Kumar Kilari & Naguib Salleh

Published online: 03 Feb 2020
Ingenol mebutate treatment for actinic cheilitis: clinical, histopathological and p53 profile of 14 cases

Rita de Cassia Rossini, Gerson Dellatorre, Lismary Aparecida de Forville Mesquita & Roberto Gomes Tarlé

Pages: 1049-1052
Published online: 27 Feb 2020

Fractional 2940-nm Er:YAG laser-assisted drug delivery of timolol maleate for the treatment of deep infantile hemangioma

Li Sun, Chenxia Wang, Yuting Cao, Xinxiang Lv, Limin Tian, Dandan Liu, Lizhong Li & Wenchao Zhao

Pages: 1053-1059
Published online: 24 Feb 2020

Correction

Correction

Page: 1060
Published online: 21 Jan 2020

Explore articles 💡
Ready to submit?
Start a new manuscript submission or continue a submission in progress

Go to submission site

Submission information

- Instructions for authors
- Editorial policies

Editing services

- Editing services site

About this journal

- Journal metrics
- Aims & scope
- Journal information
- Editorial board
- News & call for papers
- Advertising information

Editorial board
Editors-in-Chief
Peter Van de Kerkhof - University Hospital, Nijmegen, Netherlands
Steven R Feldman - Wake Forest University School of Medicine, Winston-Salem, USA

Founding Editor
Ronald Marks - Cardiff, UK

Associate Editors
David de Berker - Bristol, UK
John Berth-Jones - Coventry, UK
Kenneth Gordon - Maywood, USA
Jason Reichenberg - Austin, USA
Marieke Seyger - Nijmegen, the Netherlands

Viewpoint Section Editor
Mohammad Reza Namazi - Shiraz, Iran

Editorial Board
Ali Alikhan - Cincinnati, OH, USA
Rajesh Balkrishnan - Columbus, USA
Jonathan Barker - London, UK
Paul R. Bergstresser - Dallas, USA
Ruggero Caputo - Milan, Italy
Enno Christophers - Kiel, Germany
Michael J. Cork - Sheffield, UK
William J. Cunliffe - Leeds, UK
Laura Doerfler - Winston-Salem, USA
Louis Dubertret - Paris, France
Charles Ellis - Ann Arbor, USA
Andrew Y. Finlay - Cardiff, UK
Rianne MJP Gerritsen - Nijmegen, The Netherlands
Brad P. Glick - Miami, Florida
Neal Goldman - Winston-Salem, USA
W Andrew D Griffiths - London, UK
Christopher EM Griffiths - Manchester, UK
Aditya Gupta - Ontario, Canada
John Hancox - Morgantown, USA
Lajos Kemeny - Szeged, Hungary
Francisco Kerdel - Miami, USA
Knud Kragballe - Aarhus, Denmark
James Leyden - Philadelphia, USA
Robin Marks - Victoria, Australia
David McLean - Vancouver, Canada
Giuseppe Micali - Catania, Italy
Jean-Paul Ortonne - Nice, France
Rita Pichardo - Winston-Salem, USA
Jason Reichenberg - Austin, USA
Noah Scheinfeld - New York, USA
Hiroshi Shimizu - Sapporo, Japan
Eggert Stockfleth - Berlin, Germany
John D Stratigos - Athens, Greece
Arash Taheri - Winston-Salem, USA
Yong-Kwang Tay - Singapore, Malaysia
Antonella Tosti - Bologna, Italy
Gil Yosipovitch - Winston-Salem, USA
Christos Zouboulis - Berlin, Germany
Efficacy of topical epigallocatechin gallate (EGCG) 1% on the healing of chronic plantar ulcers in leprosy

To cite this article: C. R. S. Prakoeswa, R. N. Oktaviyanti, D. M. Indramaya, E. Hendradri, S. Sawitri, L. Astari, D. Damayanti & M. Y. Listiawan (2020): Efficacy of topical epigallocatechin gallate (EGCG) 1% on the healing of chronic plantar ulcers in leprosy, Journal of Dermatological Treatment, DOI: 10.1080/09546634.2020.1729333

To link to this article: https://doi.org/10.1080/09546634.2020.1729333
Efficacy of topical epigallocatechin gallate (EGCG) 1% on the healing of chronic plantar ulcers in leprosy

C. R. S. Prakoeswa, R. N. Oktaviyanti, D. M. Indramaya, E. Hendradri, S. Sawitri, L. Astari, D. Damayanti and M. Y. Listiawan

Faculty of Medicine, Department of Dermatology and Venereology, Universitas Airlangga – Dr Soetomo General Academic Hospital, Surabaya, Indonesia; Faculty of Pharmacy, Department of Pharmaceutics, Universitas Airlangga, Surabaya, Indonesia

ABSTRACT

Background: Chronic plantar ulcers in leprosy (CPUL) occur in areas that have a sensory and an autonomic nerve impairment where the wound healing takes longer. Framycetin gauze dressing (FGD) is best used in the wound healing process during the inflammatory phase because it contains antibiotics. Epigallocatechin gallate (EGCG) is the highest component in the extract of green tea that can accelerate blood vessel formation, has an anti-inflammatory effect, and reepithelialization. Objectives: To investigate the effect of topical EGCG 1% on the healing of CPUL. Materials and methods: An analytical experimental approach comparing the topical EGCG 1% and FGD applied every 3 days up to 8 weeks on the healing of CPUL. Size of the ulcers, side effects and possible complications from both approaches were monitored weekly. Results: Ulcer healing in the EGCG group was significantly better than the FGD group with significant clinical and statistical differences (p < 0.032). There were no side effects in both the study groups. Conclusions: EGCG 1% is more effective than FGD in accelerating the healing process of CPUL.

Introduction

Chronic plantar ulcers in leprosy (CPUL) occur in areas that have a sensory and an autonomic nerve impairment where the wound healing takes longer because of the lack of growth factors and blood supply due to autonomic nerve impairment and is often accompanied by superinfection (1–3). Standard wound care in daily practice such as debridement, wound care dressing and infection control with oral or topical antibiotics usually give unsatisfactory results because they do not modulate the formation of new blood vessels and the formation of collagen needed in the process of wound healing, that is necessary for wound healing.

Difficult healing in leprosy ulcers has an impact on the social and economic lives of patients and their families (3,4). Epigallocatechin gallate (EGCG) is the most extract in green tea, and is the main source of bioactive green tea, has antioxidants that are far more powerful than vitamin C (5). EGCG is the largest component that covers 65% of the total catechins and is therapeutically active. EGCG is a complex molecule with flavanol as its core, accompanied by gallatechol and gallate esters. EGCG has several health effects. Some of these effects include anti-inflammatory, anti-infective, antioxidant, anti collagenase, angiogenesis, and antifibrosis. This suggests that EGCG can be used for the treatment of dermal wounds by facilitating angiogenesis and reepithelialization (6).

Several studies have shown the function of green tea in accelerating the wound healing process by accelerating the inflammatory phase, helping the proliferation phase and making collagen deposition take place faster. This acceleration is thought to be an effect of EGCG in accelerating the formation of new blood vessels and their anti-inflammatory effects. In addition, the antimicrobial effect of EGCG can accelerate healing by preventing infection. Several experiments on the effect of green tea on the wound healing process have been carried out by Karimi and friends in mice by giving burns with a hot iron after the rats were anesthetized. After that, for 21 days the mice were given a baseline cream treatment containing green tea extracts, while in another group of mice were given vaseline cream and normal saline. After that, every day, measurements of the size of the wound with a caliper, and several rats examined histopathologically skin samples. Histopathological examination performed to get a picture of inflammatory cells, epithelial regeneration and angiogenesis. After checking every day, it was found that mice given vaseline with green tea extracts had a decreased surface area of the skin that had burns faster than other groups of mice. From the results of histopathological examination, it was found that mice given vaseline with green tea extract experienced an increase in the process of epithelialization, angiogenesis and reduction of inflammatory cells which gave the most significant results. EGCG research on wound healing has also been done on human subjects, namely research conducted by Shahrahmani and friends who used EGCG in wounds after epistomy, and in that study obtained significant results on wound healing in research subjects (8).

In this study, the efficacy of EGCG 1% ointment on the wound healing of CPUL was compared with the standard treatment with FGD. The FGD is a sterile wound care product
containing a broad-spectrum antibiotic from the aminoglycosides class namely Framycetin sulfate B.P. 1%.

Materials and methods

Study design and participants

An 8-week prospective-controlled clinical trial was conducted at the Dermatology and Venereology out-patient clinic of Dr. Soetomo Teaching Hospital Surabaya between July 2019 and September 2019. This clinical study was approved by the Ethical Committee Board of Dr. Soetomo Teaching Hospital Surabaya and registered at www.ina-registry.org. All patients signed informed consent prior to participation.

Forty-four patients with a plantar ulcer due to leprosy, persisting for more than 6 months, were released from leprosy treatment fulfilling the inclusion and the exclusion criteria. Patients were divided into two groups: EGCG (intervention) group and FGD (control) group with matching pair selection based on the type of occupation and the size of ulcer described below:

- The type of occupation:
 - Requires long-standing or walking
 - Does not require long-standing or walking
- The size of ulcer:
 - \(<1 \text{ cm}^2\)
 - \(1-4 \text{ cm}^2\)
 - \(4-9 \text{ cm}^2\)

The ointments were prepared at the Farmasetika Airlangga University. The green tea ointment was prepared using the hydro-alcoholic extract of green tea. The yield extract was dissolved in some distilled water and mixed with hydrocarbon bases for ointment and Eucerin to give a 1% green tea ointment.

Treatment procedures

All ulcers were surgically debrided and cleaned with sterile normal saline. The width and depth of the ulcer at baseline were then measured and photographed. The width of the ulcer was measured using OPSITE-FLEXIGRID film, while the depth of the ulcer was measured using a sterile cotton stick and a ruler.

The EGCG 1% topical and the FGD were applied to the ulcer by a researcher every third day. In the patients in the EGCG group, the ulcer was covered with a transparent film dressing after the EGCG 1% topical had been put on the ulcer. In the patients in the FGD group, the ulcer was covered with sterile gauze and then covered with adhesive plaster dressing after FGD had been put on the ulcer.

All the included patients completed the study protocol. The nonparametric Wilcoxon and Mann-Whitney U tests were used to determine significant differences between samples before and after treatment within the same group and between the two groups. A p-Value \(<.05\) was taken as an indication of significance. All statistical analyses were performed using SPSS version 22.0 software (SPSS Inc., Chicago, IL).

Result

The sex ratio of the patients, between male and female, was almost equal and the mean age of both groups was 53.36 ± 9.38 years, the mean duration of the ulcers was 13.89 ± 6.93 months and the mean size of the ulcers at the baseline was 2.89 ± 2.04 cm². There were no dropouts in the study. All the included patients completed the study protocol. The demographics of the patients and baseline characteristics are shown in Table 1.

The mean percentage of ulcer healing per week in both the study groups are shown in Figure 1. The healing percentage increased each week in both groups. The healing percentage of the EGCG group was 2–3 times higher than the healing rate in the FGD group. At the end of the study, the FGD group had a mean percentage of size reduction of the ulcers of 52.65 ± 53.16% and the mean percentage of depth reduction of 50.91 ± 42.72%, whereas the EGCG group had a mean percentage of size reduction of the ulcers of 84.11 ± 30.47%.

Table 1. Demographics of the patients and baseline characteristics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>FGD (n = 22)</th>
<th>EGCG (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>13 (59.1)</td>
<td>10 (45.5)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>9 (40.9)</td>
<td>12 (54.5)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21–50 years, n (%)</td>
<td>12 (54.5)</td>
<td>13 (59.1)</td>
</tr>
<tr>
<td>>50 years, n (%)</td>
<td>10 (45.5)</td>
<td>9 (40.9)</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requires long standing/walking, n (%)</td>
<td>11 (50.0)</td>
<td>9 (40.9)</td>
</tr>
<tr>
<td>Does not require long standing/walking, n (%)</td>
<td>11 (50.0)</td>
<td>13 (59.1)</td>
</tr>
<tr>
<td>Duration of ulcer (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 year, n (%)</td>
<td>6 (27.3)</td>
<td>7 (31.8)</td>
</tr>
<tr>
<td>1–5 years, n (%)</td>
<td>15 (63.6)</td>
<td>15 (68.2)</td>
</tr>
<tr>
<td>>5 years, n (%)</td>
<td>1 (4.6)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Table 2. Clinical improvement of the ulcers at the end of the study.

<table>
<thead>
<tr>
<th>Improvement of the ulcers at the end of the study</th>
<th>EGCG (n = 22)</th>
<th>FGD (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healed, n (%)</td>
<td>14 (63.6)</td>
<td>8 (36.6)</td>
</tr>
<tr>
<td>Improved, n (%)</td>
<td>7 (31.8)</td>
<td>8 (36.6)</td>
</tr>
<tr>
<td>Persisted, n (%)</td>
<td>1 (4.6)</td>
<td>5 (27.7)</td>
</tr>
<tr>
<td>Worsened, n (%)</td>
<td>0 (0)</td>
<td>1 (4.6)</td>
</tr>
</tbody>
</table>
end of the study is shown in Figure 2. It shows the number of improved healing rates of CPUL better than FGD. In this study, The results of this study demonstrated that EGCG 1% ointment

Discussion

Figures 3 and 4. The clinical improvement in the ulcers at the end of the study is in accordance with the age of the research subjects in various studies of ulcers in MH patients including research by Desancha et al. who examined the health quality of MH ulcers that have an average age of 45 years. Aging decreases the inflammatory response in wound healing, which may be due to the slowdown of the infiltration of T cells in the wound area. This also leads to prolonged inflammatory response and decreases the angiogenesis all of which are essential in the process of cell proliferation. The collagen formation that is required on the remodeling is also decreased in older patients (8). Old age is also often associated with low levels of antioxidants. Mitochondria function to provide energy and produce reactive oxygen species (ROS) to stimulate the occurrence of mitosis and the activities needed for wound healing. As we age, an increase in mitochondrial DNA mutations is indicated by an increase in the number of dysfunctional mitochondria accompanied by a decreased ability to eliminate them so that an increase in ROS levels can delay the wound healing process (9). In theory, age influences the wound healing process, but in this study, age is not significantly related to ulcer healing, this indicates that the administration of EGCG can overcome the risk factors for age, where EGCG which functions as an antioxidant can eliminate ROS that increase due to the influence of age, so age does not affect in healing ulcers. All the participants in this study underwent surgical debridement and were asked to reduce prolonged standing and walking. Surgical debridement is important in wound care in order to remove callus and necrotic tissue because these may be a source of focal pressure (callus) or focal infection (necrotic tissue) that inhibit the wound healing process (10). Surgical debridement also brings all the ulcers in the same phase of wound healing (coagulation and inflammation phase) at the baseline of the study (11,12).

In a chronic wound, one may detect a prolonged inflammatory response, elevated protease activity, and pro-inflammatory cytokines. These findings may account for the delayed wound healing process (13,14). The prolonged inflammatory response may be caused by infection or just inflammation. The FGD is an antibiotic wound dressing that works in the inflammatory phase of wound healing by treating the infection and contra-acting colonization. It is not effective in an inflammatory phase of wound healing that is not caused by infection. It is also not effective in the proliferative phase of wound healing.

The role of EGCG as an anti-inflammatory is by inhibiting the activation of NF-κB transcription factors and protein activators thereby reducing the production of inflammatory factors. In addition, EGCG can also inhibit the production of IL-8 which can reduce neutrophil aggregation so that it can suppress the inflammatory response. Thirteen EGCG products can help reduce ROS by inhibiting the formation of ROS enzymes (xanthine oxidase, cyclooxygenase, and lipooxygenase) and affect the

Figure 2. Clinical improvement of the ulcers at the end of the study.

Figure 1. The mean percentage of size reduction of ulcers every week between three groups.

and a mean percentage of depth reduction of the ulcers of 85.45 ± 25.40%.

The clinical features of ulcers in patients can be seen in

- Worsened
- Persisted
- Improved
- Healed

from Table 2.

No adverse events were encountered in either of the study groups, but a complication occurred in 1 patient (4.5%) in the FGD group when the size of the ulcer became wider. During the clinical examination of this patient, neither any clinical signs of allergic contact dermatitis nor any clinical signs of infection (no erythema on the skin around the ulcer, no swelling, no warmth on palpation, odorless and no exudation) were found. The ulcer had enlarged in the 3rd week of treatment. Consequently, the FGD treatment was discontinued in the 3rd week and the wound care was replaced with normal saline. Follow-up was continued until the 8th week. In the 4th and the 5th week, the size and the depth of the ulcer remained the same. In the 6th, the 7th and the 8th week, the size of the ulcer increased, but the depth remained the same. This patient had a clawfoot and the ulcer was positioned at the head of the first metatarsal. The worsening of the ulcer in this patient was not caused directly by the treatment with FGD but was caused by the clawfoot. This patient required a pressure reducing measure such as an appropriate shoe or sandal for reducing the pressure on the ulcer.

A comparison test for the difference in the size of the ulcers before and after treatment between the two groups was tested using the Mann–Whitney U test. The results showed a significant difference between the EGCG group and the FGD group, as well as the difference in the size of the ulcers (p < .032) and the difference in the depth of the ulcers (p < .032).

Discussion

The results of this study demonstrated that EGCG 1% ointment improved healing rates of CPUL better than FGD. In this study, the age of most subjects was 21–50 years. The age of the subject of this study is in accordance with the age of the research
production of nitric oxide through the interaction of nitric oxide synthase (NOS). In addition, EGCG can also activate SOD, which is a free radical detoxification enzyme (7). So that it can accelerate the process of wound healing. In addition, the function of EGCG as an antioxidant is by inhibiting the formation of nitric oxide thereby reducing levels of free radicals which can increase the production of toxic products. EGCG also plays a role in the protection of the vascular system, especially endothelial cells (6).

The prolonged healing of wounds is solved by an inflammatory process. The presence of ongoing inflammation produces ROS such as superoxide and hydrogen peroxide. Several studies have shown the function of EGCG in accelerating the healing process by accelerating the inflammatory phase, helping the proliferation phase and making collagen deposition faster. This acceleration forms the effect of EGCG in accelerating blood vessel formation and its anti-inflammatory effect. The use of EGCG helps wound healing through the formation of collagen fibers and angiogenesis and can also regulate the expression of vascular endothelial growth factors. This factor is recognized as the strongest angiogenesis.

In several other studies that state the risk of work which is standing/walking long affects the occurrence of ulcers. In theory, the factor has a big influence on the healing process of plantar ulcers, because one of the management of plantar ulcers is resting the soles of the feet from pressure (immobilization). Patients with plantar ulcers who have jobs that require a lot of
standing/walking for a long time are expected to experience a larger wound healing than patients with plantar ulcers who have jobs that do not require standing/walking for long periods. Other research by Goa and his colleagues regarding trophic ulcers on MH is that there is a relationship between the incidence of ulcers and the amount of pressure on the foot area contained in these ulcers, the higher the pressure in certain areas of the foot, the more the risk of ulcers. The amount of pressure on the feet is affected by body weight, leg surface, movement of the joints and big toe, amputation, degree of anesthesia, the severity of neuropathy, deformity and hypomobility. The longer a person stands/walks and the greater his weight is, the greater is the pressure on the legs. In addition, MH patients, due to autonomic disturbances, experience veni- somotor reflex disorder that controls increased venous pressure when standing by increasing precapillary resistance so that blood flow can be normal. The loss of reflexes results in increased venous pressure resulting in tissue edema that can inhibit wound healing.

In order to be near to the actual situation in this study, immobilization and pressure relief footwear were not advised. The study participants were only asked to reduce prolonged standing or walking. Immobilization of study participants was difficult because they were in a good general condition and had to work. Further studies using appropriate footwear to relieve pressure on ulcers should be undertaken.

There were no complications or side effects due to EGCG 15 in the subjects of the study. The results of this research still have limitations, so it is expected to be developed in the further studies, that is, the experimental analytic research by applying design of randomized controlled clinical trials to compare the gel on ulcer healing CPUL with the treatment offloading in the form of board feet designed specifically to help reduce stress and repetitive mechanical stress that can affect the healing process. In addition, applying additional criteria in selecting a good match between the groups (matching) based on the location of the ulcer and the anatomical structure to reduce bias.

Acknowledgments

This study was supported by the RSUD Dr. Soetomo Teaching Hospital/Medical Faculty of Airlangga University.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

C. R. S. Prakoeswa http://orcid.org/0000-0001-5325-2963

References