Source details # Transactions of the Royal Society of Tropical Medicine and Hygiene CiteScore 2021 2.9 **①** ① × Scopus coverage years: from 1907 to Present Publisher: Oxford University Press ISSN: 0035-9203 E-ISSN: 1878-3503 SJR 2021 0.595 **①** Subject area: (Medicine: Public Health, Environmental and Occupational Health) (Immunology and Microbiology: Parasitology) **SNIP 2021** 0.801 (Medicine: Infectious Diseases) Source type: Journal Save to source list Source Homepage CiteScore View all documents > CiteScore rank & trend Set document alert Scopus content coverage Improved CiteScore methodology CiteScore 2021 counts the citations received in 2018-2021 to articles, reviews, conference papers, book chapters and data papers published in 2018-2021, and divides this by the number of publications published in 2018-2021. Learn more > CiteScore 2021 1,556 Citations 2018 - 2021 540 Documents 2018 - 2021 Calculated on 05 May, 2022 CiteScoreTracker 2022 ① 1,802 Citations to date 577 Documents to date Last updated on 05 October, 2022 • Updated monthly ### CiteScore rank 2021 n View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site & ## **About Scopus** What is Scopus Content coverage Scopus blog Scopus API Privacy matters ## Language 日本語版を表示する 查看简体中文版本 查看繁體中文版本 Просмотр версии на русском языке ### **Customer Service** Help **Tutorials** Contact us ### **ELSEVIER** Terms and conditions eta Privacy policy eta Copyright © Elsevier B.V 对 . All rights reserved. Scopus® is a registered trademark of Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies \mathbb{Z} . Scimago Journal & Country Rank Enter Journal Title, ISSN or Publisher Name Home Journal Rankings Country Rankings Viz Tools Help About Us Advances in Civil Eng. Papers Maximize the Impact, Reach & Visibility of Your Next Paperbublishing With Us Hindawi # Transactions of the Royal Society of Tropical Medicine and Hygiene | COUNTRY | SUBJECT AREA AND CATEGORY | PUBLISHER | H-INDEX | |--|--|----------------------------|--| | United Kingdom Universities and research institutions in United Kingdom | Immunology and
Microbiology
Parasitology | Oxford University
Press | 109 | | | Medicine Infectious Diseases Medicine (miscellaneous) Public Health, Environmental and Occupational Health | | | | PUBLICATION TYPE | ISSN | COVERAGE | INFORMATION | | Journals | 00359203,
18783503 | 1907-2021 | Homepage How to publish in this journal journals@rstmh.org | Open SCOPE Transactions of the Royal Society of Tropical Medicine and Hygiene is an official journal of the Royal Society of Tropical Medicine and Hygiene. It publishes authoritative and impactful original, peer-reviewed articles and reviews on all aspects of tropical medicine. The journal offers a respected voice for clinicians, health-related scientists, development organisations and students in topics including: clinical tropical medicine infectious diseases parasitology and entomology microbiology and virology epidemiology chemotherapy immunology public health, including social science. Q Join the conversation about this journal # Advances in Civil Eng. Papers Maximize the Impact, Reach & Visibility of Your Next Paper by Publish With Us Hindawi Quartiles # Advances in Civil Eng. Papers Maximize the Impact, Reach & Visibility of Your Next Paper by Publish With Us Hindawi FIND SIMILAR JOURNALS ? **American Journal of Tropical Tropical Medicine and Infectious Diseases of PLoS Neglected Medicine and Hygiene Infectious Disease Poverty Diseases** USA CHE **GBR** USA similarity similarity similarity simila # Advances in Civil Eng. Papers Maximize the Impact, Reach & Visibility of Your Next Paper by Publish With Us Hindawi | | Metrics based on Scopus® data as of April 2022 | |-------------------------------|--| | | | | | | | | | | | | | Leave a comment | | | Name | | | Email (will not be published) | | | | | | | | | | | | | | | I'm not a robot | reCAPTCHA | | Submit | Privacy - Terms | The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor. Developed by: Powered by: Follow us on @ScimagoJR Scimago Lab, Copyright 2007-2022. Data Source: Scopus® EST MODUS IN REBUS Horatio (Satire 1,1,106) Edit Cookie Consent # **Transactions of the Royal Society of** # **Tropical Medicine & Hygiene** # Transactions of the Royal Society of Tropical Medicine and Hygiene # Volume 115 Number 12 December 2021 ## **Contents** ## **REVIEW ARTICLES** | Prevention, control and management of leptospirosis in India: an evidence gap map
Deepti Beri, Sandeep Moola, Jagnoor Jagnoor, Abdul Salam and Soumyadeep Bhaumik | 1353 | |--|------| | Gastrointestinal manifestations in COVID-19 Jayani C. Kariyawasam, Umesh Jayarajah, Rishdha Riza, Visula Abeysuriya and Suranjith L. Seneviratne | 1362 | | ORIGINAL ARTICLES | | | Detection of <i>Toxoplasma gondii</i> bradyzoite genes in the peripheral blood mononuclear cells among patients with toxoplasmic chorioretinitis Khadijeh Khanaliha, Alireza Hedayatfar, Sara Minaeian, Farah Bokharaei-Salim, Sayyed Amirpooya Alemzadeh, Saba Garshasbi, Zeinab Fagheei Aghmiyuni and Borna Salemi | 1389 | | Admission ultrasonography as a predictive tool for thrombocytopenia and disease severity in dengue infection Callum D. Donaldson, Sanjay de Mel, Choong Shi Hui Clarice, Basuru Uvindu Thilakawardana, Primesh de Mel, Malka Shalindi, U. Samarasinghe, Chandima de Mel, Lal Chandrasena, Rasanga S. Wijesinha, A. Nirmala I. Wijesinha, Christina Yip, Eng-Soo Yap, Suranjith L. Seneviratne and Visula Abeysuriya | 1396 | | High prevalence of opisthorchiasis in rural populations from Khammouane Province, central Lao PDR: serological screening using total IgG- and IgG4-based ELISA Weeraya Phupiewkham, Rutchanee Rodpai, Somchith Inthavongsack, Sakhone Laymanivong, Tongjit Thanchomnang, Lakkhana Sadaow, Patcharaporn Boonroumkaew, Oranuch Sanpool, Penchom Janwan, Pewpan M. Intapan and Wanchai Maleewong | 1403 | | Cerebral mansoni schistosomiasis: a systematic review of 33 cases published from 1989 to 2019 Igor Silvestre Bruscky, Dayanne Mota Veloso Bruscky, Fabio Lopes de Melo, Zulma Maria Medeiros and Carolina da Cunha Correia | 1410 | | Global scientific research progress in mycetoma: a bibliometric analysis Hassan H. Musa, Taha H. Musa, Ibrahim H. Musa and Idriss H. Musa | 1414 | | The performance of the recombinase polymerase amplification test for detecting Leishmania deoxyribonucleic acid from skin lesions of patients with clinical or epidemiological suspicion of cutaneous leishmaniasis Luz Estella Mesa, Rubén Manrique, Sara M. Robledo, Jessica Tabares, Tatiana Pineda and Carlos Muskus | 1427 | |--|------| | Inadequate community knowledge about sickle cell disease among the Indian tribal population: a formative assessment in a multicentric intervention study Bontha V. Babu, Parikipandla Sridevi, Shaily Surti, Manoranjan Ranjit, Deepa Bhat, Jatin Sarmah, Godi Sudhakar and Yogita Sharma | 1434 | | Molecular and microscopic prevalence of intestinal microsporidia among HIV+/AIDS patients in the Alborz province, Iran Maryam Hosseini Parsa, Saeed Bahadory, Aliehsan Heidari, Alireza Khatami and Amir Bairami | 1445 | | Development of a rapid multiplex PCR assay for the detection of common pathogens associated with community-acquired pneumonia Seok Hwee Koo, Boran Jiang, Pei Qi Lim, My-Van La and Thean Yen Tan | 1450 | | An assessment of the reported impact of the COVID-19 pandemic on leprosy services using an online survey of practitioners in leprosy referral centres Barbara de Barros, Saba M. Lambert, Edessa Negera, Guillermo Robert de Arquer, Anna M. Sales, Joydeepa Darlong, Vivianne L. A. Dias, Benjamin Jewel Rozario, Vivek V. Pai, Medhi Denisa Alinda, M. Yulianto Listiawan, Deanna A. Hagge, Mahesh Shah, Diana N. J. Lockwood and Stephen L. Walker on behalf of the Erythema Nodosum Leprosum International Study Group | 1456 | | Infectivity of patent <i>Plasmodium falciparum</i> gametocyte carriers to mosquitoes: establishing capacity to investigate the infectious reservoir of malaria in a low-transmission setting in The Gambia Abdullahi Ahmad, Harouna M. Soumare, Muhammed M. Camara, Lamin Jadama, Pa Modou Gaye, Haddy Bittaye, John Bradley, Jane Achan, Teun Bousema, Umberto D'Alessandro, Chris Drakeley and Marta Moreno | 1462 | | Subcutaneous mycoses in Ethiopia: a retrospective study in a single dermatology
center Dagim A. Abate, Mesfin H. Ayele and Amel B. Mohammed | 1468 | # Transactions of the Royal Society of Tropical Medicine and Hygiene **Editor-in-Chief** Professor Sir Brian Greenwood London School of Hygiene & Tropical Medicine (UK) ### **Managing Editor** Emma Williams (London, UK) #### **Production Editor** Jane Salisbury (Oxford, UK) #### **Associate Editors** Hesham Al-Mekhlafi (Saudi Arabia) Aleksandra Barac (Serbia) Crispim Cerutti Jnr (Brazil) Mitali Chatterjee (India) Pranab Chatterjee (India) Richard Culleton (Japan) Nick Day (Thailand) Thushan De Silva (UK) Jacqueline Deen (Philippines) Bruno Douradinha (Italy) Philip Hill (New Zealand) Paul Jackson (USA) Vinod Joshi (India) Aparna Lal (Australia) Tom Peto (UK and Thailand) Fred B. Piel (UK) Jennifer Read (USA) Richard Reithinger (USA) Silvia Uliana (Brazil) Hilton Whittle (UK) Michael Wimberly (USA) ### **Editorial Advisors** Francesca D Frentiu (Australia) Roderick Hay (UK) Peter Hotez (USA) Pui-Yin Iroh Tam (Malawi) David Mabey (UK) David Warrell (UK) ### **Statistical Advisor** Richa Mishra (India) Paul Milligan (UK) ### **Editorial Board** Jean-Philippe Chippaux (Cotonou, Bénin, France) John Crump (Dunedin, New Zealand) Peter Daszak (New York, USA) Therese Dooley (New York, USA) Paul Emerson (Seattle, USA) Bobbie Farsides (Brighton, UK) Michelle Gatton (Brisbane, Australia) Simon I Hay (Washington DC, USA) Achim Hoerauf (Bonn, Germany) Poh Lian Lim (Singapore) David Molyneux (Liverpool, UK) Yasmin Rubio-Palis (Maracay, Venezuela) Paul Saunderson (Greenville, USA) Gonzalo M. Vazquez-Prokopec (Atlanta, GA, USA) Sten Vermund (Nashville, USA) Joanne Webster (London, UK) Bridget Wills (Ho Chi Minh City, Vietnam) Hongjie Yu (Beijing, China) ### Aims and Scope Transactions of the Royal Society of Tropical Medicine and Hygiene publishes authoritative and impactful original, peer-reviewed articles and reviews on all aspects of tropical medicine. The journal offers a respected voice for clinicians, health-related scientists, development organisations and students in topics including clinical tropical medicine, infectious disease, parasitology and entomology, microbiology and virology, epidemiology, chemotherapy, immunology and public health. ### **Manuscript Submissions** All manuscripts should be submitted in electronic format via the Journal's online submission and refereeing system, which can be found at: https://www.editorialmanager.com/trstmh/Default.aspx Details on how to submit a manuscript can be found in our Instructions to Authors (available at https://academic.oup.com/trstmh/pages/Manuscript_Instructions). #### Latest content Visit: https://academic.oup.com/trstmh to view papers online ahead of print. Sign up for our free journal alerts at: https://academic.oup.com/sign-in. ### Cover image Anopheles gambiae image supplied by kind permission of Dr James Gathany, CDC. # Transactions of the Royal Society of Tropical Medicine and Hygiene #### Subscription information A subscription to Transactions of the Royal Society of Tropical Medicine and Hygiene comprises 12 issues. Prices include dispatch by Standard Air. Airmail rates are available on request. Transactions of the Royal Society of Tropical Medicine and Hygiene Advance Access contains papers that have recently been accepted but have not yet been included within an issue. Advance Access is updated doily. # Annual subscription rate (Volume 115, 2021) Institutional Print edition and site-wide online access: £1062/\$1428/ $\$ 1285. Print edition only: £976/\$1314/ $\$ 1183. Site-wide online access only: £789/\$1062/ $\$ 954. #### Personal Print edition and individual online access: £215/\$344/€305. Please note: US\$ rate applies to US and Canada, Euros applies to Europe, UK£ applies to UK and Rest of World. There may be other subscription rates available, for a complete listing please visit www.trstmh.oxfordjournals.org/subscriptions. Full prepayment in the correct currency is required for all orders. Payment should be in US dollars for orders being delivered to the USA or Canada; Euros for orders being delivered within Europe (excluding the UK); UK£ for orders being delivered elsewhere (i.e., not being delivered to USA, Canada, or Europe). All orders should be accompanied by full payment and sent to your nearest Oxford Journals office. Subscriptions are accepted for complete volumes only. Orders are regarded as firm, and payments are not refundable. Our prices include dispatch by Standard Air. Claims must be notified within four months of dispatch/order date (whichever is later). Subscriptions in the EEC may be subject to European VAT. If registered, please supply details to avoid unnecessary charges. For subscriptions that include online versions, a proportion of the subscription price may be subject to UK VAT. Subscribers in Canada, please add GST to the prices quoted. Personal rate subscriptions are only available if payment is made by personal cheque or credit card, delivery is to a private address, and is for personal use only. The current year and two previous years issues are available from Oxford Journals. Previous volumes can be obtained from the Periodicals Service Company at http://www.periodicals.com/oxford.html or Periodicals Service Company, 11 Main Street, Germantown, NY 12526, USA. E-mail: psc@periodicals.com. Tel: (518) 537-4700. Fax: (518) 537-5899. For further information, please contact: Journals Customer Service Department, Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. E-mail: jnls. cust.serv@oup.com. Tel (and answerphone outside normal working hours): +44 (0) 1865 353907. Fax: +44 (0)1865 353485. In the Americas, please contact: Journals Customer Service Department, Oxford University Press, 2001 Evans Road, Cary, NC 27513, USA. E-mail: jnlorders@oup.com. Tel (and answerphone outside normal working hours): 800 852 7323 (toll-free in USA/Canada). Fax: 919 677 1714. In Japan, please contact: Oxford University Press, Tokyo 4-5-10-8F Shiba, Minato-ku, Tokyo 108-8386 Japan. Email: custserv.jp@oup.com. Tel: +81 3 5444 5858. Fax: +81 3 3454 2929. Methods of payment Payment should be made by: (i) Cheque (payable to Oxford University Press, to Oxford University Press, Cashiers Office, Great Clarendon Street, Oxford OX2 6DP, UK) in UK£ (drawn on a UK bank), US\$ Dollars (drawn on a US bank), or EU€ Euros. (ii) Bank transfer to Barclays Bank Plc, Oxford Group Office, Oxford (bank sort code 20-65-18) (UK), overseas only Swift code BARC GB22 (UK£ to account no. 70299332, IBAN GB89BARC 20651870299332; US\$ Dollars to account no. 66014600, IBAN GB27BARC 20651866014600; EU€ Euros to account no. 78923655, IBAN GB16BARC 20651878923655). (iii) Credit card (Mastercard, Visa, Switch or American Express). #### **Postal information** Transactions of the Royal Society of Tropical Medicine and Hygiene (ISSN: 0035-9203) is published monthly by Oxford University Press. Annual subscription price is £907/ US\$1221/€1099. Transactions of the Royal Society of Tropical Medicine and Hygiene is air-freighted and mailed in the USA by Air Business Ltd, c/o Worldnet Shipping Inc., 156–15, 146th Avenue, 2nd Floor, Jamaica, NY 11434, USA. Periodicals postage paid at Jamaica NY 11431. US Postmaster: Send address changes to *Transactions of the Royal Society of Tropical Medicine and Hygiene*, Air Business Ltd, c/o Worldnet Shipping Inc., 156–15, 146th Avenue, 2nd Floor, Jamaica, NY 11434, USA. Air Business Ltd is acting as our mailing agent. #### **Environmental and ethical policies** Oxford Journals, a division of Oxford University Press, is committed to working with the global community to bring the highest quality research to the widest possible audience. Oxford Journals will protect the environment by implementing environmentally friendly policies and practices wherever possible. Please see https://academic.oup.com/journals/pages/about_us/ethical_policies for further information on environmental and ethical policies. #### Digital object identifiers For information on dois and to resolve them, please visit www.doi.org. #### **Permissions** For information on how to request permissions to reproduce articles or information from this journal, please visit https://academic.oup.com/journals/pages/access_purchase/rights and permissions. ### **Advertising** Advertising, inserts, and artwork enquiries should be addressed to Advertising and Special Sales, Oxford Journals, Oxford University Press, Great Clarendon Street, Oxford, OX2 6DP, UK. Tel: +44 (0)1865 354767; Fax: +44 (0)1865 353774; E-mail: jnlsadvertising@oup.com. #### Disclaimer Statements of fact and opinion in the articles in *Transactions of the Royal Society of Tropical Medicine and Hygiene* are those of the respective authors and contributors and not of the Royal Society of Tropical Medicine and Hygiene or Oxford University Press. Neither Oxford University Press nor the Royal Society of Tropical Medicine and Hygiene make any representation, express or implied, in respect of the accuracy of the material in this journal and cannot accept any legal responsibility or liability for any errors or omissions that may be made. The reader should make her or his own evaluation as to the appropriateness or otherwise of any experimental technique described. © 2021 the Royal Society of Tropical Medicine and Hygiene Typeset by Aptara Inc, Virginia, USA Printed by Bell and Bain Ltd, Glasgow, UK # An assessment of the reported impact of the COVID-19 pandemic on leprosy services using an online survey of practitioners in leprosy referral centres Barbara de Barros (10,4)*, Saba M. Lambert (10,4)*, Edessa Negera (10,4)*, Guillermo Robert de Arquerc, Anna M. Salesd, Joydeepa Darlong (10,4)*, Vivianne L. A. Diasd, Benjamin Jewel Rozariof, Vivek V. Pai (10,4)*, Medhi Denisa Alinda (10,4)*, M. Yulianto Listiawan (10,4)*, Deanna A. Hagge (10,4)*, Mahesh Shah (10,4)*, Diana N. J. Lockwood (10,4)*, Stephen L. Walker (10,4)*, on behalf of the Erythema
Nodosum Leprosum International Study Group ^aDepartment of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; ^bDepartment of Dermatology, ALERT Center, Addis Ababa, Ethiopia; ^cLepra, UK; ^dLeprosy Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil; ^eLeprosy Mission Trust India, New Delhi, India; ^fDepartment of Medicine, Leprosy Mission International, Dhaka, Bangladesh; ^gBombay Leprosy Project, Mumbai, India; ^hDepartment of Dermatology and Venereology, Faculty of Medicine Universitas Airlangga, Dr Soetomo Teaching Hospital, Surabaya, Indonesia; ⁱDepartment of Dermatology and Mycobacterial Research Laboratories, Leprosy Mission Nepal, Anandaban Hospital, Kathmandu, Nepal *Corresponding author: Tel: +44(0)2079272316; E-mail: barbara.de-barros@lshtm.ac.uk †The other members of the Erythema Nodosum Leprosum International Study Group are listed in the acknowledgements. Received 15 March 2021; revised 12 May 2021; editorial decision 13 May 2021; accepted 17 May 2021 **Background:** The coronavirus disease 2019 (COVID-19) pandemic has led to governments implementing a variety of public health measures to control transmission and has affected health services. Leprosy is a communicable neglected tropical disease caused by *Mycobacterium leprae* and is an important health problem in lowand middle-income countries. The natural history of leprosy means that affected individuals need long-term follow-up. The measures recommended to reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can create barriers to health services. We evaluated the impact of the COVID-19 epidemic response on leprosy services and disease management. **Methods:** We conducted a cross-sectional online survey with healthcare professionals in leprosy referral centres. **Results:** Eighty percent of leprosy diagnostic services were reduced. All respondents reported that multidrug therapy (MDT) was available but two reported a reduced stock. Clinicians used alternative strategies such as telephone consultations to maintain contact with patients. However, patients were not able to travel to the referral centres. **Discussion:** This study highlights the effects of the initial phase of the SARS-CoV-2 pandemic on leprosy services in a range of leprosy-endemic countries. Many services remained open, providing leprosy diagnosis, MDT and leprosy reaction medications. Centres developed innovative measures to counter the negative impacts of the COVID-19 pandemic. **Keywords:** COVID-19, health services, leprosy, leprosy referral centres, neglected tropical diseases, pandemic ### Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reported to have caused >103 943 000 infections and 2 255 000 deaths¹ through February 2021. The pandemic has led to governments implementing a variety of public health measures to control transmission and has affected health services, economies and social cohesion. Epidemics can lead to severe impacts on health services. The Ebola virus disease outbreak of 2014–16 was associated with high mortality and had a devastating effect on healthcare workers and healthcare service delivery² in West Africa. It is estimated that deaths due to human immunodeficiency virus, malaria and tuberculosis increased.³ Maternal and neonatal mortality significantly increased^{4,5} and reduced access to services affected those with chronic non-communicable diseases (NCDs).⁶ Leprosy is a complex, communicable neglected tropical disease (NTD) caused by Mycobacterium leprae, which has chronic features giving it similarities to NCDs. Leprosy remains an important health problem in low- and middle-income countries (LMICs) and 202 185 new cases of leprosy were reported to the World Health Organization (WHO) in 2019.8 India reported the largest number of new cases, followed by Brazil and Indonesia.8 Leprosy causes a range of clinical presentations and if not diagnosed early can lead to permanent disability. 9 Multidrug therapy (MDT) is an effective combination of three antimicrobials rifampicin, clofazimine and dapsone—provided free to patients.¹⁰ MDT is prescribed for 6 or 12 months. However, even with successful treatment, individuals are at risk of developing leprosy immune-mediated complications known as 'reactions', which are a risk factor for permanent nerve damage and may be associated with increased mortality. 11-14 Reactions require immunosuppression, usually with oral corticosteroids, which can cause adverse effects. The natural history of leprosy means that affected individuals need long-term follow-up. 12-14 The measures recommended to reduce transmission of SARS-CoV-2, such as isolation, social distancing and restrictions on movement, create barriers to accessing healthcare in addition to those normally present. NTDs disproportionately affect the most socially and economically vulnerable individuals in LMICs, who already experience considerable barriers to accessing health services. ^{15,16} The fear of SARS-CoV-2 infection, reduced availability of services due to restructuring of healthcare provision and reduced staffing may limit access or result in the closure of services. The WHO issued interim guidance for implementation of NTD programmes (including leprosy) on 1 April 2020 that recommended the postponement of NTD surveys, active surveillance activities and community campaigns. ¹⁷ In July 2020, guidelines were published recommending risk assessment and thorough planning to restart only essential activities. ¹⁸ The impact of service interruptions on NTD control and disability is unknown. We evaluated the COVID-19 epidemic response, the impact of COVID-19 on leprosy services and disease management and mechanisms of support available for the clients of leprosy services at referral centres. ### Methods A cross-sectional online survey was conducted between 19 May and 7 July 2020. A short, structured, online questionnaire comprised of six sections with 54 questions was designed using RED-Cap (Appendix 1). The responses were a combination of multiple choice and free-text responses. The themes of the questions in the six sections were leprosy service provision; treatment of leprosy during COVID-19; COVID-19 information and control measures; COVID-19 diagnosis, management and precautions; COVID-19 among patients with leprosy and financial support. The London School of Hygiene and Tropical Medicine Observational/Interventions Research Ethics Committee advised that no ethical approval was necessary because this work is a service evaluation. ### **Participants** The members of the Erythema Nodosum Leprosum International Study (ENLIST) Group (a network of leprosy collaborating centres), ¹⁹ based in institutions supported by Lepra, ²⁰ a UK-based charity that supports leprosy work in Bangladesh, India, Mozambique and Zimbabwe, and other leprologists from our networks were invited to participate. The invitation was distributed by e-mail with a link to the online questionnaire. All participants were informed of the objectives of the evaluation. ### Data analysis All responses were anonymised and analysed using descriptive statistics. ### **Results** Forty-four invitations to complete the survey were sent to individuals working at institutions in Bangladesh, Brazil, Democratic Republic of Congo (DRC), Ethiopia, India, Indonesia, Nepal, Nigeria, Sri Lanka and the USA. Twenty-one completed responses were obtained from centres in Bangladesh (n=3), Brazil (n=4), DRC (n=2), Ethiopia (n=1), India (n=8), Indonesia (n=1), Nigeria (n=1) and Sri Lanka (n=1). ### Leprosy service provision There was variation between centres in the range of services provided. All respondents reported some disruption to their services, such as surgical services and community-based activities. Table 1 shows the services normally provided and the extent to which they were affected (not affected, reduced, closed). Sixteen of 20 (80%) leprosy diagnostic services were reduced and only 1 (5%) closed. All respondents reported that MDT drugs were available, but two (13%) reported a reduced stock. Respondents highlighted that treatment was available but factors such as restrictions on travel changed working practices. 'Patient movement is restricted due to lockdown situation, so MDT blister is handed over to each patient for 2–3 months together'. Seven of eight (87%) reconstructive surgery services suspended their activities. Community-based activities, such as active case finding, and delivery of single-dose rifampicin chemoprophylaxis to the contacts of leprosy patients were suspended by 76.9% and 66.7% of the services, respectively. Six respondents reported suspension of other activities, including slit skin smear (n=1), ulcer management (n=2), rehabilitation (n=2), counselling (n=1), community-based rehabilitation (n=1), income generation activities (n=1), training of medical officers and community healthcare workers (n=2), academic activities (n=1) and research (n=2). The changes to services were communicated to service users: 'We called all patients to explain the situation and reschedule them...'. **Table 1.** Leprosy services availability during the COVID-19 pandemic | Service normally provided (n) | Institutional impact | | | | |---|-----------------------------|------------------------|-----------------------|---------------------| | | Service not affected, n (%) | Reduced service, n (%) | Service closed, n (%) | Not answered, n (%) | | Leprosy diagnosis (20) | 3 (15.0) | 16 (80.0) | 1 (5.0) | _ | | MDT provision (15) ^a | 13 (86.7) | 2 (13.3) | 0 | - | | MDT access (15) | 7 (46.7) | 6 (40) | 2 (13.3) | - | | Reaction clinic (18) | 5 (27.8) | 12 (66.7) | 1 (5.6) | - | | Reaction inpatient (18) | 5 (27.8) | 5 (27.8) | 2 (11.1) | 6 (33.3) | | Physiotherapy (18) | 1 (11.1) | 12 (66.7) | 3 (16.7) | 1 (5.6) | |
Orthotics (13) | 4 (30.8) | 7 (53.8) | 2 (15.4) | - | | Reconstructive surgery (8) | 1 (12.5) | 0 | 7 (87.5) | - | | Active case finding (13) | 0 | 3 (23.1) | 10 (76.9) | - | | Single-dose rifampicin chemoprophylaxis (3) | 0 | 1 (33.3) | 2 (66.7) | - | ^aMDT provision was characterised as not affected, reduced stock or out of stock. Table 2. The accessibility of MDT and drug therapy for leprosy reactions during the COVID-19 pandemic in leprosy referral centres | | Centres (N=21) | | | | |---|----------------|-----------|--------------------|--| | Question | Yes, n (%) | No, n (%) | No response, n (%) | | | Can most patients obtain MDT during social restrictions? | 14 (66.7) | 4 (19) | 3 (14.3) | | | Can most patients obtain MDT in your institution? | 11 (73.3) | 2 (13.3) | 2 (13.3) | | | Can most patients obtain MDT in their local clinic? | 12 (57.1) | 6 (28.6) | 3 (14.3) | | | Were patients taking a larger MDT supply than normal? | 10 (66.7) | 4 (26.7) | 1 (6.1) | | | Can most patients obtain reaction medication during lockdown? | 12 (66.6) | 4 (22.2) | 2 (11.1) | | | Can most patients obtain reaction medication in your institution? | 13 (72.2) | 3 (16.7) | 2 (11.1) | | | Were patients taking reaction medication given a larger supply? | 8 (72.2) | 5 (27.8) | 5 (27.8) | | | Can most patients obtain reaction medication in their local clinic? | 11 (52.4) | 7 (33.3) | 3 (14.3) | | Only one respondent reported staff absence due to COVID-19 illness. Five centres had their staff redeployed to pandemic response activities. ### **Treatment of leprosy during COVID-19** Table 2 shows responses concerning treatment access. Fourteen of 21 (66.7%) respondents reported that patients could access MDT during social restrictions and 12 (57%) respondents reported patients obtained MDT in their local clinic. Only 11 (52%) respondents reported that reaction medication was provided in local clinics. Eighteen respondents (85%) reported the provision of reaction medication; all of them provided corticosteroids, 7 (38%) provided thalidomide, 9 (50%) provided clofazimine and 3 (17%) provided other reaction medications such as methotrexate and azathioprine. The thalidomide supply was not affected, however, in one centre, patients were unable to collect the medication. The clofazimine supply was reduced in two (22%) centres and out of stock in one centre (11%). The supply of oral corticosteroids was reported to be reduced in two centres (11%) because of the impact of the pandemic. Overall, five respondents (28%) stated that patients were unable to collect medication. The difficulty in maintaining a supply of reaction medications is characterised in the following quote: 'Anti-inflammatory drugs availability affected as the drug was in short supply and supply could not be ensured due to restricted transport in view of lockdown'. The responses about arrangements for monitoring patients during social and travel restrictions showed that clinicians at 15 of 21 (71%) centres contacted patients by telephone. All centres developed strategies to remotely support the welfare of leprosy patients, such as actively contacting vulnerable individuals, establishing telephone helplines or via social media platforms such as WhatsApp. This innovation was described by one respondent: 'We are providing medical orientation about treatment with the patients via WhatsApp'. All respondents described reduced attendance by patients due to transport and travel restrictions: 'Travel restrictions have been the hugest issue limiting travel for patients and pushing us to think of ways of doing things by distance'. Thirteen of 21 (62%) respondents reported providing a written summary of the diagnosis and treatment to their patients should the need arise for them to consult a healthcare professional or person in authority about their condition. ### **COVID-19 public information and control measures** Public information about COVID-19 was available through a variety of media: television, radio, posters and social media platforms such as Facebook and Twitter. All respondents reported some kind of restriction measures implemented by local or national authorities and 17 of 21 (81%) respondents reported measures including social distancing, the use of masks in public places, shielding of vulnerable individuals, travel restrictions and curfews. Eleven respondents (52%) reported COVID-19 information produced specifically for leprosy patients by a variety of agencies: the WHO country office (n=3), Ministry of Health (n=2), leprosy or other specialist professional society (n=2), International Federation of Anti-Leprosy Associations (ILEP)/ILEP Technical Committee (ITC) document (n=3) or produced by clinicians at the institution (n=3). ### COVID-19 diagnosis, management and precautions The criteria used to diagnose COVID-19 varied among the respondents. Seven centres (33%) reported the use of clinical criteria: symptoms, signs and low oxygen saturation. Various tests of infection were reported to be available: nasal/throat swab polymerase chain reaction (PCR) tests (n=18), enzyme-linked immunosorbent assay serology tests (n=5) and point-of-care tests (n=3). In five centres, both PCR and serology tests were available. Measures to reduce the risk of transmission of SARS-CoV-2 in leprosy clinics were described in the majority of organisations. All but two centres recommended some type of personal protective equipment: masks (n=14), surgical masks (n=11), filtering face piece 3 (FFP3) or N95 respirators (n=9), visors or goggles (n=9), aprons (n=8), gowns (n=6) and disposable gloves (n=14). 'We spaced the appointment time and guided the use of masks to all patients of the institution'. COVID-19 patients were managed at six of the centres (28%) that provided general medical care as well as leprosy services. ### **COVID-19 and leprosy patients** Six individuals with leprosy at 5 of the 21 (23.8%) centres had been diagnosed with COVID-19. No deaths related to COVID-19 in this group were reported. One respondent expressed surprise about the low numbers of leprosy patients affected: "...we are surprised that patients in use of prednisone and thalidomide are not been widely affected by COVID-19". The respondents expressed concern about immunosuppression for the management of leprosy reactions exacerbating SARS-CoV-2 infection: 'We also try as far as possible to avoid using immunosuppressants'. ### Financial support Financial support was provided for leprosy-affected individuals to mitigate the effects of COVID-19 in all countries but one by a variety of agencies both governmental (n=8) and non-governmental (n=3), including affected persons organisations (n=1). Funds were also raised by voluntary contributions from communities (n=8) to provide financial support. One respondent outlined various strategies, including food donation, obtaining masks and hand sanitizer and providing information about government schemes. ### **Discussion** This study highlights the impact of the initial phase of the SARS-CoV-2 pandemic on leprosy services in a range of leprosy-endemic countries. Many services remained open, providing leprosy diagnosis, MDT and leprosy reaction medications. However, patients were unable to travel to the centres. Other services such as reconstructive surgery were closed. Referral centres developed innovative measures to counter the negative impact. Our data confirm the concerns of researchers and organisations regarding the impact of COVID-19 on NTDs,²¹ including leprosy.²²⁻²⁴ Mahato et al.²⁴ emphasised the impact of social distancing, travel restrictions and lockdown measures on healthcare access, community activities and stigma on leprosy-affected individuals in Nepal. COVID-19 and the public health measures implemented created barriers to the access of leprosy services due to difficulties in travelling to centres for care and reduced or closed services. There was a reduction of all services essential to the case management of leprosy and other strategic interventions outlined in the WHO NTD Roadmap, both clinic and community based. ²⁵ Community activities are not only important for early case detection, but also facilitate the reduction in stigma and promote well-being for affected individuals and their families. MDT and drugs used to treat leprosy reactions were mostly available in the referral centres and some at local healthcare facilities. Travel restrictions suggested that more individuals needed to rely on local services to provide essential care, such as diagnosis and management. Reduced access to leprosy care due to COVID-19 will result in additional delays in the diagnosis of leprosy and its complications. The closure of inpatient services for the management of leprosy reactions has a greater impact when there are travel restrictions in settings where patients have to travel considerable distances. The chronic complications of leprosy, such as neuropathic ulceration and osteomyelitis, if left untreated, lead to loss of tissue and function. It may be that on resumption of normal activity there may be a more severe burden of such complications requiring treatment. A survey of National Leprosy Programme managers initiated in April 2020 by the Global Partnership for Zero Leprosy (GPZL) reported that 34 respondents highlighted similar issues concerning MDT supply and access, reaction medication and ulcer and disability care. ²⁶ Travel restrictions and health systems focussing on treatment and control of COVID-19 has resulted in reduced detection of leprosy and may result in an increased burden of disability in the coming years.²⁷ Before the pandemic, in one cohort, 40% of multibacillary patients with normal nerve function at the time of diagnosis of leprosy developed leprosy reactions and/or nerve function impairment that required prompt management.²⁸ The expertise to diagnose leprosy reactions and institute
treatment is not widely available and may lead to delays that increase the risk of permanent nerve damage and disability.²⁹ In individuals already established on MDT and/or leprosy reaction treatment, it is uncertain whether monitoring for adverse effects would be maintained. There is the potential for those on long-term corticosteroids to experience an interruption of treatment with the risk of severe adrenal insufficiency. A consultation process with leprosyaffected individuals and their organisations was conducted by the GPZL in April and May 2020. It received no reports of patients being provided with extended courses of reaction medication, in contrast to some National Leprosy Programme representatives reporting dispensing up to a 3-month supply of MDT.³⁰ Our non-systematic data of low numbers of leprosy service users being affected by COVID-19 is in keeping with retrospective data from Brazil during the same period.³¹ However, Santos et al.³¹ reported that all four leprosy-affected individuals died due to COVID-19, in contrast with no deaths reported by our respondents. None of these 10 cases were associated with leprosy reactions. Antunes et al.³² postulated that SARS-CoV-2 infection may trigger leprosy reactions, but data supporting this has not yet emerged. The restricted access to diagnosis and no requirement for reporting leprosy reactions means there may be no conclusive answer. We are not aware of any reports of a significant association between severe COVID-19 and treatment for leprosy reactions despite this being a concern of our respondents and others. ^{33,34} Interestingly, a report of nosocomially acquired SARS-COV-2 infection in a 26-year-old man with erythema nodosum leprosum treated with methotrexate and systemic corticosteroids describe a mild COVID-19 illness and favourable outcome. ³⁵ Since our data were collected, short-course dexamethasone has been shown to reduce mortality in hospitalized patients with COVID-19.³⁶ The responses to our questionnaire illustrate innovative strategies and versatility employed by organisations providing services to leprosy-affected individuals. The frequency of clinic visits was reduced, medical summaries were given to patients and MDT was supplied for longer periods. The use of technology to facilitate telemedicine and provide non-clinical support to service users demonstrates a potential positive impact of the COVID-19 pandemic.³⁷ The incorporation of some adaptations of service delivery may have long-term benefits to service users, staff and organisations. The limitations of our study are that it was conducted in the early phase of the COVID-19 pandemic and data were only pro- vided on a single occasion. Respondents may not have included important examples of the impact of COVID-19 that were not specifically covered by the questions in the survey. The respondents' organisations provide leprosy services in referral settings and so we are unable to provide a complete picture of the impact of COVID-19 on leprosy in local settings. Nevertheless, we have gathered data from clinical settings in a wide variety of leprosyendemic settings that demonstrate the impact of COVID-19 on services and the changes required to meet a range of challenges. The development of efficacious vaccines against SARS-CoV-2 is very welcome, however, it is unclear when these will be widely available in many leprosy-endemic settings.³⁸ Leprosy services have been identified among the essential services that should be protected during the COVID-19 pandemic.³⁹ The maintenance of essential leprosy services and minimising barriers to access of services needs to be a priority for all agencies involved in their delivery. Measures to combat the transmission of COVID-19 will be necessary for the foreseeable future. Our data complement those generated by the GPZL. The need for continued advocacy is required to ensure policymakers are aware of the disproportionate impact public health measures may have on economically vulnerable and stigmatised individuals who need access to long-term health interventions provided by specialist services. **Authors' contributions:** This survey was conceptualised from virtual discussions by the authors. BdB and EN did the first data analysis. BdB and SLW wrote the first draft. All authors edited the manuscript and approved the final draft. **Acknowledgments:** We are grateful to our colleagues around the world who completed the questionnaire and continue to provide care for those affected by leprosy in very challenging circumstances. The membership of the ENLIST group also includes: Shimelis Doni, Kapil Neupane, José Augusto da Costa Nery, Armi Maghanoy, Marivic Balgon and C. Ruth Butlin. We also would like to acknowledge Geoff Prescott, from Lepra. **Funding:** No specific funding was used for this survey. BdB is supported by the Hospital and Homes of St. Giles (grant ITCRZM25). Competing interests: None declared. **Ethical approval:** Not required. **Data availability:** The dataset generated and analysed during the current study is available from the corresponding author on reasonable request. ### References - 1 Johns Hopkins University & Medicine. Coronavirus Resource Center. Available from: https://coronavirus.jhu.edu/map.html [accessed 3 February 2021]. - 2 Delamou A, Delvaux T, El Ayadi AM, et al. Public health impact of the 2014–2015 Ebola outbreak in West Africa: seizing opportunities for the future. BMJ Global Health. 2017;2:e000202. - 3 Parpia AS, Ndeffo-Mbah ML, Wenzel NS, et al. Effects of response to 2014—2015 Ebola outbreak on deaths from malaria, HIV/AIDS, and tuberculosis, West Africa. Emerg Infect Dis. 2016;22(3):433–41. - 4 Delamou A, Ayadi AME, Sidibe S, et al. Effect of Ebola virus disease on maternal and child health services in Guinea: a retrospective observational cohort study. Lancet Global Health. 2017;5(4):e448–57. - 5 Sochas L, Channon AA, Nam S. Counting indirect crisis-related deaths in the context of a low-resilience health system: the case of maternal and neonatal health during the Ebola epidemic in Sierra Leone. Health Policy Plan. 2017;32(Suppl 3):iii32–9. - 6 Koroma IB, Javadi D, Hann K, et al. Non-communicable diseases in the Western Area District, Sierra Leone, following the Ebola outbreak. F1000Research. 2019;8:795. - 7 Lockwood DNJ. Chronic aspects of leprosy-neglected but important. Trans R Soc Trop Med Hyg. 2019;113(12):812–6. - 8 World Health Organization. Global leprosy (Hansen disease) update, 2019: time to step-up prevention initiatives. Wkly Epidemiol Rec 2020;95(36):417–40. - 9 Walker SL, Withington SG, Lockwood DNJ. Leprosy. In: Farrar J, Hotez PJ Junghanss T, et al., editors. Manson's tropical diseases, 23rd ed. Philadelphia: Saunders; 2013, p. 506–18. - 10 World Health Organization. Guidelines for the diagnosis, treatment and prevention of leprosy. Geneva: World Health Organization; 2017. - 11 Saunderson P. The epidemiology of reactions and nerve damage. Lepr Rev. 2000;71(Suppl):S106–10. - 12 Walker SL, Lebas E, Doni SN, et al. The mortality associated with erythema nodosum leprosum in Ethiopia: a retrospective hospital-based study. PLoS Negl Trop Dis. 2014;8(3):e2690. - 13 Lambert SM, Alembo DT, Lockwood DNJ, et al. Comparison of efficacy and safety of ciclosporin to prednisolone in the treatment of erythema nodosum leprosum: two randomised, double blind, controlled pilot studies in Ethiopia. PLoS Negl Trop Dis. 2016;10(2):e0004149. - 14 Lambert SM, Alembo DT, Lockwood DNJ, et al. A randomized controlled double blind trial of ciclosporin versus prednisolone in the management of leprosy patients with new type 1 reaction, in Ethiopia. PLoS Negl Trop Dis. 2016;10(4):e0004502. - 15 Sermrittirong S, Van Brakel WH. Stigma in leprosy: concepts, causes and determinants. Lepr Rev. 2014;85(1):36–47. - 16 Chandler DJ, Hansen KS, Mahato B, et al. Household costs of leprosy reactions (ENL) in rural India. PLoS Negl Trop Dis. 2015;9(1):1–13. - 17 World Health Organization. COVID-19: WHO issues interim guidance for implementation of NTD programmes. Available from: https://www.who.int/neglected_diseases/news/COVID19-WHO-interim-guidance-implementation-NTD-programmes/en/ [accessed 1 September 2020]. - 18 World Health Organization. Considerations for implementing mass treatment, active case-finding and population-based surveys for neglected tropical diseases in the context of the COVID-19 pandemic interim guidance. Geneva: World Health Organization; 2020. - 19 Walker SL, Saunderson P, Kahawita IP, et al. International workshop on erythema nodosum leprosum (ENL)—consensus report; the formation of ENLIST, the ENL international study group. Lepr Rev. 2012;83(4):396–407. - 20 Lepra. Available from: https://www.lepra.org.uk/ [accessed 25 May 2021] - 21 de Souza DK, Picado A, Biéler S, et al. Diagnosis of neglected tropical diseases during and after the COVID-19 pandemic. PLoS Negl Trop Dis. 2020;14(8):e0008587. - 22 Lepra. Impact of COVID-19 in leprosy. Available from: https://www.lepra.org.uk/news/article/the-impact-of-covid-19-on-leprosy [accessed 1 February 2021]. - 23 Anand S, Mamidi R, Biswas P. Early impact of COVID-19: observations from an integrated WASH and NTD project in two south-eastern states in India. Lepr Rev. 2020;91(3):295–8. - 24 Mahato S, Bhattarai S, Singh R. Inequities towards leprosy-affected people: a challenge during COVID-19 pandemic. PLoS Negl Trop Dis. 2020;14(7):e0008537. - 25 World Health Organization. Ending the neglected to attain the Sustainable Development Goals: a roadmap for neglected tropical diseases 2021–2030. Geneva: World Health Organization; 2020. - 26 Cavalieroa A, Quaob B. GPZL Working Group 1 assesses challenges and a path forward for leprosy during COVID-19. Lepr Rev. 2020;91(4): 421-4. - 27 Arquer GR, Kumar A, Singh RK, et al. COVID-19 and leprosy new case detection in India. Lepr Rev. 2021;92(1):88–91. - 28 Smith WCS, Nicholls PG, Das L, et al. Predicting neuropathy and reactions in
leprosy at diagnosis and before incident events results from the INFIR cohort study. PLoS Negl Trop Dis. 2009;3(8):e500. - 29 Raffe SF, Thapa M, Khadge S, et al. Diagnosis and treatment of leprosy reactions in integrated services—the patients' perspective in Nepal. PLoS Negl Trop Dis. 2013;7(3):e2089. - 30 Tucker A, Cruz A, Duck M, et al. Persons affected by leprosy and the COVID-19 global health crisis: a consultative calls report from GPZL's emergency response working group 2. Lepr Rev. 2020;91(4): 425–30. - 31 Santos VS, Quintans-Júnior LJ, Barboza WS, et al. Clinical characteristics and outcomes in patients with COVID-19 and leprosy. J Eur Acad Dermatology Venereol. 2021;35(1):e1–2. - 32 Antunes DE, Goulart IMB, Goulart LR. Will cases of leprosy reaction increase with covid-19 infection? PLoS Negl Trop Dis. 2020;14(7):e0008460. - 33 Sociedade Brasileira de Hansenologia. Guidelines to doctors of the Brazilian Society of Hansen's disease (SBH) on the possibility of coinfection leprosy and COVID-19. Available from: www.sbhansenologia.org.br [accessed 25 May 2021]. - 34 Rathod S, Suneetha S, Narang T, et al. Management of leprosy in the context of COVID-19 pandemic: recommendations by SIG Leprosy (IADVL Academy). Indian Dermatol Online J. 2020;11(3):345–8. - 35 Saxena S, Khurana A, Savitha B, et al. Severe type 2 leprosy reaction with COVID-19 with favourable outcome despite continued use corticosteroids and methotrexate and a hypothesis on the possible immunological consequences. Int J Infect Dis. 2021;103:549–51. - 36 Horby P, Lim WS, Emberson J, et al. Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. N Engl J Med. 2021;384(20):693–704. - 37 Hoffer-Hawlik MA, Moran AE, Burka D, et al. Leveraging telemedicine for chronic disease management in low- and middle-income countries during Covid-19. Glob Heart. 2020;15(1):63. - 38 Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force Members.Urgent needs of low-income and middle-income countries for COVID-19 vaccines and therapeutics. Lancet. 2021;397(10274):562–4. - 39 Blanchet K, Alwan A, Antoine C, et al. Protecting essential health services in low-income and middle-income countries and humanitarian settings while responding to the COVID-19 pandemic. BMJ Glob Heal. 2020;5(10):e003675.