
Cover Story (view full-size image): In March 2022, a locally acquired human case of Japanese encephalitis (JE) was confirmed in southern Queensland, Australia. Forty cases were subsequently discovered in four states, representing a dramatic range expansion from the virus’ historical presence in far north Australia. Recommendations for JE immunization for the Australian population have now expanded to include those at occupational risk. This includes those working with pigs (a major amplifying host) and those who operate JE surveillance programs. However, many cases during this outbreak appear not to have been infected by these routes, and immunization programs may need to target a much wider population. With a current shortage of JE vaccines in Australia, vaccination with fractional doses may help to stretch the limited supplies. View this paper

- Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
- You may sign up for e-mail alerts to receive table of contents of newly released issues.
- PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.

Order results

Result details

Section

Show export options expand_less

- Select all

Export citation of selected articles as:

Plain Text

Open Access Article

The Natural Alkaloid Tryptanthrin Induces Apoptosis-like Death in Leishmania spp.
by Andrea R. Garcia, Yasmin P. G. Silva-Luiz, Celuta S. Alviano, Daniela S. Alviano, Alane B. Vermelho and Igor A. Rodrigues
Viewed by 929
Abstract Leishmaniasis is a vector-borne disease against which there are no approved vaccines, and the treatment is based on highly toxic drugs.

(Topic: Novel Therapeutic Strategies against Leishmania and Trypanosoma)

Show Figures

Presence and Multi-Species Spatial Distribution of Oropouche Virus in Brazil within the One Health Framework
by Sofia Sciancalepore, Maria Cristina Schneider, Jisoo Kim, Deise I. Galan and Ana Riviere-Cinnamond
Viewed by 1054
Abstract Oropouche virus (OROV) is an emerging vector-borne arbovirus with high epidemic potential, causing illness in more than 500,000 people primarily contracted through its midge and mosquito vectors, OROV remains prevalent in its wild, non-human primate and sloth reservoir hosts as well. This virus [...] Read more.

(Topic: Geospatial Health (GeoHealth): Current Trends, Methods, and Applications)

Show Figures

Trends in Influenza Infections in Three States of India from 2015–2021: Has There Been a Change during COVID-19 Pandemic?
by Anup Jayaram, Anitha Jagadesh, Ajay M. V. Kumar, Hayk Davtyan, Pruthu Thekkur, Victor J. Del Rio Vilas, Shravan Kumar Mandal, Robin Sudandiradas, Naren Babu, Prasad Varamballi, Ujwal Shetty and Chiranjy Mukhopadhyay
Viewed by 1115
Abstract The COVID-19 pandemic and public health response to the pandemic has caused huge setbacks in the management of other infectious diseases. In the present study, we aimed to [...] Read more.
Prevalence of Common Diseases in Indigenous People in Colombia

by Hannah Bauer, Gustavo Andrés Concha Mendoza, Lothar Kreienbrock, Maria Hartmann, Hagen Frickmann and Simone Kann

Cited by 1 | Viewed by 933

Abstract The Indigenous tribe called the Wiwa lives retracted in the Sierra Nevada de Santa Marta, Colombia. Little is known about their health status and whether the health care system in place covers their needs. In 2017 and 2018, a permanent physician was in... Read more.

Epidemiology of COVID-19 in Individuals under 18 Years Old in Cartagena, Colombia: An Ecological Study of the First 14 Months of the Pandemic

by Steev Loyola, Eder Cano-Pérez, Jason Torres-Pacheco, Dacia Malambo-Garcia, Ruben Gomez and Doris Gomez-Camargo

Viewed by 1117

Abstract The epidemiology of the coronavirus disease (COVID-19) has been scarcely described in individuals under 18 years old, particularly during the first months of the pandemic. The study aimed to describe the COVID-19 epidemiology in the Colombian department of Bolivar from March 2020 to... Read more.

Pathogenesis and Manifestations of Zika Virus-Associated Ocular Diseases

by Bisant A. Labib and DeGaulle I. Chigbu

Cited by 3 | Viewed by 1716

Abstract Zika virus (ZIKV) is mosquito-borne flavivirus that caused a significant public health concern in French Polynesia and South America. The two major complications that gained the most media attention during the ZIKV outbreak were Guillain–Barré syndrome (GBS) and microcephaly in newborn infants. The... Read more.

by Ajan Maheswaran Jaya, Anthony D. Harries, Anisur Rahman, Mohammed Khogali, Palanivel Chinnakali, Lakshmi Geetha Gopalakrishnan and Mahesh Narayana Pillai

Viewed by 1162

Abstract Kerala, a southern state in India, experienced a slightly different COVID-19 pandemic than the rest of India. Using data from daily COVID-19 bulletins and two other Kerala health information systems, this study reported on epidemiological characteristics and response measures of the COVID-19 pandemic... Read more.
Compliance with Medication amongst Persons with Diabetes Mellitus during the COVID-19 Pandemic, Kerala, India: A Cross Sectional Study

by Ajan Maheswaran Jaya, Anthony D. Harries, Anisur Rahman, Mohammed Khogali, Palanivel Chinnakali, and Bipin Gopal

Abstract Compliance with medication in persons with diabetes mellitus (DM) has been a challenge during the COVID-19 pandemic, leading to poor glycemic control and higher risk of complications. In the state of Kerala, India, 20–25% of adults have DM. Our cross-sectional study aimed to [...]

Read more.

(This article belongs to the Special Issue Operational Research and Capacity Building to Strengthen Health Systems for Tackling Public Health Emergencies)

by David Nalin

Abstract In the original publication [...] Full article

(This article belongs to the Special Issue Cholera Control in 2021: Bioecology, Immunology, Current and Future Vaccines and Treatment Options)

Non-Invasive Detection of SARS-CoV-2 Antigen in Saliva versus Nasopharyngeal Swabs Using Nanobodies Conjugated Gold Nanoparticles

by Manal Kamel, Sara Maher, Hanan El-Baz, Fatem Salah, Omar Sayyouh, and Zeinab Demerdash

Abstract The development of sensitive, non-invasive tests for the detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens is imperative, and it is still challenging to manage the extent of infection throughout the population. Here, we designed and optimized a sandwich enzyme-linked immunosorbent assay [...] Read more.

(This article belongs to the Section Infectious Diseases)
COVID-19 Amongst Travelers at Points of Entry in Nepal: Screening, Testing, Diagnosis and Isolation Practices

by Koshal Chandra Subedee, Krishna Prasad Paudel, Mohammed Khogali, Amrit Pokhrel, Palanivel Chinnakali, Nishant Thakur, Deepak Timiina, Rabin Gautam, Anisur Rahman, Shrawan Kumar Mandal, Mahendra Dhose Adhikari and Anthony D. Harries

Viewed by 1307

Abstract WHO recommends surveillance for COVID-19 among travelers at Points of Entry (POE) to countries. At 13 selected POE at the Nepal-India border, between March 2021 and July 2021, we describe the screening, testing, diagnosis and isolation practices of COVID-19 amongst travelers. Those who [...] Read more.

(This article belongs to the Special Issue Operational Research and Capacity Building to Strengthen Health Systems for Tackling Public Health Emergencies)

► Show Figures

Operational Gaps in Implementing the COVID-19 Case Investigation and Contact Tracing in Madhesh Province of Nepal, May–July 2021

by Nishant Thakur, Florian Vogt, Srinath Satyanarayana, Divya Nair, Krishna Guru, Koshal Chandra Subedee, Shrawan Kumar Mandal, Amrit Pokhrel, Dipendra Gautam and Krishna Prasad Paudel

Viewed by 1034

Abstract In Nepal, case investigation and contact tracing (CICT) was adopted as an important public health measure to reduce COVID-19 transmission. In this study, we assessed the performance of CICT in Madhesh Province of Nepal against national benchmarks, using routine programmatic data reported by [...] Read more.

(This article belongs to the Special Issue Operational Research and Capacity Building to Strengthen Health Systems for Tackling Public Health Emergencies)

► Show Figures

Enhancing Tuberculosis Case-Finding: A Case of Quality Improvement Initiative in Tanzania

by Eluid Wandwalo, Deus V. Kamara, Mohammed A. Yassin, Linden Morrison, Nnamdi B. Nwaneri, Sarah Asimwe, Sode Matiku, Riziki Kisonga and Allan Tarime

Viewed by 1665

Abstract Background: Tanzania is 1 of the 30 high TB burden countries and 1 of the 13 countries in which 75% of people with TB are unaccounted for and that is prioritized for the Global Fund Catalytic investment and Strategic Initiative support. Tanzania decided [...] Read more.

(This article belongs to the Section Infectious Diseases)

► Show Figures

Cortical Blindness Due to Neurocysticercosis in an Adolescent Patient

by Nnennaya U. Opara

Cited by 1 | Viewed by 1647

Abstract Neurocysticercosis (NCC) is a common cause of recent-onset seizures in both adults and children in tropical areas, especially when there is no other suggestion of another underlying neurological disorder. In addition, there have been reports of very rare cases of bilateral cortical blindness [...] Read more.

(This article belongs to the Special Issue Feature Papers in Tropical Medicine and Infectious Disease)

► Show Figures

Consumption of Herbal Supplements or Homeopathic Remedies to Prevent COVID-19 and Intention of Vaccination for COVID-19 in Latin America and the Caribbean

Cited by 2 | Viewed by 2233

Abstract Users of complementary and alternative medicine (CAM) have a lower intention to receive vaccines. Furthermore, Latin America and the Caribbean (LAC) region are among the most affected areas by the COVID-19 pandemics and present a high proportion of CAM users. Therefore, this study [...] Read more.

(This article belongs to the Topic Impact of COVID-19 Global Crisis on the Sustainable Development Goals)

► Show Figures
Interaction of Haemagogus leucocelaenus (Diptera: Culicidae) and Other Mosquito Vectors in a Forested Area, Rio de Janeiro, Brazil

by Shayenne Olsson Freitas Silva, Cecilia Ferreira de Mello, Sergio Lisboa Machado, Paulo José Leite and Jeronimo Alencar

Trop. Med. Infect. Dis. 2022, **7**(6), 94; https://doi.org/10.3390/tropicalmed7060094 - 05 Jun 2022

Cited by 3 | Viewed by 967

Abstract The yellow fever (YF) virus has been detected throughout Brazil, with the occurrence of human cases, cyclic epizootics, and its isolation from Haemagogus janthinomys and Hg. leucocelaenus. We assessed the seasonal occurrence, egg abundance, and oviposition interaction of mosquito vector species captured. [Read more]

(This article belongs to the Special Issue *Aedini Mosquitoes Borne Disease Outbreaks*)

Show Figures

Identification and Characterization of a Potential Antimicrobial Peptide Isolated from Soil Brevibacillus sp. WUL10 and Its Activity against MRSA Pathogens

by Apichart Atipairin, Nuttapon Songnaka, Sucheewin Krothong, Yodying Yingchutrakul, Thapanee Chinnawong and Thamonwan Wanganuttara

Trop. Med. Infect. Dis. 2022, **7**(6), 93; https://doi.org/10.3390/tropicalmed7060093 - 07 Jun 2022

Cited by 1 | Viewed by 1274

Abstract Methicillin-resistant Staphylococcus aureus (MRSA) is a severe threat to public health globally. The development of novel agents has encountered the repeated mechanism of drug resistance. This study aimed to investigate an anti-MRSA substance isolated from a promising soil bacterium. The result showed that [Read more]

(This article belongs to the Section *Infectious Diseases*)

Show Figures

Incidence and Risk Factors of Bilateral Herpetic Keratitis: 2022 Update

by Stergios K Chaloulis, Georgios Mousteri and Konstantinos T Tsaoisis

Trop. Med. Infect. Dis. 2022, **7**(6), 92; https://doi.org/10.3390/tropicalmed7060092 - 07 Jun 2022

Viewed by 1761

Abstract Simultaneously occurring bilateral herpetic keratitis is a rare clinical manifestation of ocular herpes. Immunocompromised patients are more susceptible to develop bilateral disease. The purpose of this study is to review recent literature on the topic and to highlight latest updates, regarding risk factors [Read more]

(This article belongs to the Section *Infectious Diseases*)

Show Figures

Continuous Circulation of Chikungunya Virus during COVID-19 Pandemic in Jambi, Sumatra, Indonesia

by Marsha Sinditio Santos, Sotianingsih Haryanto, Fadli Rulian, Rahma F. Hayati, Amanda Kristiani, Rini Kartika, Benediktus Yohan, Martin L. Hibberd and R. Tedjo Sasmono

Trop. Med. Infect. Dis. 2022, **7**(6), 91; https://doi.org/10.3390/tropicalmed7060091 - 05 Jun 2022

Viewed by 1129

Abstract Chikungunya fever is a self-limiting viral illness that is caused by the chikungunya virus (CHIKV). CHIKV is found in multiple provinces of Indonesia, with clustered local outbreaks. This case series investigates a local chikungunya outbreak during the COVID-19 pandemic, involving two virologically confirmed [Read more]

(This article belongs to the Section *Vector-Borne Diseases*)

Show Figures

Epidemiological Interface of Sylvatic and Dog Rabies in the North West Province of South Africa

by Ayla J. Malan, Andre Coetzer, Claude T. Sabeta and Louis H. Nel

Trop. Med. Infect. Dis. 2022, **7**(6), 90; [https://doi.org/10.3390/tropicalmed7060090](https://doi.org/16.3390/tropicalmed7060090) - 05 Jun 2022

Viewed by 1395

Abstract Rabies is a viral zoonosis that causes an estimated 59,000 preventable human fatalities every year. While more than 120 countries remain endemic for dog-mediated rabies, the burden is the highest in Africa and Asia where 99% of human rabies cases are caused by [Read more]

(This article belongs to the Section *Neglected and Emerging Tropical Diseases*)

Show Figures

Antimicrobial Susceptibility Testing Patterns of Neisseria gonorrhoeae from Patients Attending Sexually Transmitted Infections Clinics in Six Regions in Tanzania
Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia. Until 2022, only six locally transmitted human JE cases had been reported in Australia; five in northern Queensland and one in the Northern Territory. Thus, JE was mainly considered to be imported. To date, tuberculosis (TB) remains the primary cause of mortality in human immunodeficiency virus (HIV) patients in Russia. Since the beginning of 2000, a sharp change in the HIV patients’ structure, to the main known risk factors for HIV infection has taken place in Russia. Background: In Vietnam, the public health burden of rickettsial infections continues to be underestimated due to knowledge gaps in the epidemiology of these diseases. We conducted a systematic study among 27 hospitals from 26 provinces in eight ecological regions throughout Vietnam to investigate the epidemiological burden of rickettsial diseases. Antimicrobial resistance (AMR) is a global health threat that is on the increase, and it has been adversely affecting the proper management of sexually transmitted infections (STI). Data on antimicrobial susceptibility testing patterns of N. gonorrhoeae are limited in local settings. We determined in [...] Read more.

Background: An efficient ambulance service is a vital component of emergency medical services. We determined the emergency ambulance response and transport times and ambulance exit outcomes in Bhutan. Methods: A cross-sectional study involving real-time monitoring of emergency ambulance deployments managed by a central [...] Read more.

To date, tuberculosis (TB) remains the primary cause of mortality in human immunodeficiency virus (HIV) patients in Russia. Since the beginning of 2000, a sharp change in the HIV patients' structure, to the main known risk factors for HIV infection has taken place [...] Read more.

To date, tuberculosis (TB) remains the primary cause of mortality in human immunodeficiency virus (HIV) patients in Russia. Since the beginning of 2000, a sharp change in the HIV patients’ structure, to the main known risk factors for HIV infection has taken place [...] Read more.
Pathogenic *Leptospira* Species in Bats: Molecular Detection in a Colombian Cave
by Carlos Ramiro Silva-Ramos, Sandra M. Chala-Quintero, Álvaro A. Faccini-Martínez, Marylin Hidalgo, Adriana del Pilar Pulido-Villamarin, Jairo Pérez-Torres and Claudia Cuervo

Trop. Med. Infect. Dis. 2022, 7(6), 84; https://doi.org/10.3390/tropicalmed7060084 - 27 May 2022

Abstract Leptospirosis is caused by pathogenic *Leptospira* spp., which can be found in nature among domestic and wild animals. In Colombia, the Macaregua cave is known for its bat richness; thus, because bats are reservoir hosts of human microbiological pathogens, we determined if the... Read more.

(This article belongs to the Section One Health)

► Show Figures

Comparison Epidemiology between Tuberculosis and COVID-19 in East Java Province, Indonesia: An Analysis of Regional Surveillance Data in 2020
by Budi Utomo, Chow Khuen Chan, Ni Made Mertaniasih, Soedarsono Soedarsono, Shifa Fauziyah, Teguh Hari Sucipto, Febriana Aquaresta, Dwinka Syafira Elijatin and I Made Dwi Mertha Adnyana

Trop. Med. Infect. Dis. 2022, 7(6), 83; https://doi.org/10.3390/tropicalmed7060083 - 27 May 2022

Abstract Tuberculosis and COVID-19 are among the infectious diseases that constitute a public health concern. Therefore, this study aims to examine the recent epidemiology of tuberculosis and COVID-19 in East Java Province, Indonesia, in 2020. Case-based surveillance data were acquired with a retrospective design... Read more.

(This article belongs to the Topic Impact of COVID-19 Global Crisis on the Sustainable Development Goals)

► Show Figures

Identifying Hotspots of People Diagnosed of Tuberculosis with Addiction to Alcohol, Tobacco, and Other Drugs through a Geospatial Intelligence Application in Communities from Southern Brazil
by Alessandro Rolim Scholze, Felipe Mendes Delpino, Luana Seles Alves, Josilene Dália Alves, Thais Zamboni Berra, Antônio Carlos Vieira Ramos, Miguel Fuentealba-Torres, Inês Fronteira and Ricardo Alexandre Arcêncio

Trop. Med. Infect. Dis. 2022, 7(6), 82; https://doi.org/10.3390/tropicalmed7060082 - 24 May 2022

Viewed by 1296

Abstract Background: tuberculosis (TB) is considered one of the leading causes of death worldwide by a single infectious agent. This study aimed to identify hotspots of people diagnosed with tuberculosis and abusive use of alcohol, tobacco, and other drugs in communities through a... Read more.

(This article belongs to the Special Issue Geospatial Health (GeoHealth): Current Trends, Methods, and Applications)

► Show Figures
Editorial Board

- **Infectious Diseases Section**
- **Neglected and Emerging Tropical Diseases Section**
- **One Health Section**
- **Travel Medicine Section**
- **Vector-Borne Diseases Section**

Members (125)

Prof. Dr. John Frean
Editor-in-Chief
Pathologist, Parasitology Reference Lab, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, University of the Witwatersrand, Johannesburg 2192, South Africa
Interests: parasitic and zoonotic infections; travel and tropical medicine
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Peter A. Leggat
Deputy Editor-in-Chief
1. Division of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
2. School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
Interests: neglected tropical diseases; lymphatic filariasis; dengue; malaria; occupational health; travel medicine; emerging public health threats
Special Issues, Collections and Topics in MDPI journals

Dr. Ricardo J. Soares Magalhães
Section Editor-in-Chief
Queensland Alliance for One Health Sciences, School of Veterinary Sciences, The University of Queensland, Gatton, QLD 4343, Australia
Interests: infections disease epidemiology; spatial epidemiology; avian influenza; emerging infectious diseases; rabies; helminth infections; neglected tropical diseases; biosecurity; One Health
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Vyacheslav Yurchenko
Section Editor-in-Chief
Laboratory of Trypanosomatid Biology Life Science Research Center, University of Ostrava, Chittussiho 10, 71000 Ostrava, Czech Republic
Interests: parasitology; trypanosomatid biology; evolution; viruses
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Archie Clements
Advisory Board Member
University of Plymouth, Plymouth PL4 8AA, Devon, UK
Interests: epidemiology; spatial analysis; helminths; tuberculosis; malaria
Special Issues, Collections and Topics in MDPI journals

Dr. Jeffrey J. Adamovicz
Editorial Board Member
Director, Laboratory for Infectious Disease Research, College of Veterinary Medicine, Department of Veterinary Pathobiology, University of Missouri, 209D Connaway Hall, Columbia, MO 65211-5130, US
Interests: vaccines; zoonotic diseases; bioccontainment; vaccinology; facultative intracellular bacteria; animal models
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Ayola Akim Adegnika
Editorial Board Member
1. Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné BP: 242, Gabon
2. Institut für Tropenmedizin, Eberhard Karls Universität, Tübingen and German Center for Infection Research (DZIF), D-72074 Tübingen, Germany
Interests: epidemiology and immunology of infectious diseases (malaria, helminths and tuberculosis); clinical trials of anti-infectious agents and vaccines
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Tania C. Araujo-Jorge
Dr. Bruno Arcà
Department of Public Health and Infectious Diseases - Division of Parasitology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
Interests: vector molecular biology; saliva of blood feeding insects; mosquitos; transcriptomics; malaria; non-coding RNAs; gene expression

Prof. Dr. Omar Bagasra
South Carolina Centre for Biotechnology, Department of Biology, Claflin University, Orangeburg, SC 29115, USA
Interests: HIV-1; Zika virus; miRNAs; loss of smell in Covid-19; alcohol and Alzheimer's disease

Dr. Alyssa Barry
1. School of Medicine, Deakin University, Geelong, Victoria, Australia
2. Burnet Institute, Melbourne, Victoria, Australia
Interests: malaria; infectious disease; genomics; epidemiology

Prof. Dr. Alessandro Bartoloni
Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
Interests: infectious diseases; neglected tropical diseases; antibiotic resistance; tropical medicine

Prof. Dr. Zeno Bisoffi
1. Department of Infectious Tropical Diseases and Microbiology (DITM), IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
2. Department of Diagnostics and Public Health, University of Verona, Verona, Italy
Interests: strongyloidiasis; clinical research on malaria and other tropical and parasitic diseases; surveillance of imported tropical and infectious diseases; assessment of diagnostic tools in tropical medicine and parasitology; clinical epidemiology and clinical decision-making applied to tropical medicine

Prof. Dr. Stuart Blacksell
1. Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
2. Mahidol Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
Interests: scrub typhus; rickettsia; zoonoses; diagnostics; biosafety
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Lucille Blumberg
Honorary Consultant, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2192, South Africa
Interests: viral haemorrhagic fevers (VHF); rabies; malaria; travel related infections
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Paul J. Brindley
Department of Microbiology, Immunology and Tropical Medicine and of the Research Center for Neglected Diseases of Poverty, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
Interests: neglected tropical diseases (NTDs); schistosomiasis; food borne trematodiases; functional genomics; genome editing; helminth infection associated cancers

Prof. Dr. Christine Budka
Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
Interests: neglected tropical diseases; zoonoses; parasitic diseases; echinococcosis; cysticercosis; epidemiology; disease burden; One Health
Prof. Dr. Christian Burri
Website SciProfiles
Editorial Board Member
Department of Medicine, Swiss Tropical & Public Health Institute, Soconstrasse 57, 4051 Basel, Switzerland
Interests: sleeping sickness (human African trypanosomiasis); drug and vaccine development against neglected tropical diseases; clinical trials in low resource settings; implementation research; public health
Special Issues, Collections and Topics in MDPI journals

Dr. Guido Calleri
Website Editorial Board Member
Travel Medicine Unit, Department of Internal Medicine, Amedeo di Savoia Hospital, Torino, Italy
Interests: parasitology; malaria; clinical tropical medicine; vector borne diseases; travel medicine

Prof. Dr. Jorge Cano
Website SciProfiles
Editorial Board Member
Department of Disease Control, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
Interests: spatial epidemiology; geostatistics; geographic information system (GIS); remote sensing; neglected tropical diseases; vector-borne diseases

Prof. Dr. Hélène Carabin
Website SciProfiles
Editorial Board Member
Canada Research Chair in Epidemiology and One Health; Department of pathology and microbiology, Faculty of Veterinary Medicine & Department of Social and Preventive Medicine, École de Santé Publique de l'Université de Montréal, 3200 rue Sicotte, Local 2202-35, Saint-Hyacinthe, QC J2S 2M2, Canada
Interests: infectious disease epidemiology; zoonoses; neglected tropical diseases; global health; Bayesian statistics; cysticercosis; One Health
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Rudi Cassini
Website SciProfiles
Editorial Board Member
Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, Italy
Interests: veterinary parasitology; tick-borne diseases; leishmaniasis; cystic echinococcosis; one-health

Prof. Dr. Francesco Castelli
Website SciProfiles
Editorial Board Member
Department of Infectious and Tropical Diseases, University of Brescia and Brescia Spedali Civili General Hospital, UNESCO Chair "Training and Empowering human resources for health development in resource-limited countries", Brescia, Italy
Interests: tropical medicine; migration medicine; imported and travel-related diseases; HIV infection; viral hepatitis; training health personnel in resource-limited areas

Dr. Adriano Casulli
Website SciProfiles
Editorial Board Member
1. Director, WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis
2. European Union Reference Laboratory for Parasites; Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
Interests: alveolar and cystic echinococcosis; medical and veterinary foodborne parasitology; clinical and molecular epidemiology; public health; anthelmintic drugs

Prof. Dr. Phaik Yeong Cheah
Website SciProfiles
Editorial Board Member
1. Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
2. Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
Interests: bioethics; community engagement; antimicrobial resistance; AMR
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Junhu Chen
Website SciProfiles
Editorial Board Member
1. National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
2. School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Interests: vector-borne parasitic diseases (malaria, schistosomiasis); infection and immunity; population genetics; diagnosis and vaccine discovery
Dr. Stephane Chevaliez
Website SciProfiles
Editorial Board Member
Hôpital Henri Mondor, 94010 Creteil, France
Interests: hepatitis B; hepatitis C; AIDS; viral hepatitis
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Bruno Chomel
Website SciProfiles
Editorial Board Member
Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, USA
Interests: zoonoses; emerging zoonoses; veterinary public health; epidemiology

Prof. Dr. Phillip J. Cooper
Website SciProfiles
Editorial Board Member
1. Facultad de Ciencias Medicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
2. Institute of Infection and Immunity, St George’s University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
Interests: neglected tropical diseases; helminth infections; allergy and asthma; epidemiology

Dr. Jacob Creswell
Website SciProfiles
Editorial Board Member
Stop TB Partnership, Global Health Campus, Chemin du Pommier 40, 1218 Grand-Saconnex, Geneva, Switzerland
Interests: tuberculosis; infectious disease epidemiology; artificial intelligence; case detection; diagnostics; monitoring and evaluation
Special Issues, Collections and Topics in MDPI journals

Dr. Albie De Frey
Website1 Website2
Editorial Board Member
1. Senior Honorary Lecturer, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
2. Medical Director, Worldwide Travel Medical Consultants, Northcliff, Johannesburg, South Africa
3. Director, International Health Management Consultants S.A., Geneva, Switzerland
Interests: travel health; travel health education; malaria; arboviral disease

Dr. Thomas Dorlo
Website SciProfiles
Editorial Board Member
Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
Interests: chemotherapy, antifungal resistance; biochemistry; cell biology; enzymes; biofilm; virulence
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. André Luis Souza Dos Santos
Website SciProfiles
Editorial Board Member
1. Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2. Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
Interests: chemotherapy; antifungal resistance; biochemistry; cell biology; enzymes; biofilm; virulence
Special Issues, Collections and Topics in MDPI journals

Dr. Philipp DuCros
Website SciProfiles
Editorial Board Member
International Development, Burnet Institute, Melbourne VIC 3000, Australia
Interests: drug-resistant TB; epidemiology; implementation research
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Ahmed Hassan Fahal
Website
Editorial Board Member
Department of Surgery, Faculty of Medicine, University of Khartoum, P.O. Box 102 Khartoum, Sudan
Interests: mycetoma
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Chia-Kwung Fan
Website SciProfiles
Editorial Board Member
Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, Taiwan
Interests: toxocariasis; toxoplasmosis; dirofilariasis; parasite immunology & molecular biology; molecular pathogenesis of parasitic diseases

Prof. Dr. Jan Fehr
Website SciProfiles
Editorial Board Member
Head of Department of Public Health, Travel Medicine & Infectious Diseases, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschgraben 84, 8001 Zurich, Switzerland
Interests: HIV; co-infections; tuberculosis; prevention; travelling; viral hepatitis; emerging infectious diseases; public health
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Mark C. Field
Website SciProfiles
Editorial Board Member
1. Welcome Trust Centre for Anti-Infectives (WCAIR), School of Life Sciences, Division of Biological Chemistry and Drug Discovery (BCDD), University of Dundee, Dow Street, Dundee, DD1 5EH, UK
2. Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
Interests: parasitology; cell biology; proteomics; molecular evolution; trafficking; gene expression

Prof. Dr. Dale Fisher
Website SciProfiles
Editorial Board Member
Infectious Disease Division, Department of Medicine, National University Health System, Singapore
Interests: melioidosis; OPAT; outbreak response; surveillance; infection prevention and control

Prof. Dr. Carlos Franco-Paredes
Website SciProfiles
Editorial Board Member
1. Department of Medicine, Division of Infectious Diseases, Anschutz Medical Center, University of Colorado, Aurora, CO 80045, USA
2. Instituto Nacional de Salud, Hospital Infantil de México, Federico Gomez, México City 06720, México
Interests: tropical medicine; Chagas disease; cryptococcosis
Special Issues, Collections and Topics in MDPI journals

Dr. Simona Gabrielli
Website SciProfiles
Editorial Board Member
Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
Interests: tropical diseases; parasitic diseases; infectious disease epidemiology; PCR; molecular biology; antibodies; ELISA; genetics; DNA; infection
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Rosa Gálvez
Website SciProfiles
Editorial Board Member
1. Department of Specific Didactics, School of Education and Teacher Training, Universidad Autónoma de Madrid, Madrid, Spain
2. Member of the Research Group 920411—Epidemiology and Control of Communicable Diseases in Veterinary, Universidad Complutense de Madrid, Madrid, Spain
Interests: spatial analysis; geographic information system (GIS); medical entomology; sand flies
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Sandra Gemma
Website SciProfiles
Editorial Board Member
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
Interests: medicinal chemistry; small molecules; drug discovery; structure-activity relationships; anti-infective agents; parasitic diseases; chemotherapeutics; synthesis of biologically active compounds
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Musie Ghebremichael
Website SciProfiles
Editorial Board Member
Harvard Medical School & Ragon Institute of Massachusetts Institute of Technology, Massachusetts General Hospital and Harvard, Cambridge, MA, USA
Interests: biostatistics; immunology; infectious diseases; tuberculosis; malaria; HIV; herpes; statistical modeling
Prof. Dr. Nick Golding
[Website]
Editorial Board Member
1. Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA 6009, Australia
2. Faculty of Health Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
Interests: infectious disease models; vector ecology; malaria models; COVID-19 models; Bayesian statistics; research software

Prof. Dr. Jorge Enrique Gomez-Marin
[Website]
SciProfiles
Editorial Board Member
Faculty of Health Sciences, Universidad del Quindio, Armenia, Colombia
Interests: parasitology; toxoplasmosis; zoonotic protozoan infections

Prof. Dr. Patricia Graves
[Website]
SciProfiles
Editorial Board Member
College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia
Interests: neglected tropical diseases; lymphatic filariasis; mosquito control; malaria elimination; Pacific islands; Papua New Guinea; Myanmar; surveillance

Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Darren Gray
[Website]
SciProfiles
Editorial Board Member
Department of Global Health, National Centre for Epidemiology & Population Health, ANU College of Health and Medicine, The Australian National University, 62 Mills Rd, Canberra, Australia
Interests: global health; tropical health; international health; infectious disease epidemiology; Schistosomiasis; soil-transmitted helminths; clinical trials; medical parasitology

Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Wayne Grayson
[Website]
SciProfiles
Editorial Board Member
1. Ampath Laboratories, Cedar Histopathology Laboratory, Fourways, Sandton, South Africa
2. School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
Interests: infectious diseases of the skin; HIV/AIDS-related cutaneous pathology; skin cancer; Kaposi sarcoma

Dr. Vanina Guernier
[Website]
SciProfiles
Editorial Board Member
1. Institut de Recherche pour le Développement, iEES-Paris, 75005 Paris, France
2. Faculty of Veterinary Technology, Kasetsart University, 10900 Bangkok, Thailand
Interests: disease ecology; eco-epidemiology; environmental health; leptospirosis; melioidosis; neglected tropical diseases; phylogenetics and evolution; zoonoses; One Health; antimicrobial resistance

Special Issues, Collections and Topics in MDPI journals

Dr. Diana Hansen
[Website]
Editorial Board Member
Infectious Disease and Immune Defence Division, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia
Interests: malaria; dengue; immunity; pathogenesis; immune response to infection; biomarkers; antibodies; B cells; global health

Dr. Chun Hao
[Website]
SciProfiles
Editorial Board Member
1. Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
2. Sun Yat-sen Global Health Institute, Institute of State Governance, Sun Yat-sen University, Guangzhou 510080, China
Interests: HIV/AIDS; infectious diseases; social network; global health; implementation science

Prof. Dr. Anthony D. Harries
[Website]
SciProfiles
Editorial Board Member
1. Senior Advisor, International Union Against Tuberculosis and Lung Disease, 68 Boulevard St Michel, 75006 Paris, France
2. Honorary Professor, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HU, UK
Interests: tuberculosis; HIV/AIDS; tropical medicine; operational research

Prof. Dr. Shimon Harrus
[Website]
SciProfiles
Editorial Board Member
Prof. Dr. Roderick J. Hay
Website
SciProfiles
Editorial Board Member
Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
Interests: vector-borne pathogens; Bartonella; Ehrlichia

Prof. Dr. Jorg Heukelbach
Website
SciProfiles
Editorial Board Member
Department of Community Health, School of Medicine, Federal University of Ceará, Fortaleza 60430-140, CE, Brazil
Interests: tropical neglected diseases; epidemiology

Prof. Dr. Paul Horrocks
Website
SciProfiles
Editorial Board Member
School of Medicine, Keele University, Staffordshire ST5 5BG, UK
Interests: malaria; Plasmodium falciparum; cell biology; drug action; pharmacodynamics; leishmaniasis; assay development; natural products; medical education; postgraduate research

Dr. Paul Horwood
Website
SciProfiles
Editorial Board Member
Veterinary Preventative Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
Interests: emerging infectious diseases; zoonoses; molecular epidemiology; diagnostics

Prof. Dr. Tomas Jelinek
Website
SciProfiles
Editorial Board Member
1. Medical Director, Berlin Centre for Travel & Tropical Medicine, Berlin, Germany
2. Scientific Director, Centre for Travel Medicine, Düsseldorf, Germany
Interests: travel medicine; vaccine preventable diseases; vaccination studies; dengue; malaria drug resistance; imported infectious diseases

Prof. Dr. Shigeyuki Kano
Website
Editorial Board Member
Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku, Japan
Interests: malaria; tropical medicine

Prof. Dr. Ayman Khattab
Website
SciProfiles
Editorial Board Member
Department of Bacteriology and Immunology, Faculty of Medicine, P.O. Box 21 (Haartmaninkatu 3), FIN-00014, University of Helsinki, Helsinki, Finland
Interests: malaria; vector control; vector-borne diseases; antimalarial drug discovery; innate immunity; complement; vaccines

Dr. Sascha Knauf
Website
Website2
Editorial Board Member
Institute of International Animal Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Island - Riems, Germany
Interests: treponematoses; spirochaetes; neglected tropical diseases; transboundary diseases; One Health; Eco Health; disease reservoirs; disease ecology; host-pathogen evolution; epidemiology of infectious diseases

Prof. Dr. Lizette Koekemoer
Website
SciProfiles
Editorial Board Member
1. Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
2. Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
Interests: vector control; vector-borne diseases; antimalarial drug discovery; innate immunity; complement; vaccines
Prof. Dr. Anil Koul
London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
Interests: bacteria; drug discovery and development; drug resistance; bacteriology; microbiology; tuberculosis

Dr. Roman Kuchta
Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
Interests: parasitic flatworms; tapeworms; diphyllobothriasis; sparganosis

Prof. Dr. Nirbhay Kumar
Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
Interests: malaria; vaccines; immunology; genomics; helminthes and co-infection; malaria transmission; malaria drugs and diagnostics

Prof. Dr. Eliningaya J. Kweka
Catholic University of Health and Allied Sciences (CUHAS), Bugando, Tanzania
Interests: malaria; parasitology; mosquitoes; tsetse; bed bugs; lice; tabanids; houseflies; filariasis

Prof. Dr. Colleen Lau
School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
Interests: infectious disease epidemiology; emerging infectious diseases; neglected tropical diseases; travel medicine

Prof. Dr. Shizhu Li
1. National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
2. School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Interests: schistosomiasis; vector-borne diseases; transmission risk evaluation; epidemiology of parasitology; parasitic diseases control

Prof. Dr. Alun L. Lloyd
Drexel Professor of Mathematics, Department of Mathematics, North Carolina State University Raleigh, NC 27695, USA
Interests: mathematical modeling; dengue; mosquito population dynamics; genetic control strategies

Prof. Dr. Xuejun Ma
National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National institute for viral disease control and prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
Interests: pathogen discovery; molecular diagnostics; detection; virus

Dr. Jutta Marfurt
Menzies School of Health Research, Darwin, Australia
Interests: infectious diseases; parasitology; malaria; molecular epidemiology; diagnostics; surveillance
<table>
<thead>
<tr>
<th>Name</th>
<th>Website</th>
<th>Editorial Board Member</th>
<th>Interests</th>
</tr>
</thead>
</table>
| Dr. Ivo C. Martins | [Website](#) | 1. Instituto de Medicina Molecular (iMM), Faculty of Medicine, University of Lisbon, Lisbon, Portugal
2. DART Diagnostics. Tec Labs - Centro de Inovação. Campus da FCUL, Lisbon, Portugal | amyloid fibrils; dengue virus; Zika virus; biophysics; protein-ligand interactions |
| Prof. Dr. Santiago Mas-Coma | [Website](#) | Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain | epidemiology; molecular biology; ecology; pathology; diagnosis; fascioliasis; zoonosis; trematodology; helminthology; parasitology; tropical medicine |
| Prof. Dr. Richard J. Maude | [Website](#) | 1. Head of Epidemiology, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
2. Associate Professor, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7FY, UK
3. Visiting Scientist, Harvard TH Chan School of Public Health, Harvard University, Boston, MA 02115, USA | epidemiology; malaria; dengue; infectious; environment; GIS; spatial |
| Prof. Dr. Mayfong Mayxay | [Website](#) | 1. Institute of Research and Education Development, University of Health Sciences, Vientiane 7444, Laos
2. Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Vientiane 594, Laos
3. Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, Churchill Hospital, Oxford OX3 7LG, UK | antimalarial drug resistance (AMR); causes of fever; sepsis; dengue; rickettsial infections; melioidosis; leptospirosis; Japanese encephalitis virus infection and infantile beriberi |
| Prof. Dr. John McBride | [Website](#) | Cairns Clinical School, College of Medicine and Dentistry, James Cook University, Cairns City, QLD 4870, Australia | dengue; Rickettsia; leptospirosis; HIV; Papua New Guinea |
| Dr. Janey Messina | [Website](#) | School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK | health geography; spatial epidemiology of infectious diseases; the application of Geographical Information Systems (GIS) and quantitative analysis to public health and social science research questions; population-environment interactions, particularly in developing countries |
| Prof. Dr. Edwin Michael | [Website](#) | Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA | epidemiology; population biology; neglected tropical diseases; vector ecology; mathematical modelling; computational science; complex adaptive systems; social epidemiology; integrated disease management |
| Dr. Goudarz Molaee | [Website](#) | 1. Center for Vector Biology & Zoonotic Diseases, Northeast Regional Center for Excellence in Vector-borne Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
2. Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, 06511 CT, USA | medical entomology; vector biology; zoonotic diseases; ecoepidemiology of vector-borne diseases; mosquito vectors of human disease-causing pathogens; tick vectors of human disease-causing pathogens; vector-host-pathogen interactions; vector population genetics; molecular medical entomology and physiology; vector-borne tropical diseases |
Dr. Serge Morand
Website
Editorial Board Member
1. Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
2. Centre National de la Recherche Scientifique, Centre de Cooperazione, Internationale en Recherche Agronomique pour le Developpement, Montpellier University, Paris, France
Interests: rodents and other wildlife-borne diseases
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. David Nalin
Website
SciProfiles
Editorial Board Member
Center for Immunology and Microbial Diseases, Albany Medical College, Albany, NY 12208, USA
Interests: vaccine development; vaccinology; immunology of infectious diseases; intestinal infectious and pathophysiology; cholera; hepatitis; malaria
Special Issues, Collections and Topics in MDPI journals

Dr. Susana Vaz Nery
Website
SciProfiles
Editorial Board Member
Public Health Interventions Research Group, Kirby Institute Level 6, University of New South Wales, Wallace Wurth Building, Sydney, Australia
Interests: neglected tropical diseases; malaria and NTDs control and elimination in developing countries; intervention studies to inform health policy changes for more effective and sustainable disease control strategies; WASH and chemotherapy for NTD control; soil-transmitted helminths
Special Issues, Collections and Topics in MDPI journals

Dr. Andreas Neumayr
Website
SciProfiles
Editorial Board Member
1. Swiss Tropical and Public Health Institute, Basel, Switzerland
2. Faculty of Medicine, University of Basel, Basel, Switzerland
3. Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
Interests: clinical tropical medicine; clinical parasitology; neglected tropical diseases; emerging infectious diseases; travel medicine
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Paul Newton
Website
Editorial Board Member
Professor of Tropical Medicine & Hon. Consultant Physician, Centre for Tropical Medicine & Global Health & MORU Tropical Health Network, University of Oxford, Oxford, UK
Interests: infectious disease; typhus; Asia; Laos; neglected tropical disease; central nervous system infections; health policy; medicine quality; falsified medicines; substandard medicines

Dr. Morten Agertoug Nielsen
Website
SciProfiles
Editorial Board Member
Department of Immunology & Microbiology, University of Copenhagen, Blegdamsvej 3B, DK 2200 Copenhagen N, Denmark
Interests: malaria immunology with focus on antibodies; translational research; vaccine development; cancer immunology; parasite cell biology

Prof. Dr. Eric James Nilles
Website
Editorial Board Member
1. Harvard Humanitarian Initiative, Cambridge, MA 02138, USA
2. Harvard Medical School, Boston, MA 02115, USA
3. Brigham and Women's Hospital, Boston, MA 02115, USA
Interests: emerging infectious diseases; tropical infectious diseases; epidemiology; seroepidemiology; epidemics; disease outbreaks; surveillance

Prof. Dr. Daniel H. Paris
Website
SciProfiles
Editorial Board Member
1. Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland
2. University of Basel, P.O. Box, CH-4003 Basel, Switzerland
Interests: rickettsia; scrub typhus; murine typhus; diagnostics; pathophysiology; vaccine; host response and immune response
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Koen Peeters Grietens
Website
Editorial Board Member
Institute of Tropical Medicine, Antwerp, Belgium
Interests: medical anthropology; ecohealth; planetary health; malaria; tropical infectious diseases; science and technology studies; vector control; transdisciplinary research; interdisciplinarity; social sciences
Dr. Watcharapong Piyaphanee
Website
Editorial Board Member
Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
Interests: tropical medicine; travel medicine; malaria

Prof. Dr. Michael Ramharter
Website Scifiles
Editorial Board Member
Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
Interests: clinical research (drug and vaccine development) in the field of tropical diseases; malaria; Lassa fever; loiasis; echinococcosis

Prof. Dr. Andrew Ramsay
Website Scifiles
Editorial Board Member
1. Division of Infection and Global Health, St Andrews University Medical School, St Andrews KY16 9TF, UK
2. Discipline of Child and Adolescent Health, The University of Sydney, Camperdown, NSW 2006, Australia
Interests: tuberculosis; infectious disease diagnostics; parasitic diseases; infectious disease outbreak response; leprosy

Dr. Harunor Rashid
Website Scifiles
Editorial Board Member
1. National Centre for Immunisation Research and Surveillance (NCIRS) Kids Research, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
2. Discipline of Child and Adolescent Health, The University of Sydney, Camperdown, NSW 2006, Australia
Interests: travel vaccine; vaccine-preventable infectious diseases; vaccination evaluation; vaccine prioritisation

Prof. Dr. Serge Resnikoff
Website Scifiles
Editorial Board Member
Brien Holden Vision Institute, Sydney, Australia
Interests: epidemiology; eye diseases; neglected tropical diseases – especially trachoma, health systems

Prof. Dr. Allen L. Richards
Website Scifiles
Editorial Board Member
Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
Interests: rickettsial diseases; scrub typhus; vector-borne diseases; zoonoses

Dr. Gabriel Rinaldi
Website Scifiles
Editorial Board Member
1. Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
2. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
Interests: neglected tropical diseases; parasitic flatworms; schistosomiasis; functional genomics; transgenesis; genome editing; single cell transcriptomics

Dr. Koert Ritmeijer
Website
Editorial Board Member
Public Health Department, Médecins Sans Frontières, 1018 DD Amsterdam, The Netherlands
Interests: leishmaniasis; human African trypanosomiasis; snakebites; noma

Dr. Mark Robinson
Website Scifiles
Editorial Board Member
Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5DL, UK
Interests: molecular biology of trematode parasites and their host interactions

Special Issues, Collections and Topics in MDPI Journals
Prof. Dr. Allen G. P. Ross
Website: [SciProfiles](#)
Editorial Board Member
1. International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1212, Bangladesh
2. Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
Interests: global health; tropical infectious diseases; enteric diseases; urban slum health; disease control; pandemic planning; vaccination

Prof. Dr. Mary Ross
[SciProfiles](#)
Editorial Board Member
School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
Interests: occupational medicine; tropical medicine; public health medicine; travel medicine

Dr. Brice Rotureau
Website: [SciProfiles](#)
Editorial Board Member
Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSRM U1201 & Department of Parasites and Insect Vectors, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
Interests: parasitology; medical entomology; epidemiology; trypanosomatids; leishmaniasis; trypanosomiasis
Special Issues, Collections and Topics in MDPI journals

Dr. Charles E. Rupprecht
Website: [SciProfiles](#)
Editorial Board Member
1. Adjunct Professor, The Wistar Institute, Philadelphia, PA, USA
2. CEO, LYSSA LLC, Lawrenceville, GA 30044, USA
Interests: lyssaviruses; zoonoses; One Health; epidemiology; conservation biology
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Ana Sanchez
Website: [SciProfiles](#)
Editorial Board Member
1. Department of Health Sciences, Brock University, St. Catharines, ON L2V 5A2, Canada
2. Department of Parasitology, School of Microbiology and Institute of Microbiology Research, National Autonomous University of Honduras, Tegucigalpa, Honduras
Interests: neglected tropical diseases; epidemiology; drug resistance and diagnostics with special focus on soil-transmitted helminths (STH); Taenia solium; Pediculus humanus; Toxocara canis; intestinal protozoa and malaria

Prof. Dr. Nuno C. Santos
Website: [SciProfiles](#)
Editorial Board Member
Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
Interests: dengue virus; Zika virus; West Nile virus; HIV; viral entry inhibitors; broad-spectrum antivirals; antimicrobial peptides; antiviral peptides; biophysics; nanomedicine
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Eli Schwartz
Editorial Board Member
1. Director of the Institute of Geographic Medicine & Tropical Diseases, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
2. Professor of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
Interests: clinical tropical medicine; malaria; schistosomiasis; typhoid fever; arboviruses; travel medicine

Dr. Karl Seydel
[SciProfiles](#)
Editorial Board Member
College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
Interests: malaria; global health; diagnostics

Prof. Dr. Marc Shaw
Website
Editorial Board Member
1. Department of Tropical Medicine and Rehabilitation Services, James Cook University, Townsville, QLD 4811, Australia
2. Medical Director, WORLDWISE Travellers Health Centres New Zealand, Auckland 1050, New Zealand
Interests: pre-travel research for primary care; rabies and its impact upon the traveler; post travel disease; disaster aid medicine
Prof. Dr. Fernando L. Simón Martín
Website
Editorial Board Member
Head of the Department of Animal Biology, Parasitology, Ecology, Edaphology and Agricultural Chemistry of the University of Salamanca, Salamanca, Spain
Interests: zoonotic filariasis (dirofilariasis); ascariasis; epidemiology; diagnosis; parasite/hosts relationships in dirofilariasis and ascariasis

Dr. Yannick Simonin
Website SciProfiles
Editorial Board Member
Pathogenesis and Control of Chronic and Emerging Infections (PCCEI), Montpellier University, 34000 Montpellier, France
Interests: arboviruses; neurotropic viruses; emerging viruses; zoonosis; one health
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. David W. Smith
Website SciProfiles
Editorial Board Member
Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Australia Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Australia
Interests: influenza and other respiratory viruses; mosquito-borne viruses; emerging infections
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Robert Smith
Website
Editorial Board Member
Maine Medical Center Research Institute, Scarborough, ME 04074, USA
Interests: vector-borne diseases; travel medicine

Dr. Erin M. Sorrell
Website1 Website2 SciProfiles
Editorial Board Member
Department of Microbiology and Immunology, Center for Global Health Science and Security, Georgetown University, Washington, DC, USA
Interests: virology; influenza; zoonoses; One Health; emerging infectious disease; health systems strengthening; global health security; infectious disease and conflict
Special Issues, Collections and Topics in MDPI journals

Dr. Claire J Standley
Website SciProfiles
Editorial Board Member
Center for Global Health Science and Security, Georgetown University, Washington, DC 20057, USA
Interests: infectious disease control; multisectoral collaboration; health systems; One Health; public health emergency preparedness and response; neglected tropical diseases
Special Issues, Collections and Topics in MDPI journals

Dr. Cheong Huat Tan
Website SciProfiles
Editorial Board Member
Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
Interests: mosquito surveillance and control; molecular entomology; DNA barcoding; vector incrimination; mosquito-virus interaction; sterile insect technique; incompatible insect technique; Wolbachia

Prof. Dr. Peter Thompson
Website SciProfiles
Editorial Board Member
Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
Interests: veterinary epidemiology; vector-borne diseases; zoonoses; Rift Valley fever; wildlife-livestock-human interface; survey design; analytical epidemiology

Dr. Kun-Hsien Tsai
Website
Editorial Board Member
Department of Public Health & Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
Interests: scrub typhus; dengue; malaria; tungiasis; diagnosis; rickettsia; vector-borne diseases

Prof. Dr. Judd Walson
Website SciProfiles
Editorial Board Member
Dr. Marc-Alain Widdowson
Website
Editorial Board Member
Director, Institute of Tropical Medicine, Nationalestraat 155, Antwerp 2000, Belgium
Interests: public health; vaccines; influenza; zoonotic diseases; epidemiology; emerging infectious diseases

Prof. Dr. Polrat Wilairatana
Website
SciProfiles
Editorial Board Member
Director, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
Interests: case management of malaria; clinical gastroenterology

Dr. Ken Winkel
Website
SciProfiles
Editorial Board Member
Australian Venom Research Unit, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Melbourne, Parkville 3010, Australia
Interests: clinical effects of animal venoms and effectiveness of antivenoms; global health; history of venom research; research translation; popular culture and venomous/venomous creatures; the study of animal venoms and toxins; toxicology; biodiversity and medicine
Special Issues, Collections and Topics in MDPI journals

Dr. Rony Zachariah
Website
SciProfiles
Editorial Board Member
UNICEF, UNDP, World Bank, WHO Special Programme for Research and Training in Tropical Disease (TDR), 1211 Geneva, Switzerland
Interests: operational research; research capacity building; universal health coverage; excluded populations; vulnerable populations

Dr. Bin Zhan
Website
SciProfiles
Editorial Board Member
Associate Professor, Section of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
Interests: helminth; soil-transmitted nematode; vaccine; parasitology; immunology; molecular biology
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Xiao-Nong Zhou
Website
SciProfiles
Editorial Board Member
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
Interests: schistosomiasis, trematode infections; malacology; spatial epidemiology; transmission modeling; strategy; One Health
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Bianca Silvana Zingales
Website
SciProfiles
Editorial Board Member
Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
Interests: neglected tropical diseases; molecular epidemiology; chagas disease; trypanosoma cruzi; parasite genetic diversity; epidemiology; drug discovery
Special Issues, Collections and Topics in MDPI journals

Dr. Hans-Peter Fuehrer
Website
SciProfiles
Section Board Member
Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
Interests: mosquitoes and mosquito-borne pathogens; vectors and vector-borne pathogens; Calodium hepaticum; Plasmodium malariæ; Plasmodium ovale spp
Special Issues, Collections and Topics in MDPI journals
Comparison Epidemiology between Tuberculosis and COVID-19 in East Java Province, Indonesia: An Analysis of Regional Surveillance Data in 2020

Budi Utomo 1,*, Chow Khuen Chan 2, Ni Made Mertaniasih 3,4, Soedarsono Soedarsono 5, Shifa Fauziyah 6, Teguh Hari Sucipto 7, Febriana Aquaresta 8, Dwinka Syafira Eljatin 9 and I Made Dwi Mertha Adnyana 9

1 Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Tambaksari, Surabaya 60132, East Java, Indonesia
2 Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50803, Malaysia; ckchan@um.edu.my
3 Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Tambaksari, Surabaya 60132, East Java, Indonesia; nmademertaniasih@gmail.com
4 Tuberculosis Laboratory, Institute of Tropical Disease, Universitas Airlangga, Mulyorejo, Surabaya 60115, East Java, Indonesia
5 Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Tambaksari, Surabaya 60132, East Java, Indonesia; ssoedarsono@gmail.com
6 Akademi Analis Kesehatan Delima Husada Gresik, Gresik 61111, East Java, Indonesia; shifafauziyah1996@gmail.com
7 Institute of Tropical Disease, Universitas Airlangga, Mulyorejo, Surabaya 60115, East Java, Indonesia; teguhharisucipto@staf.unair.ac.id
8 Palembang Health Laboratory, Inspektur Yazid Street, Kemuning, Palembang 30126, South Sumatera, Indonesia; febriana.aquaresta@gmail.com
9 Master Program in Tropical Medicine, Faculty of Medicine, Universitas Airlangga, Tambaksari, Surabaya 60132, East Java, Indonesia; deljatin92@yahoo.co.id (D.S.E.); dwikmertha13@gmail.com (I.M.D.M.A.)

* Correspondence: budiutomo@fk.unair.ac.id

Abstract: Tuberculosis and COVID-19 are among the infectious diseases that constitute a public health concern. Therefore, this study aims to examine the recent epidemiology of tuberculosis and COVID-19 in East Java Province, Indonesia, in 2020. Case-based surveillance data were acquired with a retrospective design between January and December 2020 by the East Java Health Officer. The data were analyzed using Quantum Geographic Information System (QGIS) for mapping, and Microsoft Excel for recording. Furthermore, the statistical analysis (Spearman correlation test) was carried out via Statistical Package for Social Science (SPSS) applications. A total number of 38,089 confirmed cases of tuberculosis was recorded, with an incidence rate of 95.49/100,000 population, a case fatality rate (CFR) of 3.6%, and an average treatment success rate of 87.78%. COVID-19 is a new viral disease, with a total of 84,133 confirmed COVID-19 cases in East Java, with an incidence rate of 232.9/100,000 population. The highest incidence rate was found in Mojokerto city, while the lowest was found in Sampang. Furthermore, the CFR values of tuberculosis and COVID-19 were 1.4% and 6.8%, respectively. The regional survey in East Java Province showed that the incidence of tuberculosis remains high. This indicated that the search for active cases and preventive promotion was not completed. Therefore, inter-sectoral collaboration can be adapted to provide suitable tuberculosis health care.

Keywords: tuberculosis; COVID-19; infectious disease

1. Introduction

Coronavirus disease 2019 (COVID-19) was identified as an infectious illness caused by Coronavirus-2 Severe Acute Respiratory Syndrome (SARS-CoV-2). The daily increase in
cases significantly affected the world, with 3.8 million fatalities reported in 2020; therefore, it was declared a pandemic by the World Health Organization [1].

During the pandemic threat, respiratory disorders were aggravated by COVID-19 infection. Due to the significant morbidity and mortality caused by COVID-19, several sectors in society attempted to avoid and conquer the pandemic. Pulmonary tuberculosis is caused by mycobacterium tuberculosis, which is transferred to people in close contact with patients, such as relatives, coworkers, colleagues, and friends, through coughing, talking, and sneezing [2]. This was particularly true for patients with pulmonary tuberculosis (TB), who are very susceptible to viral infection [3,4].

Studies on the existence of COVID-19 co-infection in pulmonary tuberculosis patients are important, due to the high risk and severity of COVID-19 disease. According to Coronel et al., tuberculosis patients have a very high risk of severe illness and mortality from COVID-19 [3]. Furthermore, incorrect treatment and hazardous conduct also increase the possibility of developing new diseases [4,5]. Therefore, this study aims to determine the epidemiology of the number of cases of pulmonary tuberculosis and COVID-19 in Indonesia, specifically in the province of East Java.

2. Materials and Methods

2.1. Study Design

The East Java Province is the eastern part of Java Island with a land area of 47,799.75 km2. It is located in 111°0′ to 114°4′ East Longitude (BT) and 7°12′ to 8°48′ South Latitude (LS) with four regional boundaries, namely, the north side (Java Sea), south, (Indian Ocean), west, (Central Java Province), and east (Bali Strait).

This was a retrospective cohort study using routinely regional surveillance data. The data were obtained from the Health Province Open Data Website, which offers free access to current epidemiological resources for infectious and non-communicable diseases (https://bit.ly/profil-kesehatan-2020 (accessed on 22 March 2021), including COVID-19 and TB [6]. The province consisted of 38 regencies, with a total population of 39,886,288, in accordance with the the East Java Health Profile. Therefore, the service was managed by East Java Health Officers from January to December 2020. Subsequently, the collected data were represented using graphs and geographical mapping for easier comprehension. COVID-19 cases were defined as all patients with or without symptoms of COVID-19 that were confirmed as positive using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) methods. Geographical mapping for the distribution of tuberculosis and COVID-19 cases was analyzed using Quantum Geographic Information System (QGIS) version 3.16.14-Hannover.

2.2. Statistical Analysis

All demographic data, together with tuberculosis and COVID-19 cases, were collected and analyzed using Statistical Package for Social Science software. The correlation between the incidence rate and the case fatality rate of tuberculosis and COVID-19 was calculated. An evaluation of the correlation between the case recovery rate and case fatality rate of tuberculosis, as well as the incidence rate and treatment success rate of tuberculosis, was also carried out. Furthermore, the correlation between treatment success rate and case fatality rate of tuberculosis, case recovery rate, and case fatality rate of COVID-19, was determined. We also calculated geographical factors, including the ratio of public health centres, number of doctors, nurses, midwifery, public health workers, environmental health workers, nutritionists, and pharmacists (Tables S1–S3). All the ratios were calculated per 100,000 of the population. These ratios were statistically tested by Pearson Correlation Test. For the sex distribution, the difference between both female and male patients with COVID-19 and tuberculosis was calculated. The data were analyzed using the Spearman correlation test, with a significance value of $p < 0.05$.
2.3. Ethical Clearance

This study used routine/annual surveillance data from regional open platforms, which were provided by the Health Officer of East Java Province. The data were already anonymized; therefore, no ethical clearance was needed.

3. Results

3.1. The Incidence Rate (IR) of Tuberculosis and COVID-19

In this study, the incidence rate of tuberculosis in East Java Province in 2020 was 95.49/100,000 population (Table 1), with a varying case recovery rate (Table 2). The number of cases was higher among males than females (Tables 3 and 4). The number for women in East Java in 2020 was 20,374,104, while the number for men was 20,291,592. Among all the residents in East Java, Probolinggo residents have a higher number of females (604) with tuberculosis than males (561). The highest infection rate was discovered in Madiun (296.51/100,000 population), while the lowest was proposed in Malang (0.07/100,000 population) (Table 1). When the data were analyzed according to sex, the incidence rate of tuberculosis in males (117.66/100,000 inhabitants) was higher than in females (93.49/100,000 inhabitants) (Table 3).

Table 1. Distribution of incidence rate (IR) and case fatality rate of TB and COVID-19 in 2020.

<table>
<thead>
<tr>
<th>No.</th>
<th>Regency</th>
<th>TB Infection</th>
<th></th>
<th></th>
<th>COVID-19 Infection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IR *</td>
<td>CFR</td>
<td></td>
<td>IR *</td>
<td>CFR</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Pacitan</td>
<td>51.8</td>
<td>1.9%</td>
<td></td>
<td>136.5</td>
<td>2.8%</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Ponorogo</td>
<td>103.69</td>
<td>1.3%</td>
<td></td>
<td>142.2</td>
<td>4.0%</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Trenggalek</td>
<td>57.63</td>
<td>0.9%</td>
<td></td>
<td>148.9</td>
<td>4.4%</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Tulungagung</td>
<td>78.70</td>
<td>1.4%</td>
<td></td>
<td>129.8</td>
<td>2.1%</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Blitar</td>
<td>55.08</td>
<td>1.7%</td>
<td></td>
<td>156.5</td>
<td>8.0%</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Kediri</td>
<td>0.1</td>
<td>0.8%</td>
<td></td>
<td>152.8</td>
<td>7.8%</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Malang</td>
<td>0.07</td>
<td>1.3%</td>
<td></td>
<td>56.5</td>
<td>5.7%</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Lumajang</td>
<td>0.11</td>
<td>0.8%</td>
<td></td>
<td>230.9</td>
<td>6.6%</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Jember</td>
<td>0.12</td>
<td>0.7%</td>
<td></td>
<td>180.4</td>
<td>4.7%</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Banyuwangi</td>
<td>0.12</td>
<td>2.0%</td>
<td></td>
<td>253.4</td>
<td>9.3%</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Bondowoso</td>
<td>114.54</td>
<td>1.0%</td>
<td></td>
<td>193.1</td>
<td>5.3%</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Situbondo</td>
<td>142.47</td>
<td>0.7%</td>
<td></td>
<td>248.5</td>
<td>7.0%</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Probolinggo</td>
<td>0.1</td>
<td>3.2%</td>
<td></td>
<td>188.4</td>
<td>5.1%</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Pasuruan</td>
<td>0.11</td>
<td>0.8%</td>
<td></td>
<td>133.8</td>
<td>7.2%</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Sidoarjo</td>
<td>0.11</td>
<td>1.2%</td>
<td></td>
<td>349.7</td>
<td>6.6%</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Mojokerto</td>
<td>0.1</td>
<td>0.6%</td>
<td></td>
<td>132.0</td>
<td>3.0%</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Jombang</td>
<td>0.1</td>
<td>1.4%</td>
<td></td>
<td>182.8</td>
<td>10.6%</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Nganjuk</td>
<td>68.02</td>
<td>1.0%</td>
<td></td>
<td>103.8</td>
<td>9.9%</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Madiun</td>
<td>86.28</td>
<td>1.8%</td>
<td></td>
<td>57.0</td>
<td>7.4%</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Magetan</td>
<td>75.04</td>
<td>1.1%</td>
<td></td>
<td>150.1</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Ngawi</td>
<td>90.95</td>
<td>1.4%</td>
<td></td>
<td>71.1</td>
<td>5.9%</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Bojonegoro</td>
<td>0.11</td>
<td>1.4%</td>
<td></td>
<td>102.8</td>
<td>7.2%</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Tuban</td>
<td>0.11</td>
<td>1.7%</td>
<td></td>
<td>152.1</td>
<td>10.6%</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Lamongan</td>
<td>0.13</td>
<td>1.0%</td>
<td></td>
<td>146.0</td>
<td>6.0%</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Gresik</td>
<td>0.11</td>
<td>1.3%</td>
<td></td>
<td>313.9</td>
<td>6.6%</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Bangkalan</td>
<td>100.48</td>
<td>0.7%</td>
<td></td>
<td>100.6</td>
<td>9.4%</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Sampang</td>
<td>82.71</td>
<td>1.2%</td>
<td></td>
<td>52.5</td>
<td>5.2%</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Pamekasan</td>
<td>82.07</td>
<td>1.2%</td>
<td></td>
<td>86.7</td>
<td>8.1%</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Sumenep</td>
<td>0.15</td>
<td>2.1%</td>
<td></td>
<td>110.3</td>
<td>6.1%</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Kediri City</td>
<td>199.92</td>
<td>1.2%</td>
<td></td>
<td>248.3</td>
<td>7.2%</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Blitar City</td>
<td>166.67</td>
<td>1.1%</td>
<td></td>
<td>467.1</td>
<td>5.4%</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Malang City</td>
<td>0.16</td>
<td>0.6%</td>
<td></td>
<td>422.8</td>
<td>9.9%</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Probolinggo city</td>
<td>145.59</td>
<td>7.0%</td>
<td></td>
<td>611.7</td>
<td>7.3%</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>Pasuruan City</td>
<td>258.45</td>
<td>1.1%</td>
<td></td>
<td>497.1</td>
<td>11.0%</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Cont.

<table>
<thead>
<tr>
<th>No.</th>
<th>Regency</th>
<th>TB Infection</th>
<th>COVID-19 Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IR *</td>
<td>CFR</td>
</tr>
<tr>
<td>35.</td>
<td>Mojokerto City</td>
<td>254.06</td>
<td>0.9%</td>
</tr>
<tr>
<td>36.</td>
<td>Madiun City</td>
<td>296.51</td>
<td>1.6%</td>
</tr>
<tr>
<td>37.</td>
<td>Surabaya City</td>
<td>0.14</td>
<td>0.4%</td>
</tr>
<tr>
<td>38.</td>
<td>Batu City</td>
<td>88.46</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>68.44</td>
<td>0.013</td>
</tr>
</tbody>
</table>

* IR: Incidence rate per 100,000 populations. CFR: Case Fatality Rate. Bold font indicated the highest or the lowest data.

Table 2. Case recovery rate (CRR) of TB and COVID-19 in East Java Province in 2020.

<table>
<thead>
<tr>
<th>No.</th>
<th>Regency</th>
<th>Case Recovery Rate (CRR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TB (%)</td>
</tr>
<tr>
<td>1.</td>
<td>Pacitan</td>
<td>81.5</td>
</tr>
<tr>
<td>2.</td>
<td>Ponorogo</td>
<td>84.5</td>
</tr>
<tr>
<td>3.</td>
<td>Trenggalek</td>
<td>91.2</td>
</tr>
<tr>
<td>4.</td>
<td>Tulungagung</td>
<td>64.4</td>
</tr>
<tr>
<td>5.</td>
<td>Blitar</td>
<td>75.9</td>
</tr>
<tr>
<td>6.</td>
<td>Kediri</td>
<td>92.2</td>
</tr>
<tr>
<td>7.</td>
<td>Malang</td>
<td>78.2</td>
</tr>
<tr>
<td>8.</td>
<td>Lumajang</td>
<td>52.4</td>
</tr>
<tr>
<td>9.</td>
<td>Jember</td>
<td>86</td>
</tr>
<tr>
<td>10.</td>
<td>Banyuwangi</td>
<td>76.2</td>
</tr>
<tr>
<td>11.</td>
<td>Bondowoso</td>
<td>68.7</td>
</tr>
<tr>
<td>12.</td>
<td>Situbondo</td>
<td>85.4</td>
</tr>
<tr>
<td>13.</td>
<td>Probolinggo</td>
<td>83.5</td>
</tr>
<tr>
<td>14.</td>
<td>Pasuruan</td>
<td>57.8</td>
</tr>
<tr>
<td>15.</td>
<td>Sidoarjo</td>
<td>74.3</td>
</tr>
<tr>
<td>16.</td>
<td>Mojokerto</td>
<td>78</td>
</tr>
<tr>
<td>17.</td>
<td>Jombang</td>
<td>81.1</td>
</tr>
<tr>
<td>18.</td>
<td>Nganjuk</td>
<td>74.1</td>
</tr>
<tr>
<td>19.</td>
<td>Madiun</td>
<td>73.4</td>
</tr>
<tr>
<td>20.</td>
<td>Magetan</td>
<td>96.6</td>
</tr>
<tr>
<td>21.</td>
<td>Ngawi</td>
<td>84.9</td>
</tr>
<tr>
<td>22.</td>
<td>Bojonegoro</td>
<td>93.1</td>
</tr>
<tr>
<td>23.</td>
<td>Tuban</td>
<td>75</td>
</tr>
<tr>
<td>24.</td>
<td>Lamongan</td>
<td>82.9</td>
</tr>
<tr>
<td>25.</td>
<td>Gresik</td>
<td>76.7</td>
</tr>
<tr>
<td>26.</td>
<td>Bangkalan</td>
<td>92.2</td>
</tr>
<tr>
<td>27.</td>
<td>Sampang</td>
<td>58.3</td>
</tr>
<tr>
<td>28.</td>
<td>Pamekasan</td>
<td>84.5</td>
</tr>
<tr>
<td>29.</td>
<td>Sumenep</td>
<td>77.4</td>
</tr>
<tr>
<td>30.</td>
<td>Kediri City</td>
<td>74.8</td>
</tr>
<tr>
<td>31.</td>
<td>Blitar City</td>
<td>84.3</td>
</tr>
<tr>
<td>32.</td>
<td>Malang City</td>
<td>63.2</td>
</tr>
<tr>
<td>33.</td>
<td>Probolinggo city</td>
<td>59.6</td>
</tr>
<tr>
<td>34.</td>
<td>Pasuruan City</td>
<td>84.6</td>
</tr>
<tr>
<td>35.</td>
<td>Mojokerto City</td>
<td>58.7</td>
</tr>
<tr>
<td>36.</td>
<td>Madiun City</td>
<td>91.4</td>
</tr>
<tr>
<td>37.</td>
<td>Surabaya City</td>
<td>72.5</td>
</tr>
<tr>
<td>38.</td>
<td>Batu City</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>75.81</td>
</tr>
</tbody>
</table>

Source: East Java Health Profile 2020. Bold font indicated the highest or the lowest data.
Table 3. Distribution of TB and COVID-19 cases according to sex.

<table>
<thead>
<tr>
<th>No.</th>
<th>Regency</th>
<th>TB (Number of People) *</th>
<th>COVID-19 (Number of People) *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>1.</td>
<td>Pacitan</td>
<td>170</td>
<td>118</td>
</tr>
<tr>
<td>2.</td>
<td>Ponorogo</td>
<td>530</td>
<td>374</td>
</tr>
<tr>
<td>3.</td>
<td>Trenggalek</td>
<td>237</td>
<td>165</td>
</tr>
<tr>
<td>4.</td>
<td>Tulungagung</td>
<td>463</td>
<td>358</td>
</tr>
<tr>
<td>5.</td>
<td>Blitar</td>
<td>366</td>
<td>275</td>
</tr>
<tr>
<td>6.</td>
<td>Kediri</td>
<td>815</td>
<td>727</td>
</tr>
<tr>
<td>7.</td>
<td>Malang</td>
<td>1026</td>
<td>802</td>
</tr>
<tr>
<td>8.</td>
<td>Lumajang</td>
<td>630</td>
<td>499</td>
</tr>
<tr>
<td>9.</td>
<td>Jember</td>
<td>1640</td>
<td>1407</td>
</tr>
<tr>
<td>10.</td>
<td>Banyuwangi</td>
<td>1119</td>
<td>886</td>
</tr>
<tr>
<td>11.</td>
<td>Bondowoso</td>
<td>477</td>
<td>415</td>
</tr>
<tr>
<td>12.</td>
<td>Situbondo</td>
<td>531</td>
<td>446</td>
</tr>
<tr>
<td>13.</td>
<td>Probolinggo</td>
<td>561</td>
<td>604</td>
</tr>
<tr>
<td>14.</td>
<td>Pasuruan</td>
<td>910</td>
<td>860</td>
</tr>
<tr>
<td>15.</td>
<td>Sidoarjo</td>
<td>1440</td>
<td>1080</td>
</tr>
<tr>
<td>16.</td>
<td>Mojokerto</td>
<td>615</td>
<td>465</td>
</tr>
<tr>
<td>17.</td>
<td>Jombang</td>
<td>706</td>
<td>582</td>
</tr>
<tr>
<td>18.</td>
<td>Nganjuk</td>
<td>417</td>
<td>302</td>
</tr>
<tr>
<td>19.</td>
<td>Madiun</td>
<td>345</td>
<td>245</td>
</tr>
<tr>
<td>20.</td>
<td>Magetan</td>
<td>271</td>
<td>201</td>
</tr>
<tr>
<td>21.</td>
<td>Ngawi</td>
<td>441</td>
<td>314</td>
</tr>
<tr>
<td>22.</td>
<td>Bojonegoro</td>
<td>820</td>
<td>611</td>
</tr>
<tr>
<td>23.</td>
<td>Tuban</td>
<td>714</td>
<td>572</td>
</tr>
<tr>
<td>24.</td>
<td>Lamongan</td>
<td>858</td>
<td>637</td>
</tr>
<tr>
<td>25.</td>
<td>Gresik</td>
<td>839</td>
<td>624</td>
</tr>
<tr>
<td>26.</td>
<td>Bangkalan</td>
<td>534</td>
<td>465</td>
</tr>
<tr>
<td>27.</td>
<td>Sampang</td>
<td>467</td>
<td>351</td>
</tr>
<tr>
<td>28.</td>
<td>Pamekasan</td>
<td>409</td>
<td>320</td>
</tr>
<tr>
<td>29.</td>
<td>Sumenep</td>
<td>952</td>
<td>660</td>
</tr>
<tr>
<td>30.</td>
<td>Kediri City</td>
<td>319</td>
<td>259</td>
</tr>
<tr>
<td>31.</td>
<td>Blitar City</td>
<td>134</td>
<td>104</td>
</tr>
<tr>
<td>32.</td>
<td>Malang City</td>
<td>739</td>
<td>638</td>
</tr>
<tr>
<td>33.</td>
<td>Probolinggo city</td>
<td>177</td>
<td>171</td>
</tr>
<tr>
<td>34.</td>
<td>Pasuruan City</td>
<td>289</td>
<td>232</td>
</tr>
<tr>
<td>35.</td>
<td>Mojokerto City</td>
<td>189</td>
<td>141</td>
</tr>
<tr>
<td>36.</td>
<td>Madiun City</td>
<td>327</td>
<td>199</td>
</tr>
<tr>
<td>37.</td>
<td>Surabaya City</td>
<td>2305</td>
<td>1846</td>
</tr>
<tr>
<td>38.</td>
<td>Batu City</td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>23,875</td>
<td>19,047</td>
</tr>
</tbody>
</table>

* Source: East Java Health Profile 2020. Bold font indicated the highest or the lowest data.

The regency with the highest tuberculosis incidence rate in males was Madiun (342.62/100,000 population), while the lowest rate was found in Pacitan (57.88/100,000 population) (Table 3). For females, the regency with the highest incidence rate of tuberculosis was Pasuruan (223.16/100,000 inhabitants) and the lowest rate was discovered in Pacitan (93.49/100,000 inhabitants) (Table 3). The highest incidence rate of COVID-19 infection was discovered in Mojokerto (789.9/100,000 populations), while the lowest was found in Sampang (52.5/100,000 populations) (Table 1). An analysis based on sex showed that the incidence rate of COVID-19 in females (215.74/100,000 inhabitants) was higher than in males (198.04/100,000 inhabitants). Meanwhile, the regency with the highest rate of males was Mojokerto (744.46/100,000 inhabitants), while the lowest rate was found in Sampang (48.58/100,000 inhabitants) (Table 3). The regency with the highest incidence rate of COVID-19 in females was Mojokerto (804.51/100,000 inhabitants), while the lowest rate was found in Madiun (51.14/100,000 inhabitants) (Table 4).
Table 4. The incidence rate of TB and COVID-19 according to sex group.

<table>
<thead>
<tr>
<th>No.</th>
<th>Regency</th>
<th>Incidence Rate of TB</th>
<th>Incidence Rate of COVID-19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>1.</td>
<td>Pacitan</td>
<td>57.88</td>
<td>40.36</td>
</tr>
<tr>
<td>2.</td>
<td>Ponorogo</td>
<td>111.75</td>
<td>78.73</td>
</tr>
<tr>
<td>3.</td>
<td>Trenggalek</td>
<td>64.51</td>
<td>45.36</td>
</tr>
<tr>
<td>4.</td>
<td>Tulungagung</td>
<td>84.91</td>
<td>65.75</td>
</tr>
<tr>
<td>5.</td>
<td>Blitar</td>
<td>59.37</td>
<td>45.29</td>
</tr>
<tr>
<td>6.</td>
<td>Kediri</td>
<td>98.68</td>
<td>89.82</td>
</tr>
<tr>
<td>7.</td>
<td>Malang</td>
<td>76.69</td>
<td>60.91</td>
</tr>
<tr>
<td>8.</td>
<td>Lumajang</td>
<td>113.81</td>
<td>88.21</td>
</tr>
<tr>
<td>9.</td>
<td>Jember</td>
<td>129.65</td>
<td>110.63</td>
</tr>
<tr>
<td>10.</td>
<td>Banyuwangi</td>
<td>130.84</td>
<td>103.88</td>
</tr>
<tr>
<td>11.</td>
<td>Bondowoso</td>
<td>124.80</td>
<td>105.35</td>
</tr>
<tr>
<td>12.</td>
<td>Situbondo</td>
<td>157.68</td>
<td>127.72</td>
</tr>
<tr>
<td>13.</td>
<td>Probolinggo</td>
<td>98.65</td>
<td>103.45</td>
</tr>
<tr>
<td>14.</td>
<td>Pasuruan</td>
<td>113.22</td>
<td>107.20</td>
</tr>
<tr>
<td>15.</td>
<td>Sidoarjo</td>
<td>137.33</td>
<td>104.43</td>
</tr>
<tr>
<td>17.</td>
<td>Jombang</td>
<td>106.23</td>
<td>89.06</td>
</tr>
<tr>
<td>18.</td>
<td>Nganjuk</td>
<td>75.10</td>
<td>55.05</td>
</tr>
<tr>
<td>19.</td>
<td>Madura</td>
<td>93.52</td>
<td>65.26</td>
</tr>
<tr>
<td>20.</td>
<td>Magetan</td>
<td>82.12</td>
<td>58.98</td>
</tr>
<tr>
<td>21.</td>
<td>Ngawi</td>
<td>102.09</td>
<td>71.68</td>
</tr>
<tr>
<td>22.</td>
<td>Bojonegoro</td>
<td>125.44</td>
<td>94.30</td>
</tr>
<tr>
<td>23.</td>
<td>Tuban</td>
<td>119.33</td>
<td>95.39</td>
</tr>
<tr>
<td>24.</td>
<td>Lamongan</td>
<td>127.55</td>
<td>94.87</td>
</tr>
<tr>
<td>25.</td>
<td>Gresik</td>
<td>127.07</td>
<td>95.86</td>
</tr>
<tr>
<td>26.</td>
<td>Bangkalan</td>
<td>102.15</td>
<td>86.50</td>
</tr>
<tr>
<td>27.</td>
<td>Sampang</td>
<td>96.95</td>
<td>71.92</td>
</tr>
<tr>
<td>28.</td>
<td>Pamekasan</td>
<td>98.09</td>
<td>73.89</td>
</tr>
<tr>
<td>29.</td>
<td>Sumenep</td>
<td>175.41</td>
<td>113.46</td>
</tr>
<tr>
<td>30.</td>
<td>Kediri City</td>
<td>222.12</td>
<td>180.89</td>
</tr>
<tr>
<td>31.</td>
<td>Blitar City</td>
<td>180.55</td>
<td>138.79</td>
</tr>
<tr>
<td>32.</td>
<td>Malang City</td>
<td>175.99</td>
<td>150.50</td>
</tr>
<tr>
<td>33.</td>
<td>Probolinggo</td>
<td>148.95</td>
<td>141.53</td>
</tr>
<tr>
<td>34.</td>
<td>Pasuruan City</td>
<td>277.76</td>
<td>223.16</td>
</tr>
<tr>
<td>35.</td>
<td>Mojokerto City</td>
<td>287.74</td>
<td>211.24</td>
</tr>
<tr>
<td>36.</td>
<td>Madura City</td>
<td>342.62</td>
<td>199.53</td>
</tr>
<tr>
<td>37.</td>
<td>Surabaya City</td>
<td>161.74</td>
<td>127.39</td>
</tr>
<tr>
<td>38.</td>
<td>Batu City</td>
<td>86.67</td>
<td>87.00</td>
</tr>
<tr>
<td>39.</td>
<td>Average</td>
<td>131.16</td>
<td>102.29</td>
</tr>
</tbody>
</table>

Bold font indicated the highest or the lowest data.

3.2. The Case Fatality Rate (CFR) of Tuberculosis and COVID-19

The overall case fatality rate of tuberculosis in East Java Province in Indonesia was 3.6%. The highest CFR of TB infection was discovered in Probolinggo (7%), while the lowest was found in Surabaya (0.4%). Meanwhile, the highest CFR of COVID-19 infection was obtained in Pasuruan (11%), while the lowest was found in Tulungagung 2.1% (Table 1).

3.3. Case Recovery Rate (CRR) of Tuberculosis and COVID-19

The case recovery rate of tuberculosis was defined as patients with positive examination results upon treatment, bacteriological examination results at the end of treatment, and at one of the previous examinations.

The highest case recovery rate for tuberculosis was discovered in Magetan (96.6%), while the lowest was obtained in Batu City (11.3%). Meanwhile, the case recovery rate of COVID-19 was defined as COVID-19 patients with positive results at the beginning of
RT-PCR, and negative results at the end of the examination. The highest case recovery rate of COVID-19 was found in Sidoarjo (92.6%), while the lowest was discovered in Tuban (64.5%) (Table 2).

3.4. The Treatment Success Rate (TSR) of Tuberculosis

The treatment success rate of tuberculosis is defined as the number of patients in all cured cases and complete treatment among treated and reported cases. In this study, the highest treatment success rate of tuberculosis was found in Magetan (95.97%), while the lowest was found in Bondowoso (65.89%) (Table 5).

Table 5. The treatment success rate of TB in 2020.

<table>
<thead>
<tr>
<th>No.</th>
<th>Regency</th>
<th>Treatment Success Rate Tuberculosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pacitan</td>
<td>82.96%</td>
</tr>
<tr>
<td>2.</td>
<td>Ponorogo</td>
<td>85.49%</td>
</tr>
<tr>
<td>3.</td>
<td>Trenggalek</td>
<td>94.03%</td>
</tr>
<tr>
<td>4.</td>
<td>Tulungagung</td>
<td>89.20%</td>
</tr>
<tr>
<td>5.</td>
<td>Blitar</td>
<td>88.83%</td>
</tr>
<tr>
<td>6.</td>
<td>Kediri</td>
<td>79.65%</td>
</tr>
<tr>
<td>7.</td>
<td>Malang</td>
<td>86.06%</td>
</tr>
<tr>
<td>8.</td>
<td>Lumajang</td>
<td>92.27%</td>
</tr>
<tr>
<td>9.</td>
<td>Jember</td>
<td>87.55%</td>
</tr>
<tr>
<td>10.</td>
<td>Banyuwangi</td>
<td>90.17%</td>
</tr>
<tr>
<td>11.</td>
<td>Bondowoso</td>
<td>65.89%</td>
</tr>
<tr>
<td>12.</td>
<td>Situbondo</td>
<td>93.28%</td>
</tr>
<tr>
<td>13.</td>
<td>Probolinggo</td>
<td>91.41%</td>
</tr>
<tr>
<td>14.</td>
<td>Pasuruan</td>
<td>89.34%</td>
</tr>
<tr>
<td>15.</td>
<td>Sidoarjo</td>
<td>91.08%</td>
</tr>
<tr>
<td>16.</td>
<td>Mojokerto</td>
<td>89.40%</td>
</tr>
<tr>
<td>17.</td>
<td>Jombang</td>
<td>88.02%</td>
</tr>
<tr>
<td>18.</td>
<td>Nganjuk</td>
<td>79.17%</td>
</tr>
<tr>
<td>19.</td>
<td>Madiun</td>
<td>89.82%</td>
</tr>
<tr>
<td>20.</td>
<td>Magetan</td>
<td>95.97%</td>
</tr>
<tr>
<td>21.</td>
<td>Ngawi</td>
<td>92.54%</td>
</tr>
<tr>
<td>22.</td>
<td>Bojonegoro</td>
<td>93.57%</td>
</tr>
<tr>
<td>23.</td>
<td>Tuban</td>
<td>92.33%</td>
</tr>
<tr>
<td>24.</td>
<td>Lamongan</td>
<td>94.89%</td>
</tr>
<tr>
<td>25.</td>
<td>Gresik</td>
<td>91.69%</td>
</tr>
<tr>
<td>26.</td>
<td>Bangkalan</td>
<td>92.26%</td>
</tr>
<tr>
<td>27.</td>
<td>Sampang</td>
<td>85.67%</td>
</tr>
<tr>
<td>28.</td>
<td>Famekasan</td>
<td>90.58%</td>
</tr>
<tr>
<td>29.</td>
<td>Sumenep</td>
<td>89.44%</td>
</tr>
<tr>
<td>30.</td>
<td>Kediri City</td>
<td>95.46%</td>
</tr>
<tr>
<td>31.</td>
<td>Blitar City</td>
<td>81.07%</td>
</tr>
<tr>
<td>32.</td>
<td>Malang City</td>
<td>85.14%</td>
</tr>
<tr>
<td>33.</td>
<td>Probolinggo city</td>
<td>72.69%</td>
</tr>
<tr>
<td>34.</td>
<td>Pasuruan City</td>
<td>91.51%</td>
</tr>
<tr>
<td>35.</td>
<td>Mojokerto City</td>
<td>81.05%</td>
</tr>
<tr>
<td>36.</td>
<td>Madiun City</td>
<td>93.66%</td>
</tr>
<tr>
<td>37.</td>
<td>Surabaya City</td>
<td>90.61%</td>
</tr>
<tr>
<td>38.</td>
<td>Batu City</td>
<td>71.78%</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>87.78%</td>
</tr>
</tbody>
</table>

Bold font indicated the highest or the lowest data.

3.5. The Age Group of COVID-19 Cases

Based on age group, the highest number of COVID-19 cases was found in those between 46 to 59 years old (23,947 individuals), while the lowest was found in those between 3 and 6 years old (771 individuals) (Figure 1).
3.6. The Correlation Test

The analysis of data with Spearman correlation showed no significant correlation between the incidence rate and case fatality rate of tuberculosis \((p = 0.912, p > 0.05) \) (Table 6). It was also discovered that there was no significant correlation between incidence rate and case fatality rate for COVID-19 \((p = 0.219, p > 0.05) \), the case recovery rate and case fatality rate for tuberculosis \((p = 0.698, p > 0.05) \), the incidence rate and treatment success rate for tuberculosis \((p = 0.795, p > 0.05) \), the treatment success rate and case fatality rate for tuberculosis \((p = 0.659, p > 0.05) \), and the case recovery rate and case fatality rate for COVID-19 \((p = 0.164, p > 0.05) \). The difference between the number of male and female patients with tuberculosis \((p = 0.202, p > 0.05) \) and COVID-19 \((p = 0.942, p > 0.05) \) was not significant (Table 6). In this study, we also calculated the geographical data consisting of the ratio number of public health centers, doctors, nurses, midwifery, public health workers, environmental health workers, nutritionists and pharmacists, and also the incidence rate of HIV in these areas (Tables S1–S3). Table 7 shows that the total number of health workers per 100,000 populations was significantly correlated with the incidence rate of tuberculosis \((p < 0.05) \). These variables demonstrate a positive correlation with the tuberculosis incidence rate. Surprisingly, the incidence rate of HIV was also correlated with the incidence rate of TB \((p < 0.05) \) (Table 7). However, the case recovery rate between TB and case recovery rate of COVID-19 was also significantly different (Table 8). While in COVID-19 aspect, the incidence rate of COVID-19 was also significantly correlated with the incidence rate of HIV and the number of health workers (doctor, nurse, public health workers, environmental health workers, nutritionist, and pharmacist) (Table 9).

Figure 1. The distribution of COVID-19 cases based on age group.
Table 6. The Results of Spearman Correlation and Mann–Whitney test.

<table>
<thead>
<tr>
<th>p-Value</th>
<th>CFR_TB</th>
<th>CFR_COVID-19</th>
<th>TSR_TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR_TB</td>
<td>0.912</td>
<td>0.219</td>
<td>0.795</td>
</tr>
<tr>
<td>IR_COVID-19</td>
<td>0.698</td>
<td>0.164</td>
<td></td>
</tr>
<tr>
<td>CRR_TB</td>
<td></td>
<td></td>
<td>0.795</td>
</tr>
<tr>
<td>CRR_COVID-19</td>
<td></td>
<td></td>
<td>0.659</td>
</tr>
</tbody>
</table>

Mann–Whitney Test

<table>
<thead>
<tr>
<th>p-Value</th>
<th>IR_TB_Female</th>
<th>IR_COVID-19_Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR_TB_Male</td>
<td>0.202</td>
<td></td>
</tr>
<tr>
<td>IR_COVID-19_Male</td>
<td>0.942</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. The results of Pearson correlation test of demographical factors related to the incidence rate of TB.

<table>
<thead>
<tr>
<th>Bivariate Analysis of Geographical Factors with the Incidence Rate of Tuberculosis</th>
<th>Correlation between Two Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>p-Value</td>
</tr>
<tr>
<td>Ratio of public health centre</td>
<td>0.001 *</td>
</tr>
<tr>
<td>Ratio of doctor</td>
<td>0.000 *</td>
</tr>
<tr>
<td>Ratio of nurse</td>
<td>0.000 *</td>
</tr>
<tr>
<td>Ratio of midwifery</td>
<td>0.000 *</td>
</tr>
<tr>
<td>Ratio of public health workers</td>
<td>0.002 *</td>
</tr>
<tr>
<td>Ratio of environmental health workers</td>
<td>0.000 *</td>
</tr>
<tr>
<td>Ratio of nutritionist</td>
<td>0.000 *</td>
</tr>
<tr>
<td>Ratio of pharmacist</td>
<td>0.000 *</td>
</tr>
<tr>
<td>Incidence rate of HIV</td>
<td>0.002 *</td>
</tr>
</tbody>
</table>

* A p-value less than 0.05 is statistically significant.

Table 8. The results of Mann–Whitney test for the comparison between case recovery rate of tuberculosis and case recovery rate of COVID-19.

<table>
<thead>
<tr>
<th>p-Value of Mann–Whitney Test between Case Recovery Rate of TB and Case Recovery Rate of COVID-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Value</td>
</tr>
<tr>
<td>CRR TB</td>
</tr>
</tbody>
</table>
Table 9. The results of Pearson Correlation test of demographical factors related to the incidence rate of COVID-19.

<table>
<thead>
<tr>
<th>Variables</th>
<th>p-Value</th>
<th>r-Correlation</th>
<th>Correlation between Two Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of public health centre</td>
<td>0.44</td>
<td>0.13</td>
<td>Very low positive correlation</td>
</tr>
<tr>
<td>Ratio of doctor</td>
<td>0.001 *</td>
<td>0.7</td>
<td>Strong positive correlation</td>
</tr>
<tr>
<td>Ratio of nurse</td>
<td>0.001 *</td>
<td>0.64</td>
<td>Strong positive correlation</td>
</tr>
<tr>
<td>Ratio of midwifery</td>
<td>0.27</td>
<td>0.18</td>
<td>Very low positive correlation</td>
</tr>
<tr>
<td>Ratio of public health workers</td>
<td>0.01 *</td>
<td>0.42</td>
<td>Enough positive correlation</td>
</tr>
<tr>
<td>Ratio of environmental health workers</td>
<td>0.01 *</td>
<td>0.41</td>
<td>Enough positive correlation</td>
</tr>
<tr>
<td>Ratio of nutritionist</td>
<td>0.001 *</td>
<td>0.56</td>
<td>Strong positive correlation</td>
</tr>
<tr>
<td>Ratio of pharmacist</td>
<td>0.001 *</td>
<td>0.55</td>
<td>Strong positive correlation</td>
</tr>
<tr>
<td>Incidence rate of HIV</td>
<td>0.002 *</td>
<td>0.49</td>
<td>Enough positive correlation</td>
</tr>
</tbody>
</table>

* A p-value less than 0.05 is statistically significant.

3.7. Interpretation by Quantum Geographic Information System (QGIS) Application

The geographical maps of the incidence of tuberculosis and COVID-19 are shown in Figures 2 and 3.

![Figure 2. The geographical map of tuberculosis distribution in East Java Province in 2020.](image-url)
4. Discussion

This study showed no significant correlation between the incidence rate and case fatality rate for tuberculosis ($p = 0.912; p < 0.05$). The incidence rate of tuberculosis in East Java Province (586.24/100,000 inhabitants) in 2020 was higher than the national incidence rate (301/100,000 inhabitants). Furthermore, there was a decreasing incidence rate of tuberculosis in 2020 (95.49/100,000 inhabitants) compared to that in 2019 (95.925/100,000 inhabitants) [7]. The global incidence rate of tuberculosis in 2020 was 127/100,000 inhabitants [8]. This showed that the incidence rate in East Java needs to be properly managed. Meanwhile, one of the global milestones proposed by the World Health Organization (WHO) in 2020 is the reduction in incidence rate and tuberculosis deaths by 20% and 35%, respectively [8]. The overall case fatality rate of tuberculosis in East Java Province in 2020 was 3.6/100,000 inhabitants, while in 2019, it was 3.8/100,000 inhabitants [6].

The decrease in the incidence rate of tuberculosis was also in line with another report, where the global data showed a decline in three of the six WHO regions, namely Southeast Asia, the Eastern Mediterranean, and the Western Pacific. In 2020, Indonesia was one of the eight countries that reported a high TB rate, with an estimated incidence of, (1) India (26%), (2) China (8.5%), (3) Indonesia (8.4%), (4) the Philippines (6.0%), (5) Pakistan (5.8%), (6) Nigeria (4.6%), (7) Bangladesh (3.6%), and (8) South Africa (3.3%). The results showed that the incidence of tuberculosis was higher in men than in women. This is in line with the global data in 2020, which showed a tuberculosis rate of 56% in men, 33% in women, and 11% in children [8]. Moreover, these values were also obtained in the national tuberculosis survey in Vietnam [9].

The elimination of tuberculosis depends on the treatment success rate of infected people. In this study, some regencies in East Java with were discovered to have a TSR value below the target (<90%). A total of 20 regencies with a TSR of below 90% need to benefit from public health promotion and sensitize tuberculosis patients to complete their treatment. Indonesia can adopt one of the efforts used to increase the treatment success/completion
rate in India through Private Provider Interface Agencies (PPIAs). In India, the effort was effective in increasing tuberculosis notification rates, testing, and treatment success rates [10,11]. PPIAs can provide interventions related to patient care, training physicians, tuberculosis diagnostics, treatment monitoring, and tuberculosis medicines [12].

Tuberculosis and COVID-19 are airborne diseases; the infection affects the lungs and has similar symptoms. Moreover, COVID-19 symptoms include fever or chills, cough, shortness of breath or difficulty breathing, fatigue and headache, muscle or body aches, loss of new taste or smell, sore throat, stuffy or runny nose, nausea, vomiting, and diarrhea. Meanwhile, tuberculosis symptoms are coughing up phlegm or blood, a cough that lasts more than 2 months, appetite and weight loss, chest pain, chills, fever or night sweats, and fatigue [13]. Previous studies have demonstrated an association between tuberculosis and COVID-19. Both active and a previous history of tuberculosis seem to be related to an increased risk for the development of COVID-19, and aggravate the prognosis of infection [11,14–18]. The damage caused by TB infection in the lungs exacerbates its impact on local immunity and increases the body’s susceptibility to airborne pathogens [19]. This increases the risk of COVID-19 developing in patients with a current or previous history of TB. Tuberculosis was found to be associated with a 2.10-fold increase in the risk of severe COVID-19 disease. In patients with previous respiratory disease, lung function can be impaired and a low resistance to viral infections can form, which can develop into acute respiratory distress syndrome (ARDS) [20,21].

In 2020, when all countries were affected by COVID-19, it was reported that there were 84,140 cases in East Java, Indonesia, where the number of infected females was higher than the number for males. This was not in line with the report from Peru, where the incidence rate in females was higher than in that males. COVID-19 can affect any age group due to its fast transmission rate; however, this study discovered that the highest incidence rate was in the age group between 46 and 59 years old. This was in line with the national survey in Peru, where the highest incidence was in people older than 50 years [22].

The elimination of tuberculosis has three pillars and components, namely: (1) integrated, patient-centered care, and prevention, (2) bold policies and supportive systems, (3) and intensified research and innovation. The first pillars can be translated into four activities: (a) early diagnosis of tuberculosis, including testing on universal drug susceptibility, screening of close contact groups, (b) treating and supporting people with tuberculosis to complete their treatment, (c) collaborative care that manages the comorbidities, (d) preventive treatment of people at high risk [8].

COVID-19 and tuberculosis data showed that there is a possibility of coinfection in a patient, where an individual can simultaneously be affected by both illnesses. However, the limitation of this study is its inability to capture co-infected patients or those who are only infected with one of the diseases. Therefore, clinicians should be concerned with chronic diseases in patients, such as coinfection with both COVID-19 and tuberculosis. This is because the coinfection with both diseases was already reported by studies in China [23,24], USA [25], and Italy [15,26], with various clinical characteristics.

Coinfection between tuberculosis and COVID-19 could have an important impact on the public health sector. In another case, public health also has an important role in combatting COVID-19 through various interventions, including physical distancing, self-quarantine, travel restrictions, a semi-lockdown, practicing good personal hygiene, eating nutritious food, increasing case-tracking, and vaccine development [27]. People with underlying respiratory diseases should be considered during the pandemic, to prevent its exacerbation [28].

Lung macrostructural changes caused by pulmonary tuberculosis affect the function and defence of the lower respiratory tract. This condition can be complicated due to the consequences of the inflammatory response exacerbated by SARS-CoV-2, such as oedema [18,29,30]. The reported complications of tuberculosis with COVID-19 coinfection that are hypoxemia, respiratory failure, acute respiratory distress syndrome (ARDS), the need for non-invasive ventilation, glucose abnormalities, and longer lengths of hospital stay,
with a maximum of 130 days, and recurrent or concurrent bacterial infections [19,31–34]. The risk of recovery in COVID-19 patients with tuberculosis is 25% lower [16]. Meanwhile, the risk of mortality for COVID-19 patients with early treatment of pulmonary tuberculosis is 2.5 times higher, and a previous history of tuberculosis has a 50% higher mortality risk [17].

Previous studies showed that pulmonary tuberculosis patients had an increased susceptibility to COVID-19 infection and showed an increase in the severity of symptom development [14]. Cumulative research has reported 80 pulmonary tuberculosis patients with COVID-19 coinfection from China, India, Belgium, Brazil, France, Italy, Russia, Spain, Switzerland and Singapore. The highest case of tuberculosis sufferers presenting with COVID-19 coinfection occurred in Italy [35].

One of the principal efforts to suppress the transmission of tuberculosis in a community is the active case finding (ACF). Case finding could be deciphering this kind of activity, including house-to-house surveys, massive surveillance, increasing case-finding, and outpatient case detection, specifically in high-risk groups [36]. Historical results showed that mass radiography could screen 2000 cases in over 2 million individuals [37]. Sufficient case finding could lead to the successfully treatment of tuberculosis. In certain cases, case-finding could also find HIV-TB-coinfected patients, as mentioned in Nigeria, which could locate 109 HIV-TB infected patients. In Nigeria, successful treatment was proven to be associated with newly registered patients [38].

Health facilities were also a predictor of the treatment success rate for tuberculosis. According to this, intersectoral collaborations with the private sector should be increased. As in another report, private health facilities had a more successful treatment rate than public health facilities [39,40]. The other challenge in tuberculosis management was drug resistance; interestingly, if the treatment success rate reaches 85%, this could lead to a reduction in transmission, drug resistance, TB prevalence, and TB incidence. In East Java Province, the number of health facilities, specifically primary health centers, is 968 units. However, not all primary health centers have the same capacity to tackle tuberculosis, especially during the pandemic, when the all the health facilities were focused on COVID-19. In addition, Indonesia also had an endemic for another tropical disease, which was neglected [41].

Drug resistance in tuberculosis become a challenge in TB management, due to the increasing number of mechanisms that were involved. This phenomenon led to difficulties in the development of diagnostic procedures. However, whole-genome sequencing (WGS) may help to identify polymorphisms related to drug resistance. In another case, the capacity of laboratories which can conduct WGS in developing countries is still limited [42]. During the pandemic, whole-genome sequencing (WGS) was introduced, specifically to understand the new variant of COVID-19, which continuously increased. According to the latest information, the COVID-19 variants can be classified into three groups, namely, variants of concern (VOC), variants of interest (VOI) and high-consequence variants (VOHC). This classification was formulated according to the capacity and the impact on global public health [41].

5. Conclusions

In conclusion, these respiratory diseases still need to be evaluated, specifically in a clinical setting. Although there have been major advances in infectious disease control in recent years, the number of infectious diseases, including TB and COVID-19 in East Java Province, is still a concern. Therefore, a retrospective study was carried out to evaluate the recent epidemiology of the infectious disease in East Java, which is the second largest province in Indonesia and consisted of 38 regencies with large populations. The results showed that the incidence rate of tuberculosis was higher in males than females, while the rate of COVID-19 was higher in females than in males. The highest cases of COVID-19 were discovered in the age group between 46 and 59 years old. The highest COVID-19 incidence rate was found in Mojokerto City, while the lowest was found in Sampang. Tuberculosis
and COVID-19 are the pulmonary diseases which need to be considered. According to this study, the treatment success rate of tuberculosis needs to be improved to achieve a decline in case fatality rates and transmission in the community. During the pandemic, it is important to increase active tuberculosis case detection in order to minimize community transmission.

Limitations

The limitation of this study was the limited data that could be provided, due to the data source, which could only capture regional surveillance data.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/tropicalmed7060083/s1. The demographic factor analysis (Ratio number of public health center, ratio number of doctor, and ratio number of nurse/100,000 populations); Table S2. The demographic factor analysis (Ratio number of midwife, ratio number of public health workers, and ratio number of environmental health workers/100,000 populations); Table S3. The demographic factor analysis (Ratio number of nutritionist, ratio number of pharmacist, and incidence rate of HIV/100,000 populations).

Funding: The present study was supported by a grant from the Satu Joint Research Scheme Universitas Airlangga (grant no. 525/UN3/2021) and Satu Joint Research Scheme Universiti Malaya (ST039-2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and/or analysed during the present study are available from the corresponding author on reasonable request.

Acknowledgments: We would like thanks to the Universitas Airlangga that was provided research funding under Satu Joint Research Scheme with the number of funding grant no. 525/UN3/2021, and also Satu Joint Research Scheme Universiti Malaya (ST039-2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

