

 $\otimes$  Volume & Issue: Volume 22, Issue 2, February 2021, Pages 315-640  $\square$ Number of Articles: 42

# Cytokines as Prognostic Biomarkers of Epithelial Ovarian Cancer (EOC): A Systematic Review and Meta-Analysis

Pages 315-323 Moh Nailul Fahmi; Heru Pradjatmo; Indwiani Astuti; Ricvan Dana Nindrea

View Article DPF 414.21 K

# The Effect of Particle Size on the Cytotoxicity of Amorphous Silicon Dioxide: An in Vitro Toxicological Study

Pages 325-332

Athena Rafieepour; Mansour R.Azari; Jalal Pourahmad Jaktaji; Fariba Khodagholi; Habibollah Peirovi; Yadollah Mehrabi; Yousef Mohammadian

View Article 🔀 PDF 385.37 K

### Physical Features and Vital Signs Predict Serum Albumin and Globulin Concentrations Using Machine Learning

Pages 333-340

Jing Wei; Jie Xiang; Yousef Yasin; Andrew Barszczyk; Deanne Tak On Wah; Meifen Yu; Wendy Wenyu Huang; Zhong-Ping Feng; Kang Lee; Hong Luo

View Article 🔀 PDF 398.06 K

# Significance of HIF-1 $\alpha$ Expression and LOXL-2 Localization in Progression of Oral Squamous Cell Carcinoma

Pages 341-347 Anshul Bharti; Aadithya B Urs; Priya Kumar View Article D PDF 1.08 M

# The Role of English Proficiency in HPV and HPV Vaccine Awareness: A Cross-Sectional Study Across Race/Ethnicity

Pages 349-357 Hee Yun Lee; Yan Luo; Jessica Neese; Casey Daniel; Hyeouk Chris Hahm

View Article 🔀 PDF 372.14 K

# Prevalence of Smoke-Free Zone Compliance among Schools in Indonesia: A Nationwide Representative Survey

Pages 359-363 Al Asyary; Meita Veruswati; Cut Putri Arianie; Theresia Sandra Diah Ratih; Aries Hamzah View Article DPF 278.56 к

### Role of Immunotherapy in Stage IV Large Cell Neuroendocrine Carcinoma of the Lung

Pages 365-370 Takefumi Komiya; Neema Ravindra; Emily Powell View Article DPF 360.72 K

# Transcriptional Biomarkers in Oral Cancer: An Integrative Analysis and the Cancer Genome Atlas Validation

Pages 371-380 Kinjal D Patel; Hemangini H Vora; Prabhudas S Patel

View Article DDF 1.58 M

### The Effect of the EGFR - Targeting Compound 3-[(4-Phenylpyrimidin-2-yl) Amino] Benzene-1-Sulfonamide (13f) against Cholangiocarcinoma Cell Lines

Pages 381-390

Papavee Samatiwat; Lueacha Tabtimmai; Prapasiri Suphakun; Nattanan Jiwacharoenchai; Borvorrnvat Toviwek; Veerapol Kukongviriyapan; M. Paul Gleeson; Kiattawee Choowongkomon

View Article 🔀 PDF 454.96 K

### The Predictors of Sexual Satisfaction among Iranian Women with Breast Cancer

Pages 391-396 Nasrin Fouladi; Iraj Feizi; Mehriar, Nadermohammadi; Elham Mehrara; Rozita Adldoosti; Sara Alimohammadi

View Article 🔀 PDF 276.04 K

# Effects of Pictorial Health Warnings on Cognitive, Affective, and Smoking Behavior: A Mixed Methods Study in Four Cities in Indonesia

Pages 397-405

Rendro Dhani; Artini Artini; Sri Tunggul Pannindriya; Albert Albert; Abdillah Ahsan; Dian Kusuma

View Article DPF 391.75 K

## Potential Utility of Cell Free High Mobility Group AT-hook 2 (HMGA2) as a Prognostic Biomarker in Liquid Biopsies of Oral Squamous Cell Carcinoma

Pages 407-412

Nosheen Mahmood; Shamim Mushtaq; Qamar Jamal; Muhammad Hanif; Humera Akhlaq; Dur-e-Shewar Rehman; Rashid Awan

View Article 🔀 PDF 338.75 K

# Mobile Screening Unit (MSU) for the Implementation of the 'Screen and Treat' Programme for Cervical Cancer Prevention In Pune, India

Pages 413-418

Smita Joshi; Richard Muwonge; Vinay Kulkarni; Eric Lucas; Sanjeevani Kulkarni; Seema Kand; Mahesh Mandolkar; Mufid Baig; Sudhakar Wankhede; Kavita Surwase; Dilip Pardeshi; Partha Basu; Sankaranarayanan Rengaswamy

View Article 🔀 PDF 272.5 K

# Key Drivers to Implement an Evidence-based Tobacco Control Programme in Schools of India: A Mixed-Methods Study

Pages 419-426

Akash Pradhan; Kunal Oswal; Keyuri Adhikari; Ajita Singh; Rishav Kanodia; Lakshman Sethuraman; Ramachandran Venkataramanan; Glorian Sorensen; Eve Nagler; Mangesh Pednekar; Prakash Gupta; Arnie Purushotham

View Article 🔀 PDF 440.16 K

# Symptom Perceptions and Help-Seeking Behaviours of Omani Patients Diagnosed with Late-Stage Colorectal Cancer: A Qualitative Study

Pages 427-435 Mahera Al Suqri; Huda Al-Awaisi; Mansour Al-Moundhri; Mohammed Al-Azri View Article PDF 303.91 к

### How Well Have Projected Lung Cancer Rates Predicted the Actual Observed Rates?

Pages 437-445 Qingwei Luo; Julia Steinberg; Xue Qin Yu; Michael Caruana; Karen Canfell; Dianne L O'Connell View Article PDF 802.36 K

### Evaluation of the Synthesized Novel Iridium (III) Complexes Against HeLa Cell Lines Through In-Silico, In-Vitro and DNA Nicking

Pages 447-455 G Sathya Priyadarshini; Aathi Muthusankar; Ramesh subramani; Selvi Gopal View Article PDF 778.73 K

# Effect of Intravenous Glutamine on Caspase-12 Expression in the Apoptosis of the Glomerular Epithelial Cells of Male Rats Exposed to Cisplatin

Pages 457-462 Tamara Aulia Fakhrinnisa; Imam Susilo; Arifa Mustika; Miyayu Soneta Sofyan

View Article 🔀 PDF 409.12 K

### Acetic Acid and Iodine Staining for Determining Malignancy in Solid Tumors

Pages 463-469 Maulina Indah Anugrah Putri; Sonar Soni Panigoro; Agnes Stephanie Harahap; Trevino Aristarkus Pakasi; Bayu Brahma

View Article 🔀 PDF 651.87 K

# Human Papillomavirus (HPV) Health Savings as an Alternative Solution: HPV Vaccination Behavior in Adolescents

Pages 471-476 Wiwin Lismidiati; Ova Emilia; Widyawati Widyawati

View Article 🔀 PDF 282.81 K

### Oral Psychosomatic Disorders in Family Caregivers of Oral Squamous Cell Carcinoma Patients

Pages 477-483

Shailesh M Gondivkar; Amol R Gadbail; Sachin C Sarode; Amol Hedaoo; Subhrajit Dasgupta; Balkrishna Sharma; Apparna Sharma; Monal Yuwanati; Rima S Gondivkar; Rahul N Gaikwad; Gargi S Sarode; Shankar Patil

View Article 🔀 PDF 307.83 K

# Psycho-Education on Knowledge of Oral Hygiene and Psychological Distress to the Parents with Leukemia Children

Pages 485-490

Ilya Krisnana; Iqlima Dwi Kurnia; Pujiati Pujiati; I Dewa Gede Ugrasena; Yuni Sufyanti Arief

View Article 🔀 PDF 292.24 K

### Clinical Impact of Pelvic Lymph Node Status in Locally Advanced Cervical Cancer Patients Treated by Concurrent Chemoradiation Therapy

Pages 491-497 Kanyarat Katanyoo; Thaovalai Thavaramara View Article PDF 401.76 K

# Socioeconomic Predictors of Trends in Cancer Mortality among Municipalities in Japan, 2010–2019

Pages 499-508 Tasuku Okui View Article 🔀 PDF 841.01 К

### Roles of Salmonella typhi and Salmonella paratyphi in Gallbladder Cancer Development

Pages 509-516

Ratnakar Shukla; Pooja Shukla; Anu Behari; Dheeraj Khetan; Rajendra K Chaudhary; Yasuo Tsuchiya; Toshikazu Ikoma; Takao Asai; Kazutoshi Nakamura; Vinay K Kapoor

View Article 🔀 PDF 355.35 K

### Cancer, Mortality, and Acute Kidney Injury among Hospitalized Patients with SARS-CoV-2 Infection

Pages 517-522 Johnathan A Khusid; Adan Z. Becerra; Blair Gallante; Areeba S Sadiq; William M Atallah; Ketan K Badani; Mantu Gupta

View Article DF 292.65 K

### Validation of Segmented Brain Tumor from MRI Images Using 3D Printingthe

Pages 523-530 Ujwal Ashok Nayak; Mamatha Balachandra; Manjunath K N; Rajendra Kurady View Article D PDF 782 K

### Prediction for Breast Cancer in BI-RADS Category 4 Lesion Categorized by Age and Breast Composition of Women in Songklanagarind Hospital

Pages 531-536 Seechad Noonpradej; Piyanun Wangkulangkul; Piyanoot Woodtichartpreecha; Suphawat Laohawiriyakamol

View Article 🔀 PDF 296.96 K

### A Systematic Approach of Data Collection and Analysis in Medical Imaging Research

Pages 537-546 Manjunath K N; Chitra Manuel; Govardhan Hegde; Anjali Kulkarni; Rajendra Kurady; Manuel K View Article 🛛 🕒 PDF 🛛 1.11 M

# Risk of High-Grade Cervical Lesions in Atypical Squamous Cells of Undetermined Significance (ASC-US) Cytology: Comparison between HIV-Infected and HIV-Negative Women

Pages 547-551 Santipap Srisomboon; Charuwan Tantipalakorn; Tanarat Muangmool; Jatupol Srisomboon View Article PDF 266.13 K

### Histopathology and ARID1A Expression in Endometriosis- Associated Ovarian Carcinoma (EAOC) Carcinogenesis Model with Endometrial Autoimplantation and DMBA Induction

Pages 553-558

Puspita Eka Wuyung; Familia Bella Rahadiati; Hartono Tjahjadi; Salinah Salinah; Kusmardi Kusmardi; Ria Kodariah; Budi Wiweko

View Article 🔀 PDF 832.61 K

### Frequency of Zygosity in Jak-2 Positive Patients with Polycythemia Vera-Pakistan's Perspective

Pages 559-564 Syed Zubair Shah; Naila Raza; Muhammad Israr Nasir; Syed Mustanir Hussain Zaidi View Article PDF 382.97 к

# Impact of Fas/Fasl Gene Polymorphisms on Susceptibility Risk and Imatinib Mesylate Treatment Response in Chronic Myeloid Leukaemia Patients

Pages 565-571

Aziati Azwari Annuar; Ravindran Ankathil; Nazihah Mohd Yunus; Azlan Husin; Nur Shafawati Ab Rajab; Ahmad Aizat Abdul Aziz; Mohd Ismail Ibrahim; Sarina Sulong

View Article 🔀 PDF 314.47 K

### Underexpression of miR-126-3p in Patients with Cholangiocarcinoma

Pages 573-579

Lucas Poleto Spinola; Gabriel F Vieira; Rafael Fernandes Ferreira; Maria C J Calastri; Graciele D Tenani; Franciana L Aguiar; Ilka F Santana Ferreira Boin; Larissa B E da Costa; Maria Fernanda Chaim Correia; Eliane M Zanovelo; Daniele C B de Souza; Rita C Martins Alves da Silva; Renato Ferreira da Silva; Ana Margarida Coelho Abrantes; Maria Filomena R R Botelho; Jose Guilherme L R Tralhão; Doroteia R S Souza

View Article 🔀 PDF 395.27 K

### The Life Quality and Sexual Function of Women Underwent Radical Hysterectomy

Pages 581-589

Roza Pak; Tolkyn Sadykova; Dilyara Kaidarova; Murat Gultekin; Gulnara Kasimova; Shynar Tanabayeva; Naylia Ussebayeva; Aigul Tazhiyeva; Maksut Senbekov; Ildar Fakhradiyev

View Article 🔀 PDF 396.33 K

### The Frequency of Epidermal Growth Factor Receptor (EGFR) mutations in Iraqi patients with Non-Small Cell Lung Cancer (NSCLC)

Pages 591-596 Hanan H Ramadhan; Dhuha F Taaban; Jubran K. Hassan View Article PDF 340 к

# Prevalence and Potential Risk Factors of Helicobacter pylori Infection among Asymptomatic Individuals in Kazakhstan

Pages 597-602

Linda Mežmale; Inese Polaka; Dace Rudzite; Reinis Vangravs; Ilze Kikuste; Sergei Parshutin; Ilva Daugule; Altynbek Tazhedinov; Tatyana Belikhina; Nurbek Igissinov; Jin Young Park; Rolando Herrero; Marcis Leja

View Article DF 306.39 K

# Daidzein Induces Intrinsic Pathway of Apoptosis along with ER $\alpha/\beta$ Ratio Alteration and ROS Production

Pages 603-610 Vinod Kumar; Shyam S Chauhan

View Article 🔀 PDF 669.03 K

# The Effect of Metformin on Survival Outcomes of Non-Metastatic Breast Cancer Patients with Type 2 Diabetes

Pages 611-616

Bita Behrouzi; Mohammad Zokaasadi; Mohammad Ali Mohagheghi; Amir Hosein Emami; Sanambar Sadighi

View Article 🔀 PDF 351.79 K

# Strong Correlation of MTHFR Gene Polymorphisms with Breast Cancer and its Prognostic Clinical Factors among Egyptian Females

Pages 617-626 Moataza H Omran; Basma E Fotouh; Wafaa G Shousha; Abeer Ismail; Noha E Ibrahim; Shimaa S Ramadan

View Article 🔀 PDF 746.15 K

# The Effective Control of Hyperuricemia in Cancer Patients: A New Recombinant Conjugated Variant of Urate Oxidase

Pages 627-632 Abbas Najjari; Hamid Shahbazmohammadi; Eskandar Omidinia; Abolfazl M Movafagh

View Article DPF 383.75 K

# Analysis of the Immunoexpression of Opioid Receptors and their Correlation with Markers of Angiogenesis, Cell Proliferation and Apoptosis in Breast Cancer

Pages 633-640

Alceu Machado de Sousa; Thinali Sousa Dantas; Paulo Goberlânio de Barros Silva; Conceição da Silva Martins; Gildenio Estevam Freire; Howard Lopes Ribeiro Junior; Gerly Anne de Castro Brito; Karuza Maria Alves Pereira; Renata Ferreira de Carvalho Leitão

View Article 🔀 PDF 690.08 K

#### **Editorial Board**

Editor-in-Chief

+ More

### Alireza Mosavi Jarrahi, MSPH, Ph.D.

Associate Prof. of Epidemiology

♥ President, Asian Pacific Organization for Cancer Prevention Associate Prof. Of Epidemiology Dept of Social Medicine, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada ﷺ (mosavi@yahoo.com Honorary Editor-in-Chief

Anthony Moore, Ph.D.

Toxicologist

Director-Coordination, Asia Pacific
 Organization for Cancer Prevention, Korean
 Cancer Center, Goyang, Korea.
 apocpcontrol@gmail.com

#### Associate Editor

#### L Prof. David Roder

Professor of Cancer Epidemiology

 ♥ Chair Cancer Epidemiology and Population Health, Beat Cancer Project, University of South Australia, Adelaide, Australia
 ♥ ca.linkedin.com/in/david-roder-54699329
 ▼ roder@internode.on.net

+ More

#### L Dr. Abhishek Shankar

Preventive Oncology, Radiation Oncology ♥ Assistant Professor Department of Preventive Oncology, Dr B R Ambedkar Instituute Rotary Cancer Hospital All India Institute of Medical Sciences, Delhi, India ▼ doc.abhishankar@gmail.com

+ More

#### Founder

#### L Yip Cheng-Har, MD, FACS

Surgery

♥ Prof. of Gynaecological Oncology Faculty of Medicine, University Tunku Abdul Rahman, Kuala Lumpur, Malysiaa ☎ chenghar.yip@gmail.com

+ More

#### L Keun-Young Yoo, MD, Ph.D.

Prof. of Cancer Epidemiology President, APOCP President, Armed Forces Capital Hospital Professor, Seoul National University College of Medicine, Seoul, Korea Kokyyoo@gmail.com

#### 👤 Kazuo Tajima, MD

Pathology 

 Prof. of Pathology

 Director, Aichi Cancer Center Research Institute,

 Ozaka, Japan

 Xktajima@clin.medic.mie-u.ac.jp

+ More

#### Prof. You Lin Qiao, M.D. Ph.D.,

Epidemiology

+ More

 Director, Dept. of Cancer Epidemiology Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing, China Qiayoccams.ac.cn

International Advisory Board

#### L Prof. Niveen Abu-Rmeileh

Community Medicine Q Associate prof. of Community Medicine Institute of Community and Public Health,

Birzeit University, Birzeit – Palestine X nrmeileh@gmail.com

+ More

#### L Prof. Ali Montazeri

Public Health

 Health Metrics Research Center, Institute for Health Sciences Research, ACECR, Iran
 montazeri@acecr.ac.ir

h-index: 65

+ More

#### L Prof. Goura Kishor Rath

Radiation Oncology Chief, DR BRAIRCH, Professor, Department of Radiation Oncology, and Head, National Cancer Institute, AIIMS, Ansari Nagar, New Delhi-110029, India Sc gkrath2006@qmail.com

#### Prof. Mohammad Ali Mohagheghi

Surgen © Deputy for Research, Iranian Academy of Medical Sciences, Tehran, Iran Tempaghgeghim@yahoo.com

#### Past Editorial Board

### L Dr. Xinen Huang

Prof. of Clinical Oncology

♥ Department of Oncology, Nanjing Medical University Affiliated Cancer Hospital of Jiangsu Province; Nanjing, Jiangsu 210009, China. ➡ huangxinen06@163.com

#### Prof. Rema Gvamichava

Prof of Surgery

♥ A. Gvamichava National Cancer Center, Tbilisi State Medical University Tbilisi, Georgia

⊠ doctorrema@yahoo.com

#### Prof. Mohammad Esmail Akhari

Prof. of Surgery

♀ Cancer Research Center,
 Shahid Beheshti University of Medical Scinces,
 Tehran, Iran
 ጁ profmeakbari@gmail.com

#### L Dr. Shahab Uddin

Cancer Biology 
 Hamad Medical Corporation

 Academic Health System

 Doha, Qatar

 Suddinkhan@gmail.com

#### + More

#### 👤 Dr. Farhana Badar

Cancer Registration and Epidemiology

♥ Sr. Biostatistician & Cancer Epidemiologist Cancer Registry & Clinical Data Management Shaukat Khanum Memorial Cancer Hospital & Research Center, Lahore, Pakistan ▼ farhana@skm.org.pk

#### L Prof. Jeff Dunn

 Chief Executive Officer of Cancer Council Queensland.
 School of Social Science, University of Southern Queensland, Queensland, Australia.
 jeffdunn@cancerqld.org.au

+ More

#### L Dr. Constance Lay Lay Saw

Pharmaceutical Sciences

♥ Center for Cancer Prevention Research Department of Pharmaceutics Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, USA

⊠ constancesaw@gmail.com

+ More

#### Prof. Salim M. Adib

Prof. of Public Health

• Professor of Public Health, American University of Beirut , Beirut, Lebanon WHO, East Mediterranean Regional Office Nasr City, Cairo, Egypt adibs@emro.who.int

+ More

#### L Dr. Pravin Kesarwani

Molecular Genetic

• Radiation Oncology Research William Beaumont Research Institute, USA x pravin.kesarwani@gmail.com

+ More

#### L Dr. Parastoo Hajian

Radiation Oncology

Ocpt. of Radiotherapy, Medical School, Shahid Beheshti University of Medical Sciences, Department of radiation oncology, Shohad-e-Tairish Hospital ▼ parastoo.hajian@yahoo.com

Epidemiology (Incidence, Prevalence, Survival, Statistical modeling, GIS)

#### **Editorial Board**

#### L Dr. Anton Barchuk

Thoracic surgery

• Petrov Research Institute of Oncology Saint Petersburg, Russian Federation ☑ barchuk.anton@gmail.com

#### L Dr. Munir Abu-Helalah

Epidemiology

• Regional Director Middle East, North Africa and Central Asia Global Academy for Health Sciences Adjunct Associate Professor of Epidemiology and Preventive Medicine, AlFaisal University, KSA Consultant Chronic Diseases Control& Prevention and Medical Screening 🗷 mabuhelalah@yahoo.co.uk

+ More

#### L Prof. Nurbek Igissinov

Oncology

• Chairman of Public Association Department of Surgical Diseases of Internship Central Asian Cancer Institute Astana Medical University Astana, The Republic of Kazakhstan. ▼ n.igissinov@gmail.com

#### Prof. Omran S. Habib

Social Medicine

Oppartment of Community Medicine, College of Medicine, University of Basrah, Basrah, Iraq ⊠ omran49\_basmed@yahoo.com

#### L Prof. Le Tran Ngoan

Occupational Health

• International University of Health and Welfare, Japan and Hanoi Medical University, Viet Nam ⊠ letranngoan@yahoo.com

#### L Dr. Rahmatollah Moradzadeh

Epidemiology

Assistant Professor Department of Epidemiology, School of Public Health, Arak University of Medical Sciences, Arak. Iran

₩ moradzadehr@yahoo.com

+ More

Cancer Genetics (karyotyping and molecular genetics)

#### **Editorial Board**

#### L DR. Elsayed I Salim

• Faculty of Science, Tanta University, Tanta, Egypt

#### L Dr. Reza Shirkohi

Medical Genetic

O Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran

#### ☑ elsalem\_777@yahoo.com

| 🖾 r. | _shirkc | ohi@ya | ahoo.com |
|------|---------|--------|----------|
|------|---------|--------|----------|

#### L Prof. Mehrnoosh Doroudchi

#### Immunology

♥ Associate Professor of Immunology Director of Memory T cell Laboratory Department of Immunology, School of Medicine Shiraz University of Medical Sciences, Shiraz-Iran ☎ mdoroud@sums.ac.ir ☑

#### L Prof. Manoochehr Makvandi

Virology Virology Dept. Ahwaz University of Medical Sciences, Ahwaz, Iran Tamaocchehrmakvandi29@yahoo.com

\_\_\_\_

+ More

#### Molecular and Cellular aspect (Inflammation, Oxidative stress, studies of cell lines)

#### Editorial Board

#### L Prof. Jalal Pourahmad

Toxicologist

 ♀ School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
 ♀ Scholar.google.com/citations?
 user=SLqpnmoAAAAJ&hl=en
 簗 pourahmai,j@sbmu.ac.ir
 ⑨ 0000-0002-4555-4168

#### L Prof. Ravi Mehrotra

+ More

Cytopathology

National Institute of Cancer Prevention and Research
WHO-FCTC Global Hub for information on smokeless tobacco products (Institute of Cytology and Preventive Oncology-ICMR)
Department of Health Research, Noida, India
Treherotra@icmr.org.in

+ More

#### L Prof.. Muhammad Asif Qureshi

Tumor Immunology

 ♥ Department of Pathology, Dow International Medical College, Dow University of Health Sciences (OJHA CAMPUS), Karachi, Pakistan
 ♥ www.unimedizinmainz.de/tim/mitarbeiter.html
 ♥ asif@asifqureshi.com
 ↓ +923002185053

+ More

#### L Dr. Pratheeshkumar Poyil

Biotechnology Q Associate Scientist King Faisal Specialist Hospital & Research Center Riyadh, Saudi Arabia X ppratheeshkumar@gmail.com

+ More

#### L Dr. Ajaz Ahmad Bhat

Cancer Biology

 ♥ Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
 ➡ abhat@sidra.org
 ➡ 0000-0003-3640-6275

+ More

#### L Dr. Houssein Ghahramani

Biochemistry ♥ SBMU ▼ ghahremani@sbmu.ac.ir

#### Patient Care and Clinical aspect of Cancer

#### Editorial Board

#### L Prof. Murat Gultekin

Gynaecological Oncologist Saglik Bakanlığı-Turkish Ministry of Health, Hacettepe University, European Society of Gynaecological Oncology (ESGO) Swww.linkedin.com/in/murat-gultekin-268136100 Ximrtgultekin@yahoo.com

+ More

#### L Dr. Ayesha AlRifai

Health Policy

 ♀ Arab American University & Birzeit University/Occupied Palestine.
 ☎ a.alrifai1@gmail.com

#### L Farzad Taghizadeh-Hesary

Radiation Oncology

♥ Clinical Oncology Department, Shahid
 Beheshti University of Medical Sciences, Iran
 ✗ f\_taghizadeh@sbmu.ac.ir

+ More

#### L Dr. Seyed Alireza Javadinia

Radiation Oncology

 Assistant Prof. Medical School, Sabzevar University of Medical Sciences, Iran
 javadinia.alireza@gmail.com

#### Diagnostic Modalities (Pathology, Radiology, Sono-Imaging, etc..

#### Editorial Board

#### L Prof. Shahid Pervez

Histopathology

• Departments of Pathology & Laboratory

Medicine Faculty of Health Sciences, Medical College, The

Aga Khan University, Karachi, Pakistan. 🐱 shahid.pervez@aku.edu

#### L Prof. Sufian Zaheer

Pathology

♥ 1. Professor (Pathology) 9th Nov 2017 - Till Date

VMMC and Safdarjang Hospital, New Delhi, Ministry of Health and Family welfare, India

🐱 sufianzaheer@gmail.com

0000-0002-8044-4327

# Effect of Intravenous Glutamine on *Caspase-12* Expression in the Apoptosis of the Glomerular Epithelial Cells of Male Rats Exposed to Cisplatin

# Tamara Aulia Fakhrinnisa<sup>1</sup>, Imam Susilo<sup>2</sup>\*, Arifa Mustika<sup>3</sup>, Miyayu Soneta Sofyan<sup>4</sup>

### Abstract

**Objective:** Cisplatin is potent chemotherapy for broad-spectrum malignancies treatment, but its use is limited by organ toxicity effects, including nephrotoxicity. Glutamine prevents cisplatin nephrotoxicity by inhibiting the oxidative stress in kidney cell apoptosis. **Methods:** This research examined the nephroprotective effects of intravenous glutamine on the glomerular epithelium of male rats (Rattus norvegicus). 30 male rats were randomly divided into (1) P0 as the control group; (2) P1 that was administered with single dose cisplatin (20 mg/kg BW) intraperitoneal injection; and (3) P2 that was administered with intravenous injection of glutamine (100 mg/kg BW) and single-dose cisplatin (20 mg/kg BW) intraperitoneal injection. The measurement of *caspase-12* expression and apoptotic cells was performed using immunohistochemical methods. **Results:** The *caspase-12* expression are as follows: P0 =  $0.5 \pm 0.15$ ; P1 =  $4.1 \pm 0.86$ ; P2 =  $2.54 \pm 0.72$ . The apoptotic cells are as follows: P0 =  $14.5 \pm 5.23$  cells/field of view; P1 =  $52.7 \pm 17.06$  cells/field of view; P2 =  $31.5 \pm 6.73$  cells/field of view. There is a decrease in the *caspase-12* expression and apoptotic cells exposed to cisplatin. The decrease of *caspase-12* expression is followed by a decrease in glomerular epithelial cells exposed to cisplatin. The decrease of *caspase-12* expression is followed by a decrease in glomerular epithelium apoptosis after intravenous glutamine administration. Conclusion: Immunohistochemical examination can be used as a marker of the nephrotoxic effect of cisplatin on the renal glomerular epithelium. Glutamine has been observed to give nephroprotective effect to cisplatin nephrotoxic effects.

Keywords: Apoptosis- caspase-12- cisplatin- glomerular epithelial cells- glutamine

Asian Pac J Cancer Prev, 22 (2), 457-462

#### Introduction

The prevalence of metabolic diseases in Indonesia, especially kidney disease, exhibits a high trend. Based on the 2017 data from the Health Insurance Administering Agency (BPJS), the state covered the 3,657,691 recorded cases of chronic kidney disease dialysis procedures with total cost for coverage of IDR 3.1 trillion. One of the etiologies in kidney failure is the permanent damage to the nephrons by toxins.

Cisplatin is a potent chemotherapy drug that is widely used for broad-spectrum therapy for malignancies, including head and neck, esophageal, bladder, testicular, ovarian, breast, and non-small-cell lung cancers (Fillipski et al., 2008; Reck, et al., 2010). However, the clinical application of cisplatin is limited due to the high organ toxicity effects, such as nephrotoxic, neurotoxic, ototoxic, and hepatotoxic effects (Karasawa, and Steyger, 2015; Guo et al., 2018). Cisplatin causes apoptosis at lower doses (10–100  $\mu$ M) and necrotic cell death at higher doses (200-800 µM) (Hanigan and Devarajan, 2003) More than 70% of pediatric patients who received cisplatin experience kidney dysfunction (Skinner et al., 1998). Moreover, acute kidney injury occurs in 20-30% of all administered patients (Miller et al., 2010). The renal dysfunction usually begins a few days after the standard dose of cisplatin (50-120 mg/m<sup>2</sup>) administration and is expressed by the increasing levels of serum creatinine and blood urea nitrogen (Akcay et al., 2010). Cisplatin treatment induces a massive tubular dilation and cast formation in several tubule lumens. Focal tubular necrosis, base membrane thickening of kidney tubules and Bowman's capsule, and focal mononuclear cell infiltration are occasionally observed as well. Renal tubular damage

<sup>1</sup>Medicine Undergraduate Program, Faculty of Medicine, Airlangga University, Jalan Mayjen Prof. Dr. Moestopo 47, Surabaya, Indonesia. <sup>2</sup>Department of Pathological Anatomy, Faculty of Medicine, Airlangga University, Jalan Mayjen Prof. Dr. Moestopo 47, Surabaya, Indonesia. <sup>3</sup>Department of Pharmacology, Faculty of Medicine, Airlangga University, Jalan Mayjen Prof. Dr. Moestopo 47, Surabaya, Indonesia. <sup>4</sup>Department of Health Faculty of Vocational Study, Airlangga University, Jalan Darmawangsa dalam 68-69 601551 Surabaya, Indonesia. \*For Correspondence: imam-susilo@fk.unair.ac.id

#### Tamara Aulia Fakhrinnisa et al

also occurs, together with vacuolization and desquamation of epithelial cells. Some glomeruli experience necrosis and normal residual glomeruli often show the enlarged periglomerular spaces.

One of the cisplatin's nephrotoxic mechanisms is apoptosis, which is a programmed cell death pathway activated by cisplatin through some mechanisms. Cisplatin decreases Bcl-2 expression in the mitochondrial pathway, which supposedly inhibits the development of the pro-apoptotic molecules (Oltvai and Korsmeyer, 1994). In the death receptor pathways, cisplatin activates Fas-dependent pathways and apoptosis, either in vivo (Nogae et al., 1998) or in vitro (Feldenberg et al., 1999). Cisplatin also activates caspase pathways. The role of caspase-3 is first encountered in the cultured tubular proximal cells, which respond to cisplatin by increasing the caspase-3 activity in a dose-dependent manner (Fukuoka et al., 1998; Lau, 1999). Following studies have revealed caspase-9 activation and, to a lesser extent, caspase-8 activation (Kaushal et al., 2001; Park et al., 2001).

Glutamine (Gln or Q) is an  $\alpha$ -amino acid used in protein biosynthesis. It is one of the ingredients to produce glutathione, which is a potent antioxidant. A single dose of intravenous glutamine (0.15–0.75 g/kg) can increase the *HSP* expression, reduce end-organ injury, and improve the survival rate from septic shock in mice (Wischmeyer, 2002). Glutamine also increased the vascular reactivity by inducing *HSP* expression and inhibiting the release of inflammatory cytokines and peroxide biosynthesis in LPS shock mice (Jing et al., 2017). Glutamine can also reduce apoptosis by inhibiting the oxidative stress, as observed by the results of the trials using mice with colitis induced by a 2,4,6-trinitrobenzene sulfonic acid (Crespo et al., 2012).

The levels of caspase-12 in the glomerular epithelium have not been studied, even though the time of exposure to the toxin received to the glomerulus is high and the epithelial cells are exposed first then the tubules. A study has shown that Bowman's capsules have a role in the physiological function of the normal glomerulus. The podocyte injury stimulates the activation of Bowman's capsule parietal cells, which extend into the glomerular beam, resulting in segmental and global sclerosis by producing more matrixes and destroying the glomerulus capillary's lumen (Al Hussain et al., 2017).

This study aims to analyze the nephroprotective effect of intravenous glutamine on the glomerular epithelial cells apoptosis by examining the expression of *caspase-12*, which is the initiator of apoptosis in the endoplasmic reticulum stress pathway. Pro-caspase-12 is found in the endoplasmic reticulum, especially in the proximal tubules of the kidney. The intravenous glutamine is expected to be an alternative solution for kidney failure caused by cisplatin chemotherapy modalities.

#### **Materials and Methods**

#### Animals and Treatment

This research was approved by the Health Research Ethics Committee of the Universitas Airlangga School of Medicine (No. 25/EC/KEPK/FKUA/2020). In this research, 30 male white rats (Rattus norvegicus), aged 2–3 months with a bodyweight of 150–200 grams were obtained from the experimental animal unit of the Faculty of Veterinary Medicine, Universitas Airlangga. Each of them was held separately in a plastic box, lined with husks in the bottom, and then covered with woven wires on top. The husks were replaced every day.

#### Chemicals

The glutamine was obtained from Serva (Germany). The glutamine solution was prepared in 0.9% NaCl, with a dose of 1 g of glutamine in 10 mL of 0.9% NaCl. The glutamine dose is injected 100 mg/kg of body weight (BW) and a single injection is made a maximum of 0.2 mL IV. The glutamine was injected intravenously into the rat's tail using a 1 mL 27-gauge syringe.

The cisplatin material was obtained from Kalbe Farma (Indonesia), with a dose of 20 mg/kg BW, administered via intraperitoneal injection using a 1 mL 27-gauge syringe. We also used Primary Antibodies Caspase-12 (Polyclonal Antibody PA5-27094 Thermo Scientific) and Apoptosis Detection Kit in Situ Cell POD (11684817910 ROCHE).

#### Experimental Design

In this research, 30 Wistar male white rats were randomly divided into three groups at the start of the study. The control group (P0) was sacrificed by cervical dislocation after anesthesia with ether and then the kidneys were taken for immunohistochemistry preparation.

On day 7, the P1 group was administered with cisplatin at a single dose of 20 mg/kg BW via intraperitoneal injection and then observed for 72 h. The rats were sacrificed on the 10th day by cervical dislocation after anesthesia with ether, and then the kidneys were taken for the immunohistochemistry preparation. The execution time is due to the glomerular epithelial cells' apoptosis is occurred after cisplatin injection on day 10 (Tsuruya et al., 2003). The P2 group was administered with glutamine at a dose of 100 mg/kg BW once daily via intravenous injection from day 1 to day 7 (Zhang et al., 2009). On day 7, the rats were administered with cisplatin at a single dose of 20 mg/kg BW via intraperitoneal injection. Subsequently, the rats were observed for 72 h and then sacrificed on the 10th day through cervical dislocation after anesthesia with ether. Later, the kidneys were taken as well for the immunohistochemistry preparation.

#### Histopathological Preparation

The kidney tissue was fixed in 10% formalin for 15-24 h. The dehydration was performed for 60 minutes using the series of alcohol (30%, 50%, 70%, 80%, 96%, and absolute concentration) to prevent any changes in tissue morphology. Then, the clearing using xylol was performed twice (60 min each). Subsequently, the infiltration with tender paraffin was performed for 60 min at 48°C. Later, the hard paraffin was blocked in the mold and stored for 1 day. The next day, the hardened was placed on the holder and cut into 4–5-µm-thick sections using a rotary microtome. After that, the mounting to object glass was performed with the poly-L-lysine coating. The mounted tissue was immersed in xylol twice (5 min each). After

that, the rehydration was performed using the series of alcohol (absolute, 96%, 80%, 70%, 50%, and 30% concentration) for 5 min, respectively. Then, it was rinsed in  $dH_2O$  for 5 min.

#### Immunohistochemical Assay of CSP12

The slides were washed once with phosphate-buffered saline (PBS) (Millipore 524650) at pH 7.4 for 5 min three times. The endogenous peroxide blocking was carried using 3% H2O2 for 20 min. Then the slides were washed again with the same procedure before the blocking treatment. The unspecific protein blocking was done using 5% PBS (Millipore 524650) containing 0.25% Triton X-100 (Sigma-Aldrich T8787) and then repeat the washing procedure. The incubation of primary antibodies caspase-12 (Polyclonal Antibody PA5-27094 Thermo Scientific) was done overnight at 40°C. After that, the slides were washed using PBS (Millipore 524650), pH 7.4, three times for 5 min each. The incubation using anti-mouse biotin-conjugated was done for 1 h at room temperature then the wash procedure was repeated. The incubation using streptavidin-horse radish peroxidase (Thermo Fisher Scientific N100) was done for 40 min and then washed once more. The slides were then added with drops with diaminobenzidine (DAB) (Thermo Fisher Scientific 3400) and incubated for 10 min and then washed with a similar procedure. The counterstaining was using Mayer's hematoxylin solution (Sigma-Aldrich MHS32) for 10 min, then washed using tap water, rinsed with dH2O, and air-dried. The prepared slides were observed using a light microscope at a magnification of 400× after mounted and covered with a glass cover. The positive molecular expression with primary antibodies would appear brown when observed. The calculated glomerular epithelial cells were located in the renal corpuscle area marked by a flat layer of epithelial cells at the parietal part of Bowman's space.

#### Apoptosis Examination

Tissue deparaffinization was performed by washing the tissue three times with xylene (Supelco 108297) for 5 min. The tissue was soaked twice in absolute ethanol for 5 min each and then transferred to 95% ethanol and 70% ethanol 3 min each. The tissue was washed with PBS (Millipore 524650) for 5 min.

The antigen uptake was done by giving proteinase K (Sigma-Aldrich 70663) for 15 min to the sample. Then, the tissue was washed twice with H<sub>2</sub>O in a Coplin tube for 2 min. The endogenous peroxidase was removed by dripping 3% H<sub>2</sub>O<sub>2</sub> PBS and left for 5 min at room temperature. Then, the tissue was washed twice with PBS (Millipore 524650) for 2 min each in a Coplin tube. The excess liquid was dried using paper. About 75 µl of equilibration buffer was dropped on the tissue and then incubated for 10 min at room temperature. The liquid around the tissue was then dried using paper. The enzyme activity was reduced by 55  $\mu$ l/5 cm in the tissue of TdT (Sigma-Aldrich SAB5600268), and then the tissue was incubated at 37°C in a moist container for 1 h. The preparations were placed in a Coplin jar containing a strong buffer/cleaning job and then incubated for 10 min at room temperature. The preparations were washed four times with PBS (Millipore 524650) for 2 min in a Coplin jar at room temperature. The excess liquid around the tissue was dried using paper. Anti-digoxigenin (Roche 11333089001) conjugate, which was previously removed from storage and warmed to room temperature, was dropped on a tissue surface of 65  $\mu$ l/5 cm<sup>2</sup> and then incubated for 30 min at room temperature. The preparation was washed four times with PBS (Millipore 524650) in a Coplin jar for 2 min at room temperature. Then, the excess liquid around the tissue was dried using paper. The color was exposed after peroxidase substrate (Sigma-Aldrich CPS160) drops of 75  $\mu$ l/5cm2 on the surface of the tissue and left for 10 min at room temperature. The preparations were washed three times with dH<sub>2</sub>O for 1 min in Coplin jars and then incubated with dH<sub>2</sub>O in Coplin jars for 5 min at room temperature. The methyl green counterstaining (Sigma-Aldrich M8884) was performed for 30 s at room temperature. Then, the preparation was washed three times with dH<sub>2</sub>O for 1 min in a Coplin jar. The preparations were cleaned with xylene (Supelco 108297), and the excess liquid around the tissue was dried using paper. The preparations were observed using a light microscope at a magnification of  $400 \times$  and the brown epithelial cells from the glomerular kidney epithelium were counted in each field of view.

#### Statistical Analysis

The ratio was the used data scale for caspase-12 expressing cells and apoptotic cells, so it was necessary to conduct a normality test using the Shapiro–Wilk test ( $\alpha = 0.05$ ) and homogeneity test using the Leaven test ( $\alpha = 0.05$ ). If the results were in the normal distribution and homogeneous, then a different test using one-way ANOVA ( $\alpha = 0.05$ ) was conducted. If the results were normal but heterogeneous, then the conducted test was Kruskal–Wallis ( $\alpha = 0.05$ ). If there was a difference in data obtained, then the analysis was followed by Mann–Whitney U test ( $\alpha = 0.05$ ). Eventually, Pearson's correlation test was conducted to find out the correlation between caspase-12 expressing cells and apoptotic cells.

#### Results

#### Glomerular Epithelial Cells Morphology

Before observing the caspase-12 expressing cells and apoptotic cells, the morphology of Bowman's capsule renal epithelium was first observed with hematoxylin– eosin (HE) staining at a 400× magnification. The observed object was chosen randomly to represent the histological picture of each group. The cisplatin was occasionally found in focal tubular necrosis, the thickening of the base membrane in the kidney tubules and Bowman's capsules, and the infiltration of focal mononuclear cells in the glomerulus. Some glomeruli experience necrosis and normal residual glomeruli often exhibit enlarged periglomerular spaces.

#### Caspase-12 Protein Expression and Apoptotic Cells in the Glomerular Epithelial Cells

The results of immunohistochemical-stained kidney Asian Pacific Journal of Cancer Prevention, Vol 22 459

Table 1. The Descriptive Statistic of Caspase-12 Expression and Apoptotic Cells. P0: control group. P1: cisplatin injection on the  $7^{th}$  day. P2 treated with intravenous glutamine injection 7 days in a row before being injected with cisplatin on the  $7^{th}$  day.

| Group | Cells expressing the caspase-12 | Apoptotic        |
|-------|---------------------------------|------------------|
|       | protein                         | cells            |
|       | Mean $\pm$ SD                   | $Mean \pm SD$    |
| P0    | $0.5 \pm 0.15$                  | $14.5\pm5.23$    |
| P1    | $4.1 \pm 0.86$                  | $52.7 \pm 17.06$ |
| P2    | $2.54\pm0.72$                   | $31.5\pm6.73$    |
|       |                                 |                  |

tissue exhibited changes in the expression of *caspase-12* in each group. The administration of cisplatin injection in group P1 exhibited a higher mean expression of *caspase-12* after 72 h ( $4.1 \pm 0.86$ ) when compared with the control group (P0). The administration of glutamine injection and cisplatin injection (P2) exhibited a lower mean expression of *caspase-12* after 72 h ( $2.54 \pm 0.72$ ) when compared with P1 (Table 1).

Besides, cisplatin injection in group P1 exhibited a higher rate of cell apoptosis after 72 h ( $52.7 \pm 17.06$ ) when compared with the control group (P0). The administration of glutamine injection and cisplatin injection in P2 exhibited a lower mean expression of *caspase-12* after 72 h ( $31.5 \pm 6.73$ ) when compared with P1 (Table 1).

The Kruskal–Wallis test indicated the differences in the number of glomerular epithelial cells expressing caspase-12 and in the number of apoptotic cells in the three treatment groups. Subsequently, the Mann–Whitney U test concluded that there were differences in the number of parietal epithelial cells expressing caspase-12 protein and in the number of apoptotic cells between the P1 and P2 groups with the control group and between the P1 and P2 groups. There were also differences in the number of parietal epithelial cells expressing the caspase-12 protein

Table 2. Mann-Whitney U Test Results

| Variable         | Comparison |    | P-value | Interpretation      |
|------------------|------------|----|---------|---------------------|
| Cells expressing | P0         | P1 | 0       | Obtained difference |
| the caspase-12   |            | P2 | 0       |                     |
|                  | P1         | P2 | 0.001   |                     |
| Apoptotic cells  | P0         | P1 | 0       | Obtained difference |
|                  |            | P2 | 0       |                     |
|                  | P1         | P2 | 0.001   |                     |

and the number of cell apoptosis (Table 2).

#### The Correlation Between Capase-12 Expression Cells and Apoptotic Cells

The Pearson's correlation test results indicated that a significant correlation exists between the glomerular epithelial cells expressing caspase-12 and the number of cells undergoing apoptosis with the correlation coefficient of 0.707, which is strong and positive. Thus, it can be concluded that if the number of protein expression cells decreases, the number of apoptotic cells also decreases, and vice versa.

#### Discussion

In this study, the treatment was performed in the experimental animals that were divided into three groups: the control group (P0); the P1 group, which received intraperitoneal cisplatin injection; and the P2 group, which received intraperitoneal cisplatin injection and intravenous glutamine injection. The treatment response was observed for 72 h after treatment because apoptosis was apparent after 72 h of cisplatin injection (Tsuruya et al., 2003). The site observed in this study was the



Figure 1. Glomerular Epithelial Cells Morphology after CSP-12 Antibody. P0: control group. P1: cisplatin injection on the 7<sup>th</sup> day. P2 treated with intravenous glutamine injection for 7 days in a row before being injected with cisplatin on the 7<sup>th</sup> day. The positive result indicated with brown cytoplasm.



Figure 2. Morphology of the Glomerular Epithelial Cells after Apoptosis Detection Kit. P0: control group. P1: cisplatin injection on the  $7^{th}$  day. P2 treated with intravenous glutamine injection for 7 days in a row before being injected with cisplatin on the  $7^{th}$  day. The positive result indicated with brown cytoplasm.

glomerular epithelium. So far, there has been no research yet on the cisplatin nephrotoxicity in the glomerular epithelium. The glomerulus is more proximal than the tubules and therefore is thought to be affected by cisplatin nephrotoxicity earlier than the tubules.

The differences in the *caspase-12* expression level were directly proportional to the level of glutamine administration in each treatment. These results are supporting by a study that stated that glutamine can induce high levels of HSP expression in all organs, including the kidneys (Zhang et al., 2009) A single dose of intravenous glutamine can increase the HSP expression, reduce end-organ injury, and improve survival from septic shock in whole mice (Wischmeyer, 2002). The cytoprotective and antioxidant properties of glutamine may be crucial in high catabolism situations, where the activity and expression of inflammatory pathways mediated by NF-kB are modulated (Cruzat et al., 2014). The decreased availability of plasma glutamine has been reported to cause the reduction of lymphocyte proliferation, impair the expression of surface activation proteins and cytokine production, and induce apoptosis in cells (Roth, 2008). This is what might be the reason glutamine can prevent the cells toward apoptosis in this study.

As mentioned in the results, glutamine administration decreased apoptosis of cisplatin-treated cells. This has been proven to the contrary in a study by Kadri et al. (2017) where the suppression of glutamine metabolism can increase the cytotoxic potential of some therapeutic drugs, such as cisplatin, thus allowing a decrease of chemotherapy compounds dose to minimize the toxicity and adverse reactions.

The mechanisms of cell death depend on the cisplatin administration dose, either by necrosis or apoptosis (Lieberthal et al., 1996). In in vitro experiments, low concentrations of cisplatin cause cells to undergo apoptosis, while necrosis at high concentrations (Megyesi et al., 1998; Ramesh and Reeves, 2003). In this research, the dose was enough to cause the epithelial cells to undergo apoptosis.

In the present study, cisplatin injection in the P1 exhibited a higher rate of cell apoptosis after 72 h compared to the control (P0). We also found that glutamine and cisplatin injection in the P2 expressed lower *caspase-12* expression after 72 h compared to P1.

Apoptosis after cisplatin treatment can also involve the ER -stress pathway. The caspase initiator in the ER pathway is caspase-12, which is localized to the cytosolic face of the ER and activated by ER pressure (Boyce and Yuan, 2006). Caspase-12 is activated during the treatment of cisplatin in LLC-PK1 cells (Liu and Baliga, 2005). In vitro observations have recently been extended to mouse models of cisplatin nephrotoxicity, where ER stresses and associated signaling, such as cleavage of caspase-12, were observed (Peyrou et al., 2007).

It can be concluded that apoptosis due to cisplatin administration occurs due to the increased expression of *caspase-12*, which induces apoptosis in the renal glomerular epithelial cells. At 72 h of observation after intravenous glutamine administration, the incidence of apoptosis in the renal glomerular epithelial cells was significantly inhibited (p < 0.0001) between the groups and was directly proportional to the effect of glutamine, which inhibited the expression of *caspase-12*.

In conclusion, based on the results, there is a decrease in the expression of *caspase-12* and apoptotic cells in the glomerular epithelial cells of male white rats exposed to cisplatin after intravenous glutamine administration. The decreased expression of *caspase-12* in intravenous glutamine administration is followed by a decrease in apoptosis in the glomerular epithelium. Thus, it is assumed that immunohistochemical examination on the renal glomerular epithelium can be used as a marker for the nephrotoxic effect of cisplatin.

The limitation of this study is various variables have not been observed. The researcher did not make observations to the executor caspase (caspase-3) because the researcher wanted to see the significance if the treatment was carried out in the initiator caspase. This study also did not see the incidence of apoptosis through two or more routes. In this case, the researcher wants to try to go through one route first and there is no need to study more than one route if the results are significant. It is also suggested to do further research on the application of glutamine intravenous to humans receiving cisplatin chemotherapy and also on the treatment in the animal with cancer so the effect of glutamine in cancer group and non-cancer can be observed.

### References

- Akcay A, Turkmen K, Lee D, Edelstein CL (2010). Update on the diagnosis and management of acute kidney injury. *Int J Nephrol Renovasc Dis*, 3, 129-40
- Al Hussain T, Al Mana H, Hussein M, Akhtar M (2017). Podocyte and parietal epithelial cell interactions in health and disease. *Adv Anat pathol*, 24, 24-34.
- Boyce M, Yuan J (2006). Cellular response to endoplasmic reticulum stress: a matter of life or death. *Cell Death Differ*, 13, 363–73
- Crespo I, San-Miguel B, Prause C, et al (2012). Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. *PLoS One*, 7, 50407
- Cruzat VF, Bittencourt A, Scomazzon SP, et al (2014). Oral free and dipeptide forms of glutamine supplementation attenuate oxidative stress and inflammation induced by endotoxemia. *Nutrition*, **30**, 602–11
- Feldenberg LR, Thevananther S, Del Rio M, De Leon M, Devarajan P (1999). Partial ATP depletion induces Fas- and caspase-mediated apoptosis in MDCK cells. *Am J Physiol* (*Renal Physiol*), **276**, 837–46.
- Fillipski KK, Loos WJ, Verweij J, Sparreboom A (2008). Interaction of cisplatin with the human organic cation transporter 2. *Clin Cancer Res*, **15**, 3875- 80
- Fukuoka K, Takeda M, Kobayashi M, et al (1998). Distinct interleukin-1β-converting enzyme family proteases mediate cisplatin- and staurosporine-induced apoptosis of mouse proximal tubule cells. *Life Sci*, **62**, 1125–38.
- Guo Y, Wang M, Mou J, et al (2018). Pretreatment of huaiqihuang extractum protects against cisplatin-induced nephrotoxicity. *Sci Rep*, **8**, 7333
- Hanigan MH, Devarajan P (2003). Cisplatin nephrotoxicity: Molecular mechanisms. *Cancer Ther*, **1**, 47-61
- Jing L, Wu Q, Wang F (2017). Glutamine induces heatshock protein and protects against Escherichia coli

lipopolysaccharide-induced vascular hyporeactivity in rats. *Crit Care*, **11**, R34

- Kadri V, Lian C, Björn K, et al (2017). Contrasting effects of glutamine deprivation on apoptosis induced by conventionally used anticancer drugs, biochimica et biophysica acta (BBA). *Mol Cell Res*, **1864**, 498-506
- Karasawa T, Steyger PS (2015). An integrated view of cisplatininduced nephrotoxicity and ototoxicity. *Toxico Lett*, 237, 219–27.
- Kaushal GP, Kaushal V, Hong X, Shah SV (2001). Role and regulation of caspases in cisplatin-induced injury to renal tubular epithelial cells. *Kidney Int*, **60**, 1726–36
- Lau AH (1999). Apoptosis induced by cisplatin nephrotoxic injury. *Kidney Int*, **56**, 1295–8.
- Lieberthal W, Triaca V, Levine J (1996). Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. *Am J Physio*, **270**, 700–8.
- Liu H, Baliga R (2005). Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol, 16, 1985–92.
- Megyesi J, Safirstein RL, Price PM (1998). Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. *J Clin Invest*, 101, 777–82.
- Miller R, Tadagavadi R, Ramesh G, Reeves W (2010). Mechanisms of cisplatin nephrotoxicity. *Toxins (Basel)*, **2**, 2490-2518.
- Nogae S, Masanobu M, Kobayashi N, et al (1998). Induction of apoptosis in ischemia-reperfusion model of mouse kidney: Possible involvement of Fas. J AmSoc Nephrol, 9, 620–31.
- Oltvai Z, Korsmeyer S (1994). Checkpoints of dueling dimers foil death wishes. *Cell*, **79**, 189–92.
- Park MS, De Leon M, Devarajan P (2002). Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol, 13, 858–65.
- Peyrou M, Hanna PE, Cribb AE (2007). Cisplatin, gentamicin, and P- aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. *Toxicol Sci*, **99**, 346–53.
- Ramesh G, Reeves WB (2003). TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. *Am J Physiol Renal Physiol*, 285, 610–8
- Reck M, Von P, Zatloukal P, et al (2010). Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as firstline therapy for nonsquamous non-small-cell lung cancer: Results from a randomised phase III trial (AVAiL). Ann Oncol, 21, 1804-9
- Roth E (2008). Nonnutritive effects of glutamine. J Nutr, **138**, 2025–31.
- Skinner R, Pearson AD, English MW,et al (1998). Cisplatin dose rate as a risk factor for nephrotoxicity in children. *Craft AW Br J Cancer*, 77, 1677-82.
- Tsuruya K, Ninomiya T, Tokumoto M (2003). Direct involvement of the receptor- mediated apoptotic pathways in cisplatin-induced renal tubular cell death. *Kidney Int*, 63, 72-82
- Wischmeyer P (2002). Glutamine and heat shock protein expression. *Nutrition*, **18**, 225-8.
- Zhang Y, Zou Z, Li YK, Yuan HB, Shi XY (2009). Glutamine-induced heat shock protein protects against renal ischaemia reperfusion injury in rats. *J Comp Asia Pasific Soc Nephrol*, 14, 573-80.



This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.