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Abstract 
For digital pathology, automatic recognition of different tissue types in histological images is 
important for diagnostic assistance and healthcare. Since histological images generally contain 
more than one tissue type, multi-class texture analysis plays a critical role to solve this problem. 
This study examines the important statistical features including Gray Level Co-occurrence 
Matrix (GLCM), Discrete Wavelet Transform (DWT), Spatial filters, Wiener filter, Gabor filters, 
Haralick features, fractal filters, and local binary pattern (LBP) for colorectal cancer tissue 
identification by using support vector machine (SVM) and decision fusion of feature selection. 
The average experimental results achieve high identification rate which is significantly 
superior to the existing known methods. In summary, the proposed method based on machine 
learning outperforms the techniques described in the literatures and achieve high classification 
accuracy rate at 93.17% for eight classes and 96.02% for ten classes which demonstrate 
promising applications for cancer tissue classification of histological images 
. 
Keywords:  Classification, Decision Fusion, Support Vector Machine, Machine Learning  

 

Introduction 

The structures of human tumors comprise several tissue types that are able to be distinguished by 
histopathological evaluation of Hematoxylin and Eosin (H&E) stained tissue sections (Kather et al. 
2016). During tumor progression associated with patient prognosis, colorectal cancer (CRC) is one 
type of cancer that is frequently evaluated clinically (A. Huijber et al. 2013). It is imperative to 
identify multiclass tumors based on tissue types of CRC histological images. 

Among previous works, several methods for histological texture analysis have been studied.  Kather 
et.al (2016) identified histological images of human colorectal cancer including eight different types 
of tissue by using texture descriptors and several classifiers. They divided ten original tissue images 
into patches before identification based on classes. Mattfeldt, et.al (2013) studied the correlation 
between epithelial cells and lumina from low grade to high grade prostatic cancer progression in 
terms of the Gleason score. They implemented multiclass pattern recognition constructed by spatial 
statistics, as contrasting to the usual method of binary pattern recognition. Huang and Lee (2009) 
examined variations of intensity and texture complexity for histological grading of prostate tissues 
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using two feature extraction methods based on fractal dimension. Several feature filter sets were 
applied and also used by the sequential floating forward selection method to optimize the 
classification results. Furthermore, Signolle et.al (2009) segmented histopathology slides to identify 
various types of ovarian carcinoma stroma using wavelet-domain hidden Markov tree model and a 
pairwise classifiers design and selection. Additionally, Yang et.al (2009) applied a grid-enabled 
decision support system for performing automatic analysis of breast tissue microarray images. Four 
different types of filter banks were applied to classify several major subtypes of breast cancer using 
k-nearest neighbor (kNN) and tree were integrated into a Bayesian framework. 

The objective of this paper is to obtain the best performance for CRC tissue identification for 
histopathology images where we investigate different filter sets, expand feature filter combination, and 
theoretically diffusing the feature selection among feature space. Furthermore, the aim of the research 
is to acquire the best decision results. 

As a consequence, this paper is organized as following: Section 2, contains the description about the 
theoretical background of feature extraction in different statistical approach and classification for CRC. 
Section 3 exhibits the justification of the proposed method and other approaches. Section 4 concludes 
the paper and recommends to the future works. 
 

Literature Review 

The machine learning approach to the automatic separation of tissue types in histological images can 
be achieved by the method of segmented individual cells based on cell morphology and then classified 
into different categories such as tumor cells, stromal cells and immune cells. In medical image analysis, 
texture-based methods are very useful for classifying tissue types. Texture refers to the specific nature 
of the internal structure of the image area, for example coarse versus fine or oriented versus scattered 
randomly (Bianconi F. et al 2015). Usually, this method first extracts the texture feature 

Generally, in classifying CRC images consisting of tumors and stroma is a difficulty obtained by 
researchers because the tumor part is heterogeneous. Similarly, various types of studies use their own 
drawing datasets whose classification performance is always different from previous studies. All 
published methods always show two general limitations when classifying tissue types in CRC images 
on a regular basis: first, they only consider two categories of tissues, namely tumors and stroma, which 
makes this approach unsuitable for more heterogeneous parts of the tumor. Second, all studies use their 
own image data sets whose classification performance cannot be compared (N. Linder et al. 2012). A 
number of studies have also investigated the development of automated methods for the assessment and 
classification of CRC networks. Most of their studies use benchmark data sets available for image 
classification problems such as handwriting recognition, facial recognition, universal computer vision 
problems and texture classification. In general, the dataset has no data available for classification of 
histopathological networks. While for computer-assisted diagnostic systems developed to classify the 
type of colorectal polyps using sequential image feature selection and classification using vector 
machine support. Processing pipes, including microscopic image segmentation, feature extraction, and 
classification, can also be used for automatic detection of cancer through an image (A.A. Nahid, M.A. 
Mehrabi, and Y. Kong 2018).  

For image analysis in cancer patients can use the Convolutional Neural Network Technique, better 
known as CNN. CNN was first proposed by Fukushima (1980) which is also referred to as 
"Neocognotron". The main project of CNN is to find a stimulus pattern, where cancer can be tolerated 
with a limited amount. This "Negotron" model also functions as the first CNN model for biomedical 
signal analysis. Especially the CNN model was first introduced for breast image classification (Wu C.Y. 
et al. 1994). Jaffar classifies the mammogram-image dataset using the CNN model and obtains 93.35% 
and 93.00% of the area under curve (AUC) (Jaffar M.A. 2017). CNN for classification of mammogram 
images requires 2.5 and 10 map features to obtain an average accuracy of 71.40% (Qiu Y. et al 2016). 
For automatic mass positioning and image classification, obtain an accuracy of 85.00% (Ertosun M.G. 
and Rubin D.L. 2015). Classification of a set of mammogram images into a class of design and 
malignant cancers, in which they used a total of 560 ROI (Region of Interest) and characterized a set of 
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mammogram images in benign and malignant cancer images and obtained 96.70% accuracy. A set of 
mammogram images has been classified by Sahiner et al., And the ROC score achieved is 0.87 (Jiao Z 
et al. 2016). 

The Approach 

A systematic framework for CRC classification has been developed and flowcharts are shown on Figure. 
1 with the following procedure: 
1) Feature extraction: All images are analyzed using ten different filter set features. We extract and 
convert the original data images into numerical forms so that the data has values that can be processed 
further. In extracting we use GLCM, DWT, Gabor, Gausian, Log, Unsharp, Wiener, fractal, Haralick, 
and LBP filters. These ten filters are explained in more detail in the Section below 

2) Feature selection: The purpose of filtering is to eliminate filters that have low accuracy or choose the 
best filter to produce the highest classification accuracy. This study implements a feature selection 
algorithm with five fusion technique decisions to select all 306 features. Selection of this feature is done 
automatically to select features that most contribute to predictive variables or output on CRC 
classification. Furthermore, the irrelevant features in this study can reduce the accuracy of the model 
and make it maximal in determining CRC based on irrelevant features. 

3) Classification: at the classification stage, we use SVM in classifying CRC textures. We chose this 
type of classification because it has the ability and good performance in classifying gray pixel images 
to find the best hyperplane that functions as a separator between classes in the input space. In 
comparison between extraction features for multi texture classification problems, SVM can be applied 
by combining extractor features to get the best results. In the classification stage, we first analyzed CRC 
histology in eight multi-class textures without overlapping images patches. These ten filters are 
explained in more detail in the Section below 

 In the first experiment, we use the selected datasets such as is shown in Fig. 2. It was conducted by 
Kather, et.al. (2016). Subsequently, it is also implemented in our approach by using 90% CRC images 
from a tissue type are randomly selected to train the SVM classifier, whereas at least another 10% 
images, randomly taken from the same tissue data sets, are tested during the identification step. In the 
second experiment, we present a dataset of 5,000 histological images of human colorectal cancer 
including eight types of tissue from Kather (2016). From the first 10 images per class shown in Figure. 
3 has an average coloring intensity different from one network to another. It reflects the usual variability 
in routine histopathological slides. In addition to these images, we also extracted ten larger images with 
dimensions of 5000 x 5000 pixel sizes from different network areas than those applied to smaller images. 
In the second experiment, we included ten images application set that are shown in Fig. 3 and Fig. 4 in 
different types of tissue by dividing each image of 5000 pixel square as 10,000 images overlapped at 
150x150 pixel sizes. To improve the results, we used 10,000 images of each tissue type and then 
implemented 5000 images as a training set and 1000 images as testing sets. 

 
Since certain properties or patterns will be embedded in the CRC images, such action is similar to 

the operation of the active warden (2003). Those image features are categorized into ten different groups 
which will be briefly explained 

The Spatial Feature 

GLCM features are the estimates of the second order probability density function of the pixels in the 
image where the overall spatial relationships are calculated. The other spatial features are DWT, 
Gaussian, Laplacian of Gaussian (LoG), Unsharp, Wiener, and Gabor (R.C. Gonzalez and R.E. Woods 
2007). A 2D Gabor filter has two-dimensional filter which is Gaussian kernel function modulated by a 
complex sinusoidal plane wave and has several advantages such as invariance to illumination, rotation, 
scale and translation (L.R. Vega et al. 2013). Additionally, the co-occurrence matrix and texture features 
are the most popular second-order statistical features which are introduced by RM Haralick in 1973 (R. 
Haralick et al. 1973) also used in this study. 
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The fractal and LBP feature filters 

In this study, we extracted fractal based features by calculating the fractal dimension (A.F. Costa et 
al. 2012). These features are built on fractal dimension for gray-scale images which depict objects and 
structure boundary.  LBP is a feature extractor that has an appropriate and powerful sub pattern-based 
texture descriptor. It characterizes the gray-scale invariant texture and combination between measuring 
texture from each neighborhood and the difference of the average gray level of those pixels based on 
binary numbers (T. Ojala et al. 2002). 

Decision Fusion Approach 

The decision fusion model referring to the feature-selection and decision fusion technique is therefore 
explored. The floating search methods are implemented by the sequential selection procedures that are 
related to the plus 𝒍	take-away 𝒓 algorithms (P. Budil et al. 1994). Plus	𝒍 minus	𝒓	selection (LRS) starts 
from the empty set and repeatedly adds  𝒍	 features and removes 𝒓	 features when 𝒍 is more than 𝒓. 
Conversely, when 𝒍	 is less than	𝒓, LRS starts from the full set and repetitively removes 𝒓	features 
followed by 𝒍	 additions. 

The plus 𝐥	take-away 𝐫	  algorithms method can be described in an algorithmic way as following: 
Input:      											𝑌 = (𝑦*	|	𝑗 = 1,… , 𝐷1	//available	measurements// 
Output:            	𝑋@ = (𝑥*	|	𝑗 = 1,… , 𝑘, 𝑥* ∈ 𝑌1, 𝑘 = 0,1, … , 𝐷 
Initialization:  		if				𝑙 > 𝑟							then	k	 ∶= 	0;		XN ∶= ∅	; 		go	to	Step	1 
  		else		k	 ∶= 	D;		XU 	 ∶= 	Y	; 		go	to	Step	2  
Step 1 (Inclusion) 

  repeat  m  times 
 	𝑥X ∶= arg		𝑚𝑎𝑥[∈\]^_𝐽(𝑋@ + 𝑥) 
 𝑋@Xd ∶= 𝑋@ + 𝑥X; 	𝑘 ∶= 𝑘 + 1;   go to Step 2 

Step 2 (Exclusion) 
 repeat  r  times 

 𝑥] ∶= arg	max[∈^_𝐽(𝑋@ − 𝑥) 
 𝑋@]d ∶= 𝑋@ − 𝑥]; 		𝑘 ∶= 𝑘 − 1;  go to Step 1 

It can be implemented by using plus 2 minus 1 (P2M1) where (𝑙 =2,	𝑟	 =1), plus 3 minus 2 (P3M2) 
where (𝑙 =3,	𝑟	 =2), and plus 4 minus 3 (P4M3) where (𝑙 =4,	𝑟	 =3). Furthermore, to perform feature 
selection, Pudil ( 1994) proposed the SFFS and SBFS methods. The SFFS method is a modified plus-
m-minus-r by one more mechanism in the minus step. The SFFS method can be described 
algorithmically in a similar way to the previous method as following:  

Input  : 														𝑌 = (𝑦*	|	𝑗 = 1,… , 𝐷1	//available	measurements// 
Output:													𝑋@ = (𝑥*	|	𝑗 = 1,… , 𝑘, 𝑥* ∈ 𝑌1, 𝑘 = 0,1, … , 𝐷 
Initialization:  𝑋N ∶= ∅; 		𝐾 ∶= 0 
(in practice one can begin with k = 2 by applying SFS twice) 
Termination:  Stop when k equals the number of features required 
Step 1 (Inclusion)  𝑥X ∶= 	arg		max[∈\]^_𝐽(𝑋@ + 𝑥) 
                𝑋@Xd ∶= 𝑋@ + 𝑥X; 𝑘 ∶= 𝑘 + 1 
Step 2 (Conditional Exclusion) 
 									𝑥] ∶= arg	max[∈^_𝐽(𝑋@ − 𝑥) 
         if	𝐽(𝑋@ − {𝑥]}) > 𝐽(𝑋@]d)	then 
         													𝑋@]d ∶= 𝑋@ − 𝑥]; 𝑘 ∶= 𝑘 − 1 ;      go to Step 2 
         else                                                      go to Step 1 

 
A challenge of feature selection integration or fusion represents the method of combining the above 
mentioned five different techniques of feature selection (P2M1, P3M2, P4M3, SFFS, and SBFS). The 
goal here is to gather the most useful features from all the selection methods, in such a way that the 
end-result is to achieve the maximum outcomes from each technique respectively and then making a 
fusion from each of them after aggregation.  
 



 Colorectal Cancer Tissue Classification Based on Machine Learning 

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019  

 

Figure 1.  Procedure of identifying CRC 
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Figure 1. Eight types of tissue image patch samples (a) tumour epithelium, (b) simple 

stroma, (c) complex stroma (stroma that contains single tumor cells and/or single 
immune cells), (d)  immune cell conglomerates, (e) debris and mucus, (f) mucosal 
glands, (g) adipose tissue, (h) background. 

 

 
Figure 2. Ten Types of original Tissue images. 

 

 

Experiment Results 

Extensive experiments have been conducted to verify the efficacy of our proposed method for 
histological tissue image identification. The experiments are performed in sequential steps and the 
results are tabulated for demonstration purpose. 
 

Feature extraction 

In this study, there are total 306 statistical features which computation requirement increases fast 
while a large number of features as well as instances are processed. The Feature filters that are used in 
this experiment i.e., GLCM (22 features), DWT (12 features, Gaussian filter (21 features) , LoG filter 
(21 features) , Unsharp filter (21 features), Wiener filter (64 features), Gabor filter (48 features), 
Haralick filter (14 features), fractal filter (24 features),  and LBP filter (59 features). Therefore, the 
computational complexity is a critical issue to be resolved in real applications. Therefore, feature 
selection conducted in the next step to alleviate the computation demands.  
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Decision Fusion for  feature Selection  

The adaptive feature selection algorithm is implemented in this study in order to reduce the total 
evaluation time without the loss of accuracy while the most important λ features are selected. The 
number of chosen features is determined based on the accuracy rate for all 306 features. 
 
Deciding the most important λ features 
Five feature selection methods are adopted for the feature selection processes including: P2M1, P3M2, 
P4M3, SFFS and SBFS. The selection order during execution is recorded to choose the most important 
features and the feature value of λ= 222  is obtained after the experimental analysis. 
 
Determine the most λ effective features  
Since the highest accuracy rate can be achieved by using 222 features from above analysis, the counter-
based decision fusion algorithm is used to decide the final top λ features from the recorded feature 
selection order. After the most important features have been decided, the tissue type identification can 
be finally investigated. 
 

Classification 

By using confusion matrix, we analyze accuracy rate prediction based on each column of the matrix 
that represents the instances in a predicted class while each row represents the instances in an actual 
class. As shown in Table I, the average accuracy rate using 222 features for CRC classification for 
multiclass tissue separation can achieve 93.17% and using 306 features can obtain 92.90%. 
Alternatively, the average prediction results are shown in Table II can attain 95.76% for different tissue 
types when all 306 features are applied and achieved 96.02% when it used 222 features. Given these 
points, the average accuracy rate by using decision fusion of feature selection (222 features) is better 
than the using all features 306 features to identify histological images. It is clear that the proposed 
approach by using decision fusion with 222 data sets after feature selection is better than the other 
feature sets. 

Table 1. Accuracy Prediction Rates For Eight Classes  

Filters Number of features Accuracy (%) 

GLCM 22 86.27 
DWT 12 74.06 
Gaussian 21 85.44 
LoG 21 66.25 
Unsharp 21 81.21 
Wiener 64 82.60 
Gabor 48 85.73 
Haralick 14 81.60 
Fractal 24 88.13 
LBP 59 77.58 
Selected features 222 93.17 
All features 306 92.90 
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Table 2. Accuracy Prediction Rates For Ten Classes  

Filters  Number of features Accuracy (%) 

GLCM 22 68.42 
DWT 12 55.37 
Gaussian 21 62.93 
LoG 21 41.24 
Unsharp 21 56.84 
Wiener 64 71.86 
Gabor 48 71.43 
Haralick 14 56.03 
Fractal 24 73.50 
LBP 59 73.87 
Selected features 222 96.02 
All features 306 95.76 

 
The previous studies are compared to our approach tabulated in Table III. Kather et.al (2016) 

implemented the same dataset to classify 8 classes could achieve 87.4% accuracy rate. Signol (2010) 
identified ovarian cancer histology to analyze tumor epithelium in the wavelet-based where they 
reported 71.5% accuracy rate. In addition, Yang et. al. (2009) used four different filter sets to extract 
imaged breast tissue microarrays for identifying breast cancer. They achieved the average accuracy rate 
of identification was 89% for three tissue types. On the other hand, deep learning could achieve 
accuracy rate up to 90% to identify breast cancer (F.A. Spanhol et al. 2016). It demonstrates that our 
identification results achieve higher accuracy rates (93.17% for eight classes and 96.02% for ten classes) 
than previous results. It demonstrates that our proposed method is superior to the previous studies and 
the technique can effectively identify the CRC based histological images.  

In summary, from above analyses, the superior accuracy rates justify the effectiveness of our 
proposed method for eight and ten classes in identifying CRC tissue images by using feature selection 
with decision fusion. It is highly promising that the proposed technique can be a universal tool of cancer 
histology where further researches will be undertook to prove its ubiquity. 

 

  Table 3. Prediction Results among Different Hispatological Images  
 

Research Filters 

 

Research 
object 

Classifier  Claimed 
accuracy 
rate (%) 

J.N. 
Kather et 
al. (2016) 

LBP, 
Gabor,  
GLCM 

CRC for 
eight 
classes 

SVM 87.4 

Signolle 
N. (2010) 

Wavelet Tumor 
epithelium 

Hidden 
Markov tree 

71.5 

Yang L. et 
al. (2009) 

Four 
different 
filter sets 

Breast 
cancer 

kNN, 
Bayesian, 
C4.5 decision 
tree, and 
SVM 

89 

F.A. 
Spanhol et 
al. (2016) 

 Breast 
Cancer 

CNN 90 

 

 

Our 
Approach 

 

Decision 
fusion of 

Ten 
different 
filter sets 

CRC for 
eight 
classes 

SVM 93.17 



 Colorectal Cancer Tissue Classification Based on Machine Learning 

 Twenty-Third Pacific Asia Conference on Information Systems, China 2019  

Discussion 

1) Automatic recognition is an essential part in the digital pathology to analyze different tissue types. 
To achieve the successful studies, multi-disciplinary experts are needed to collaborate among researches 
such as medical experts, pathologists, computer vision experts, etc. 
2) How to identify the region where different tissue types locate is still a critical issue in digital 
histopathology in practice. In additional, limited data sources are available online and this study used 
the dataset from (J.N. Kather et al. 2016), but more medical data are needed to validate its capability in 
general use. 
3) Currently, machine learning based approach is investigated but the preliminary results are not as 
good as feature based techniques. The reason may be due to the limited data sets available publicly to 
train the system. Further data collection may help to effectively enlighten the system for better 
classification accuracy 
 

Conclusion 

This paper presents different tissue types in histological images classification for CRC detection using 
machine learning (SVM) based decision fusion. It demonstrates that our identification results achieve 
higher accuracy rates (93.17% for eight classes and 96.02% for ten classes) than previous results. It 
demonstrates that our proposed method is superior to the previous studies and the technique can 
effectively identify the CRC histological images. The results also confirm that human solid tumors with 
the complex structures can be distinguished based on the texture of tissue types. For future works, the 
textures of tissue morphology detection will be studied, and the information from biological visual 
fields will also be analyzed. 
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