Source details

International Journal of Laboratory Hematology
Formerly known as: Clinical and Laboratory Haematology
Scopus coverage years: from 2007 to Present
Publisher: Wiley-Blackwell
ISSN: 1751-5521 E-ISSN: 1751-553X
Subject area:
- Medicine: Hematology
- Medicine: Biochemistry (medical)
- Biochemistry, Genetics and Molecular Biology: Clinical Biochemistry
Source type: Journal

CiteScore 2021
3.7

SJR 2021
0.678

SNIP 2021
1.192

CiteScore rank & trend

CiteScore 2021 counts the citations received in 2018-2021 to articles, reviews, conference papers, book chapters and data papers published in 2018-2021, and divides this by the number of publications published in 2018-2021. Learn more

CiteScore Tracker 2022
4.0

Last updated on 05 January, 2023 - Updated monthly

CiteScore rank 2021

<table>
<thead>
<tr>
<th>Category</th>
<th>Rank</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine - Hematology</td>
<td>#61/126</td>
<td>51st</td>
</tr>
<tr>
<td>Medicine - Biochemistry (medical)</td>
<td>#33/61</td>
<td>46th</td>
</tr>
<tr>
<td>Biochemistry, Genetics and Molecular Biology</td>
<td>#75/115</td>
<td>35th</td>
</tr>
</tbody>
</table>

View CiteScore methodology CiteScore FAQ Add CiteScore to your site
International Journal of Laboratory Hematology

COUNTRY
United Kingdom

SUBJECT AREA AND CATEGORY
- Biochemistry, Genetics and Molecular Biology
 - Clinical Biochemistry
- Medicine
 - Biochemistry (medical)
 - Hematology
 - Medicine (miscellaneous)

PUBLISHER
Wiley-Blackwell Publishing Ltd

H-INDEX
60

PUBLICATION TYPE
Journals

ISSN
17515521, 1751553X

COVERAGE
2007-2021

SCOPE
The International Journal of Laboratory Hematology provides a forum for the communication of new developments, research topics and the practice of laboratory haematology. The journal publishes invited reviews, full length original articles, and correspondence. The International Journal of Laboratory Hematology is the official journal of the International Society for Laboratory Hematology, which addresses the following sub-disciplines: cellular analysis, flow cytometry, haemostasis and thrombosis, molecular diagnostics, haematology informatics, haemoglobinopathies, point of care testing, standards and guidelines. The journal was launched in 2006 as the successor to Clinical and Laboratory Hematology, which was first published in 1979. An active and positive editorial policy ensures that work of a high scientific standard is reported, in order to bridge the gap between practical and academic aspects of laboratory haematology.

Join the conversation about this journal

Similar Journals

<table>
<thead>
<tr>
<th>Rank</th>
<th>Journal Title</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Indian Journal of Hematology and Blood Transfusion</td>
<td>69%</td>
</tr>
<tr>
<td>2</td>
<td>Hematology</td>
<td>67%</td>
</tr>
<tr>
<td>3</td>
<td>Blood Reviews</td>
<td>67%</td>
</tr>
<tr>
<td>4</td>
<td>Blood Research</td>
<td>66%</td>
</tr>
<tr>
<td>5</td>
<td>Acta Haematologica</td>
<td>65%</td>
</tr>
</tbody>
</table>
Editorial Board

Editors-in-Chief
Ian Mackie, University College London, London, UK
Giuseppe d’Onofrio, Catholic University of Rome, Rome, Italy

Associate Editors
Anthony Bench, Western General Hospital, Edinburgh, UK
Katrien Devreese, Ghent University Hospital, Belgium
John L. Frater, Washington University, USA
Jin-Yeong Han, Dong-A University College of Medicine, Busan, Korea
Cornelis Harteveld, Leiden University Medical Centre, Leiden, Netherlands
Qian-Yun Zhang, University of New Mexico, Albuquerque, USA

Past Editors
T. George
S-H. Lee
S. Kitchen
W. Finn
S. Bentley
I. Cavill
J. M. England (Founding Editor)

Editorial Board
Anni Aggerholm, Denmark
Maher Albitar, USA
Erik Amundsen, Norway
Martin Besser, UK
Gini Bourner, Canada
Mauro Buttarello, Italy
Sung-Ran Cho, Korea
David Czuchlewski, USA
Barbara de la Salle, UK
Anne Deucher, USA
Charles Eby, USA
Mariela Granero Farias, Brazil
Emmanuel Favaloro, Australia
Supan Fucharoen, Thailand
Tracy George, USA
Robert C. Gosselin, USA
Alexandra Harrington, USA
Catherine Hayward, Canada
James Hoyer, USA
Albert Huisman, Netherlands
Surender Juneja, Australia
Steve Kitchen, UK
Alexander Kratz, USA
Szu-Hee Lee, Australia
Jean-Francois Lesesve, France
Marta Martinuzzo, Argentina
Anna Merino, Spain
Olga Pozdnyakova, USA
Maria Proytcheva, USA
Joyce Rogers, USA
Margreet Schoorl, Netherlands
Kristi Smock, USA
Hongwei Wang, China
Olga Weinberg, USA
Gina Zini, Italy

ISLH Board of Directors

Executive Committee

Tracy George, Utah, USA (President)
Catherine Hayward, Ontario, Canada (Past-President)
Katrien Devreese, Ghent, Belgium (Treasurer)
Ruth Padmore, Ontario, Canada (VP of Education)
John Frater, St. Louis, USA (Vice President for Scientific Communications)
Karen Moffat, Ontario, Canada (Vice President for Membership)
Giuseppe d'Onofrio, Rome, Italy (Editor-in-Chief, *International Journal of Laboratory Hematology*)
Ian Mackie, London, UK (Editor-in-Chief, *International Journal of Laboratory Hematology*)

Members of the Board

Marie-Christine Bene, France
Deepak Mishra, India
Parul Bhargava, USA
Anna Ruskova, New Zealand
Archana Agarwal, USA
Olga Weinberg, USA
Barbara De La Salle, UK
Qian-Yun Zhang, USA
Jin-Yeong Han, Korea
Pierre Toulon, France

Councilors

Ilknur Kozanoglu, Turkey
Samia Rizk, Egypt
Martha Eva Viveros, Mexico
Saleem Ahmed Khan, Pakistan
Glenda Davison, South Africa
Swati Pai, India
Cheng-Bin Wang, China
Simon Onsongo, Kenya
Yutaka Yatomi, Japan
Pseudo–Pelger-Huët anomaly in a 58-year-old woman treated with mycophenolate mofetil for flare of systemic lupus erythematosus

Yue Zhao, Catherine Rehder, Endi Wang
Acute lymphoblastic leukaemia in a child with hereditary elliptocytosis
Peng Sun, Rong Wen, Xiangmao Bu, Wenjie Li, Wenfeng Mu

Pages: 5-6 | First Published: 24 November 2020

Full text | PDF | References | Request permissions

Comprehensive review of the impact of direct oral anticoagulants on thrombophilia diagnostic tests: Practical recommendations for the laboratory
Romain Siriez, Jean-Michel Dogné, Robert Gosselin, Julie Laloy, François Mullier, Jonathan Douxfils

Pages: 7-20 | First Published: 18 September 2020

Abstract | Full text | PDF | References | Request permissions

Standardization of Prothrombin Time/International Normalized Ratio (PT/INR)
Akbar Dorgalaleh, Emmanuel J. Favaloro, Mehran Bahraini, Fariba Rad

Pages: 21-28 | First Published: 26 September 2020

Abstract | Full text | PDF | References | Request permissions

Cell Counting/Automation

The Sysmex XN-L (XN-350) hematology analyzer offers a compact solution for laboratories in niche diagnostics
Tania A. Khartabil, Magda M. de Frankrijker, Yolanda B. de Rijke, Henk Russcher
Usefulness of automated fragmented red blood cell percentage in the diagnosis of paediatric haemolytic uraemic syndrome

Srinivasavaradan Govindarajan, Prateek Bhatia, Lesa Dawman, Karalanglin Tiewsoh

Peripheral blood morphology review and diagnostic proficiency evaluation by a new Spanish EQAS during the period 2011-2019

José Alcaraz-Quiles, Ángel Molina, Javier Laguna, María Rodríguez-García, Gabriela Gutiérrez, José Luis Bedini, Anna Merino

The HemoScreen hematology point-of-care device is suitable for rapid evaluation of acute leukemia patients

Dår Kristian Kur, Danny Thøgersen, Lars Kjeldsen, Lennart Friis-Hansen

Flow cytometry

Evaluation of the BD Stem Cell Enumeration Kit on the BD FACSCanto II flow cytometer using BD FACSCANTO CLINICAL and BD FACSDIVA software

Vladimira Rimac, Ines Bojanić, Koraljka Gojčeta, Branka Golubić Ćepulić

Flow cytometry in detection of Nucleophosmin 1 mutation in acute myeloid leukemia patients: A reproducible tertiary hospital experience

Rasha Abd El-Rahman El-Gamal, Azza El-Sayed Hashem, Deena Mohamed Habashy, Menna Allah Zakareya Abou Elwafa, Noha Hussein Boshnak
A study to compare Hematopoietic Progenitor Cell count determined on a next-generation automated cell counter with flow cytometric CD34 count in peripheral blood and the harvested peripheral blood stem cell graft from autologous and allogenic donors

Shruti Mishra, Uday Kulkarni, Nitty Mathews, Ramya V, Sukesh Ch. Nair, Biju George, Joy J. Mammen

Pages: 76-83 | First Published: 14 September 2020

Abstract | Full text | PDF | References | Request permissions

Dynamic prediction of relapse in patients with acute leukemias after allogeneic transplantation: Joint model for minimal residual disease

Aijie Huang, Qi Chen, Yang Fei, Ziwei Wang, Xiong Ni, Lei Gao, Li Chen, Jie Chen, Weiping Zhang, Jianmin Yang, Jianmin Wang, Xiaoxia Hu

Pages: 84-92 | First Published: 03 September 2020

Abstract | Full text | PDF | References | Request permissions

Hematopathology and molecular hematology

Seasonal variations in hematological disorders: A 10-year single-center experience

Jawad Hassan, Syed Omair Adil, Zeeshan Haider, Sidra Zaheer, Nida Anwar, Muhammad Nadeem, Saqib Hussain Ansari, Tahir Shamsi

Pages: 93-98 | First Published: 15 September 2020

Abstract | Full text | PDF | References | Request permissions

High-level MYC expression associates with poor survival in patients with acute myeloid leukemia and collaborates with overexpressed p53 in leukemic transformation in patients with myelodysplastic syndrome

Linlin Gao, Azhar Saeed, Shivani Golem, Da Zhang, Janet Woodroof, Joseph McGuirk, Siddhartha Ganguly, Sunil Abhyankar, Tara L. Lin, Wei Cui

Pages: 99-109 | First Published: 19 August 2020

Abstract | Full text | PDF | References | Request permissions

COVID-19

Relationship of D-dimer with severity and mortality in SARS-CoV-2 patients: A meta-analysis

Johanes Nugroho, Ardyan Wardhana, Irma Maghfirah, Eka Prasetya Budi Mulia, Dita Aulia Rachmi,
Interest of the cellular population data analysis as an aid in the early diagnosis of SARS-CoV-2 infection

Marc Vasse, Marie-Christine Ballester, Degnile Ayaka, Dmitry Sukhachev, Frédérique Delcominette, Florence Habarou, Emilie Jolly, Elena Sukhacheva, Tiffany Pascreau, Éric Farfour

Evaluation of COVID-19 coagulopathy; laboratory characterization using thrombin generation and nonconventional haemostasis assays

Danielle White, Stephen MacDonald, Tara Edwards, Chris Bridgeman, Megan Hayman, Megan Sharp, Sally Cox-Morton, Emily Duff, Swati Mahajan, Chloe Moore, Melissa Kirk, Richard Williams, Martin Besser, Will Thomas

Hemostasis and Thrombosis

Impact of variation in reagent combinations for one-stage clotting assay on assay discrepancy in nonsevere haemophilia A

Atsuo Suzuki, Nobuaki Suzuki, Takeshi Kanematsu, Shuichi Okamoto, Shogo Tamura, Ryosuke Kikuchi, Akira Katsumi, Hitoshi Kiyoi, Tetsuhiro Kojima, Tadashi Matsushita

C-reactive protein-induced activated partial thromboplastin time prolongation in heparinized samples is attenuated by elevated factor VIII

Vadim Kostousov, Sridevi Devaraj, Karen Bruzdoski, Lisa Hensch, Shiu-Ki Hui, Jun Teruya
LETTERS TO THE EDITOR

Alterations in leucocyte cell population data in bacteraemia: A study from a tertiary care hospital in India
Roshini Shekhar, Swati Pai, Vishrut K. Srinivasan, Venkatappa Srinivas, Ranjeeta Adhikary, Malavalli Venkatesh Bhavana
Pages: e1-e4 | First Published: 26 August 2020

Reduced activity of B lymphocytes, recognised by Sysmex XN-2000™ haematology analyser, predicts mortality in patients with coronavirus disease 2019
Roberta Rolla, Matteo Vidali, Chiara Puricelli, Anna Maria Scotta, Anita Pedrinelli, Patrizia Pergolini, Mario Pirisi, Umberto Dianzani, Cristina Rigamonti
Pages: e5-e8 | First Published: 07 September 2020

Validation of the Mission Point-of-care device for haemoglobin measurement
Susan Louw, Anthony Leland Hamilton Mayne, Yuen On Wan, Elizabeth Mayne
Pages: e9-e11 | First Published: 03 October 2020

Red blood cell and reticulocyte-related parameters in adult patients with β-thalassemia diseases
Chaicharoen Tantanate
Pages: e12-e16 | First Published: 15 September 2020

Lupus anticoagulant in patients with COVID-19
Ariella Tvito, Eli Ben-Chetrit, Frederic Shmuel Zimmerman, Elad Asher, Yigal Helviz
Pages: e17-e18 | First Published: 11 September 2020

Core-binding factor acute myeloid leukemia with inv(16): Older age and high white blood cell count are risk factors for treatment failure
Celalettin Ustun, Elizabeth A. Morgan, Ethan M Ritz, Hanne Vestergaard, Sheeja Pullarkat, Philip M. Kluin, Robert Ohgami, Linda B. Baughn, Young Kim, Nam K. Ku, David Czuchlewski, Michael Boe Møller, Ana-Iris Schiefer, Krzysztof Mrózek, Hans-Peter Horny, Tracy I. George, Thomas Kielsgaard
Utility of cleaved lymphocytes from peripheral blood smear in the diagnosis of pertussis
Ruimu Zhang, Hongmei Wang, Chi Li, Yunsheng Chen, Gang Xu, Jikui Deng

Immune thrombocytopenic purpura after COVID-19 infection
Michael Levraut, Marie Ottavi, Sarah Lechtman, Véronique Mondain, Pierre-Yves Jeandel

Evaluation of Xpert® BCR-ABL Ultra for the confirmation of BCR-ABL1 international scale conversion factors for the molecular monitoring of chronic myeloid leukaemia
Katherine M. Dominy, Iris M. Simon, Jamshid Sorouri-Khorashad

Platelet count in sodium citrate-anticoagulated whole blood: Comparison to EDTA-anticoagulated results and stability over time
Darlean Weber, Megan O. Nakashima

Lymphopenia in critically ill COVID-19 patients: A predictor factor of severity and mortality
Plasma vs serum as test sample for the chemiluminescent AcuStar HemosIL HIT-IgG(PF4-H) assay
Emmanuel J. Favaloro, Soma Mohammed
Pages: e41-e44 | First Published: 30 September 2020

COVID-19 and the ABO blood group in pregnancy: A tale of two multiethnic cities
Irshad Ahmed, Lauren Quinn, Bee K. Tan
Pages: e45-e47 | First Published: 30 September 2020

Are the DOAC plasma level thresholds appropriate for clinical decision-making? A reappraisal using thrombin generation testing
Jonathan Evrard, Michaël Hardy, Jean-Michel Dogné, Sarah Lessire, Vincent Maloteau, François Mullier, Jonathan Douxfils
Pages: e48-e51 | First Published: 10 October 2020

Bilirubin crystals were detected in peripheral blood neutrophils in newborn with sepsis and G6PD deficiency
Daolian Huang, Huichun Tong
Pages: e52-e53 | First Published: 13 December 2020
More from this journal

- New Books in Hematology & Transfusion
- Search Engine Optimization: For Authors
Relationship of D-dimer with severity and mortality in SARS-CoV-2 patients: A meta-analysis

Johanes Nugroho1,2, Ardyan Wardhana3, Irma Maghfirah2, Eka Prasetya Budi Mulia2, Dita Aulia Rachmi2, Maya Qurota A'yun2, Imanita Septianda2

1Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
2Dr. Soetomo General Hospital, Surabaya, Indonesia
3Faculty of Medicine, Universitas Surabaya, Surabaya, Indonesia

Correspondence
Johanes Nugroho, Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, 60285, Indonesia.
Email: j.nugroho.eko@fk.unair.ac.id

Abstract

Introduction: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic. Many studies have shown that several laboratory parameters are related to disease severity and mortality in SARS-CoV-2 cases. This meta-analysis aimed to determine the relationship of a prognostic factor, D-dimer, with disease severity, need for intensive care unit (ICU) care, and mortality in SARS-CoV-2 patients.

Methods: A systematic search for all observational studies and trials involving adult patients with SARS-CoV-2 that had any data related to D-dimer on admission was conducted using PubMed, Science Direct, Scopus, ProQuest, and MedRxiv databases. We performed random-effects inverse-variance weighting analysis using mean difference (MD) of D-dimer values for outcomes such as disease severity, mortality, and need for ICU care.

Results: A total of 29 studies (4,328 patients) were included in this meta-analysis, which revealed a higher mean of D-dimer levels on admission in severe patients than in nonsevere patients (MD = 0.95, [95% confidence interval (CI): 0.61-1.28], \(P < .05; \) \(I^2 = 90\% \)). The nonsurvivor group had a higher pooled MD of D-dimer values on admission (MD = 5.54 [95% CI: 3.40-7.67], \(P < .05; \) \(I^2 = 90\% \)). Patients who needed ICU admission had insignificantly higher D-dimer values than patients who did not need ICU admission (MD = 0.29, [95% CI: -0.05 to 0.63], \(P = .10; \) \(I^2 = 71\% \)).

Conclusion: Elevated D-dimer levels on admission were associated with an increased risk of disease severity and mortality in patients with SARS-CoV-2 infection.

Keywords
D-dimer, laboratory, mortality, prognostic factor, SARS-CoV-2, severity

1 | INTRODUCTION

A new viral pneumonia was first detected in Wuhan, China, and was found to be caused by a novel coronavirus, later identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that has since then caused a pandemic. Previous reports have shown that certain laboratory parameters correlated with disease severity and mortality in SARS-CoV-2 infection.1 The levels of D-dimer, an important prognostic factor, were found to be higher in patients with a clinically severe case of SARS-CoV-2 than in nonsevere cases.2 A better understanding of this prognostic factor can help physicians predict the disease severity and need for intensive care unit (ICU) care in patients infected with SARS-CoV-2. This meta-analysis aimed to determine the relationship...
of D-dimer with disease severity and mortality in SARS-CoV-2 patients.

2 METHODS

We conducted this study following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We selected all observational studies and trials involving adult patients with SARS-CoV-2 that had any data on D-dimer values for comparing different groups: severe vs. nonsevere; ICU vs. non-ICU; survivor vs. nonsurvivor. We excluded any study that did not have the required data, collect D-dimer data on admission, and report D-dimer data in numerical values.

A systematic literature search was carried out after receiving approval from the Institutional Review Board. Five different databases (PubMed, Science Direct, Scopus, ProQuest, and MedRxiv) were used to perform a systematic search of all the literature using the keywords "intensive" and "laboratory" and "COVID-19" or "coronavirus 2019" or "2019-nCoV" or "SARS-CoV-2," in the title, abstract, and medical subject heading (MeSH). We used "laboratory" as a search term instead of D-dimer because earlier studies did not consider D-dimer as an important factor, and hence, this factor was reported as data related to the laboratory report on admission. D-dimer levels were neither mentioned nor discussed separately in these reports. The reference lists of the studies included were screened to identify additional studies relevant to D-dimer.

Three investigators independently screened and assessed titles and abstracts before full-text retrieval. The other two authors reviewed the papers for final inclusion and extracted data including authors, year of publication, location, study design, peer-reviewed publication status, disease severity measurement, and D-dimer levels in each comparison group.

The primary outcome in our meta-analysis was the D-dimer levels on admission based on the severity of the case. We used all definitions of severity. If the study categorized disease severity into three or four groups, we combined all the data found in the mild and moderate group into one group as nonsevere; severe and critical groups were combined into one group as severe. The average of their mean and standard deviation was calculated using the formula in Table 7.7a of the Cochrane Handbook. The secondary outcomes were D-dimer levels on admission based on mortality and intensive care need.

Two authors independently assessed the methodological quality assessment using the National Heart Lung and Blood Institute Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. We conducted the meta-analysis using the mean difference (MD) for D-dimer levels. Mean and standard deviation values were extrapolated from the sample size, median, and interquartile range (IQR), according to Wan et al. We employed a fixed-effects and inverse-variance weighting using Review Manager (RevMan v5.3 2014). We carried out a subgroup analysis based on study design. We performed a sensitivity analysis based on peer review and age difference status. We evaluated inter- and intra-study heterogeneity using the I² statistic. We applied a random-effects meta-analysis if the heterogeneity is significant.

3 RESULT

We identified a total of 111 records from the PubMed database, 488 records from the ScienceDirect database, 20 records from the ProQuest database, 42 records from the Scopus database, 846 records from the MedRxiv database, and 127 records from other sources as shown in Figure 1. One-hundred and fifty-one studies were excluded because of incorrect population (4 studies), irrelevant exposure (83 studies), irrelevant outcome (42 studies), study not reported in English (1 study), D-dimer values not collected on admission (9 studies), and irrelevant severity criteria (12 studies). We excluded the study of Levy et al from our analysis because D-dimer measurements were missing in 78% of the patients and there was no information regarding the proportion of those missing in each group. Twenty-nine studies (4,328 patients) were included in the analysis.

The baseline characteristics of the included studies are presented in Supplementary file 1. Twenty-six studies were retrospective, and three studies were prospective observational. Nineteen studies have already undergone peer review. One study provided a comparison between groups for disease severity and mortality. Most of the studies classified the disease severity according to the National Health Commission of the People’s Republic of China. Only three studies considered subjects of similar age in both groups.

Among the 29 studies included in this meta-analysis, most did not identify whether D-dimer values were reported as D-dimer units (DDU) or fibrinogen equivalent units (FEU). Only 3 studies clearly stated using FEU. Nine studies did not report the normal cutoff value of D-dimer (Supplementary file 1).

We assessed all studies wherein all outcomes were obtained using a good and fair methodology (Supplementary file 1). None of the studies that were considered had any flaws in the analyses. The analyses were rigorous, and the conclusions drawn by the studies were credible. However, most studies did not assess exposure prior to outcome measurement and may have lacked sufficient timeframe for the outcomes to occur because of their cross-sectional design.

Random-effects meta-analysis revealed a higher mean of D-dimer levels on admission in severe patients than in nonsevere patients as shown in Table 1 (14 studies, MD = 0.95, [95% CI: 0.61-1.28], P < .05; I² = 90%). Subgroup analysis based on the study design showed a similar result in both subgroups. Sensitivity analysis based on the peer-reviewed status from 6 studies showed an MD of 0.68 with 95% CI 0.26-1.10 and I² = 86% (Supplementary file 2).

Nonsurvivor group had a pooled higher mean difference of D-dimer values on admission as shown in Table 1 (9 studies, MD = 5.54 [95% CI: 3.40-7.67], P < .05; I² = 90%) than survivor groups. Sensitivity analysis showed similar result (5 studies,
MD = 5.78, [95% CI: 2.94-8.63], P < .05; I² = 84%) when we excluded non-peer-reviewed studies. We did not perform a subgroup analysis based on study design because all included studies were retrospective observational.

Patients with need for ICU care had higher D-dimer values on admission than patients who did not need ICU care (seven studies, MD = 0.29, [95% CI: -0.05 to 0.63], P = .10; I² = 71%) as shown in Table 1. Sensitivity analysis showed a similar result when we excluded studies that had significant age differences pertaining to participants estimates (3 studies, MD = 4.35, [95% CI: -2.31 to 11.01], P = .20; I² = 81%). However, the effect estimates changed and were found to be significant without improvement in heterogeneity (4 studies, MD = 0.48, [95% CI: 0.21-0.76], P < .05; I² = 66%) when we excluded non-peer-reviewed studies.

4 | DISCUSSION

This meta-analysis showed that increasing D-dimer levels on admission were significantly associated with increased disease severity and mortality. The results obtained were similar to the results reported previously in two other systematic reviews.25,26
TABLE 1 Summary of findings

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Studies</th>
<th>Participants</th>
<th>Effect Estimates</th>
<th>P</th>
<th>I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>14</td>
<td>2190</td>
<td>0.95 [0.61, 1.28]</td>
<td><.05</td>
<td>90%</td>
</tr>
<tr>
<td>Retrospective</td>
<td>11</td>
<td>1557</td>
<td>1.30 [0.78, 1.82]</td>
<td><.05</td>
<td>91%</td>
</tr>
<tr>
<td>Prospective</td>
<td>3</td>
<td>633</td>
<td>0.54 [0.05, 1.04]</td>
<td><.05</td>
<td>90%</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td>6</td>
<td>775</td>
<td>0.29 [–0.05, 0.63]</td>
<td><.05</td>
<td>86%</td>
</tr>
<tr>
<td>Mortality</td>
<td>9</td>
<td>1808</td>
<td>5.54 [3.40, 7.67]</td>
<td><.05</td>
<td>90%</td>
</tr>
<tr>
<td>Sensitivity analysis a</td>
<td>5</td>
<td>851</td>
<td>5.78 [2.94, 8.63]</td>
<td><.05</td>
<td>84%</td>
</tr>
<tr>
<td>Needs of ICU</td>
<td>7</td>
<td>657</td>
<td>0.29 [–0.05, 0.63]</td>
<td>.1</td>
<td>71%</td>
</tr>
<tr>
<td>Sensitivity analysis a</td>
<td>4</td>
<td>241</td>
<td>0.48 [0.21, 0.76]</td>
<td><.05</td>
<td>66%</td>
</tr>
<tr>
<td>Sensitivity analysis b</td>
<td>3</td>
<td>89</td>
<td>4.35 [–2.31, 11.01]</td>
<td>.2</td>
<td>81%</td>
</tr>
</tbody>
</table>

Sensitivity analysis based on peer-reviewed status.

aSensitivity analysis based on age difference status.

analysis by Shah et al demonstrated that patients who had D-dimer levels more than 0.5 mg/L had a twofold higher risk of developing a severe case of the disease and fourfold higher risk of mortality than those who had D-dimer levels less than 0.5 mg/L.36 Higher cut-off value of D-dimer (>2 mg/L) was considered to be even better in predicting in-hospital mortality in SARS-CoV-2 with a sensitivity of 92.3% and a specificity of 83.3% after adjusting for age, gender, and comorbidities.37

Our study also showed that patients with a need for ICU care had nonsignificant higher D-dimer values on admission than patients who did not need ICU care. An earlier study demonstrated that there was an increased incidence of thrombotic complications in patients treated in the ICU.38 Hypercoagulability state was also found in patients admitted to ICU where D-dimer levels were drastically increased.39 At the late stages of SARS-CoV-2, levels of fibrin-related markers (D-dimer and fibrin degradation product) were either moderately or markedly elevated in all cases of death suggesting a common coagulation activation and secondary hyperfibrinolysis condition in these patients.24

Histopathology studies on the lung biopsy of critical patients with SARS-CoV-2 revealed the presence of occlusion and microthrombosis formation in pulmonary small vessels.40 The exact mechanism responsible for coagulopathy in SARS-CoV-2 patients is not yet identified. Whether SARS-CoV-2 can directly attack vascular endothelial cells expressing high levels of angiotensin-converting enzyme 2 (ACE2) leading to abnormal coagulation and sepsis is an aspect that still needs to be explored.

Our meta-analysis suggests that elevated D-dimer levels can be a marker of poor prognosis in patients with coronavirus disease (COVID-19). During a pandemic, risk stratification in triage is necessary, and D-dimer can be one of the potential indicators in the case of high-risk patients. However, only the presence of elevated D-dimer only is not a reason enough to start the administration of therapeutic anticoagulants.

To the best of our knowledge, this meta-analysis conducted using 29 different studies is the largest that evaluates the prognostic role of D-dimer on admission in SARS-CoV-2 patients. However, several limitations should be noted in our study. First, there was substantial heterogeneity across studies. Most of the studies included were retrospective with relatively small sample size. Second, the variation in reporting the unit of D-dimer inevitably might affect our interpretation and analysis of the D-dimer data. Third, the analysis in this study was performed during the pandemic; researchers conducting studies in many areas affected by SARS-CoV-2 have not published their data as yet. Most of the studies included were from mainland China, while the remaining three studies were from the USA. Ethnic and geographical differences could distort the results of the analysis.

5 | CONCLUSIONS

Our meta-analysis demonstrated that elevated D-dimer levels on admission were associated with an increased risk of disease severity and mortality in SARS-CoV-2 infection.

ACKNOWLEDGEMENT

This work did not receive specific funding, but was performed as part of Johanes Nugroho employment at the Department of Cardiology and Vascular Medicine, Universitas Airlangga/Dr Soetomo General Hospital, East Java, Indonesia.
CONFLICT OF INTEREST
(If present, give more details): The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be considered as a potential conflict of interests.

AUTHOR CONTRIBUTIONS
JN involved in conceptualization, methodology, writing-review and editing, and supervision. AW involved in conceptualization, data analysis, manuscript writing-review and editing. IM involved in screening, data extraction, investigation, data analysis, and writing-original draft. EM involved in screening, data extraction, investigation, and writing-original draft. MA involved in screening, investigation, data extraction, writing-original draft, and project administration. DR and IS involved in investigation, data analysis, quality assessment, and writing-original draft.

IEC APPROVAL
Dr Soetomo General Hospital Surabaya Ethical Committee in Health Research (0005/LOE/301A.2/05/2020).

TRIAL REGISTRY
UMIN Clinical Trial Registry (UMIN ID 000 040 433).

DATA AVAILABILITY STATEMENT
The data supporting this meta-analysis are from previously reported studies and data sets, which have been cited.

ORCID
Johanes Nugroho https://orcid.org/0000-0002-3501-1872
Ardyan Wardhana https://orcid.org/0000-0003-4048-2414

REFERENCES

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.