

M Inbo: 🗙 M EEC - 🗙 🔇 EEC2	x 🕙 Coni x 🚳 EEC: x 🐴 BUKi x 🚍 C29. x 🧮 C28. x 🧮 C14- x 🚍 C9-J x 🧮 C14- x 🗮 C14- x 🗮 C11. x 🕲 hj-i x 🌉 The i x +	~	-	ο	×
← → C	nail/u/1/#search/application+of+probiotic+and+microalgae/FMfcgxwHNgZHkRcdNkgBSfftW2Vtmlzp	* *	⊒ /	o 🌮	
😑 🎽 Gmail	Q application of probiotic and microalgae X 3	0	(3)		
Compose			$\langle \rangle$		53
□ Inbox 2,499 ☆ Starred ③ Snoozed	Contents.pdf				• •
D Important ▷ Sent □ Drafts 67 → □ Categories ∨ More	Woro Hastuti Satyantini -worohastuti79@gmail.com- Image: Sun, Jun 28, 2020, 10:15PM to Sukhada + Dear editors, Dear editors, Thank you for your cooperation and look forward to your reply.	☆ ↔	÷۰ :		+
Labels +	Concertachment - Scanned by Gmail ()		æ	•	
	Woro Hastuti Satyantini «worohastuti?9@gmail.com» @ Jun 28, 2020, 11:20 PM	☆ ◆	5 1		>
12 EEC26-59.pdf	😫 Contents.pdf 🔹 🕺 Pengumuman,.Harpdf 🖍 👔 FIX Bismillah PPTptx 🧄 🔁 POSTER.JGA PRApdf 🔺 😫 SKRIPSL.JGA PRAM	pdf 🔨		Show all) ×
28℃ Berawan	👫 Q Search 💿 📄 🔯 💀 🔀 🧔 🕅 🗕 🞯 🖉 🔷 🗸 🗸 ENG	କ କ)	اتھ <u>₁</u> 2	23:06 2/06/2023	

Eco. Env. & Cons. 26 (3) : 2020; pp. (369-374) Copyright@ EM International ISSN 0971–765X

Application of probiotics and microalgae (*Chaetoceros calcitrans*) to stimulate non-specific Immune responses in white Shrimp (*Litopenaeus vannamei*) infected with *Vibrio harveyi*

Mila Ayu Ambarsari¹ and Woro Hastuti Satyantini^{2*}

¹Post Graduate Program of Marine Biotechnology, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia ²Department of Fish Health Management and Aquaculture Faculty of Fisheries and Marine, Airlangga University, Surabaya 60115, Indonesia

(Received 10 January, 2019; Accepted 28 February, 2020)

ABSTRACT

This study aims to determine whether the administration of probiotics and microalgae Chaetoceros calcitrans can improve the non-specific immune response of vanname shrimp after Vibrio harveyi bacterial infection. This research is experimental with a completely randomized design (CRD) consisting of 5 treatments and 4 replications. K: Rearing shrimp without the administration of probiotics or microalgae Chaetoceroscalcitrans, the 15th day was injected with PBS (Phosphate Buffer Saline). K+: Rearing shrimp without the provision of probiotics or microalgae Chaetoceroscalcitrans, and on the 15th day infected with Vibrio harveyi. PA: Shrimp maintenance by providing Probiotics (Pro). PB: Shrimp maintenance by giving Microalgae (Mic). PC: Shrimp maintenance by providing Probiotics and Microalgae (Promi = The parameters observed included Total Hemocyte Count (THC), Phagocytic activity. Data analysis used Analysis of Variance (ANOVA) followed by Duncan's multiple range test (DMRT). The results of this study indicate that the administration of probiotics and microalgae gave significantly different results (p<0.05) on non-specific immune responses in white shrimp. The best research results on the treatment of probiotics and microalgae Chaetoceros calcitrans are able to increase the non-specific immune response in vanname shrimp after Vibrio harveyi bacterial infection THC value of 42.86 × 10⁶ cells/mL, phagocytosis (AF) activity by 95.50%, SR 94,75%. Probiotics (Pro), Microalgae (Mik) Chaetoceros calcitrans and Combination Probiotics and Microalgae (Promik) on maintenance media can increase non-specific immune response in vanname shrimp after Vibrio harveyi bacterial infection and survival of white shrimp.

Key words: Probiotics, Bacillus subtilis, Bacillus Mycoides, Pseudomonas pure Litopenaeus vannamei

Introduction

White Shrimp (*Litopenaeus vannamei*) was firstly imported into Indonesia in 2000 to replace the Tiger shrimp (*Penaeus monodon*) which is widely affected by diseases, especially bacteria and viruses

(Marwiyah *et al.*, 2019; Kharisma *et al.*, 2020). But in the course of this effort, losses from disease attacks continued. This Vibriosis disease can cause death in shrimp 90 - 100% of the total population, one of which is by *Vibrio harveyi* bacteria. A number of methods have been applied in the effort to control

^{*}Corresponding author's email: worohastuti79@gmail.com

diseases such as control of the body's system through the administration of probiotics (Jefri et al., 2020; Rangka and Gunarto, 2012; Sriwulan et al., 2019; Latifah et al., 2019) and microalgae Chaetoceros calcitrans that can be a substitute antibiotictoreduce pathogenic bacteria. Probiotics have a cell wall structure of lipopolysaccharides (LPS) and have antioxidant activity (Trisnawati et al., 2018; Rusmarilin et al., 2018; Silalahi et al., 2018), whereas microalgae Chaetoceroscalcitrans contain a content of â-1-3 glucan. Both materials can be used to enhance nonspecific immune responses. β -1-3 glucan and LPS may increase PO activity after β -1-3 glucan and LPS react with β -glucan binding protein (BGBP) or LPS binding proteins. After the bind, proPO will be reactivated into a PO enzyme that further performs its function in the process of melanization, while in microalgae that have a content of β -1-3 glucan can increase cell activating factors in hemocytes, So that it can increase the activity of PO and phagocytosis in shrimp (Smith et al., 2014). The objectives of this study were to investigate the effects of probiotics and microalgae (Chaetoceros calcitrans) on the stimulation of non-specific immune responses in white shrimp (Litopenaeus vannamei) infected with Vibrio harveyi.

Materials and Methods

Ingredients probiotics used (*Bacillus subtilis*, *Bacillus mycoides*, *Pseudomonas diminuta*), Microalgae *Chaetoceros calcitrans*, *Vibrio harveyi* bacterial isolate. The size of aquarium used in this experimentation was $60 \times 30 \times 35$ cm³. Whiteshrimp (*Litopenaeus vannamei*) were in healthy condition and free from *Vibrio harveyi* infection, body length 6-8cm, and weights 6-6.5g.

Research Design

This research was conducted using a Completely Randomized Design consisting of 5 treatments and 4 replications. The dosage of *Vibrio harveyi* used in this experiment was approximately \bigcirc CFU/mL Cahayati (2012), and the dosage of *Chaetoceros calcitrans* microalgae was as much as 67.50 × 10⁵ cells/ml (Yeh *et al.*, 2015).

The treatments used in this study were

Negative control (-C): Rearing shrimp without the provision of probiotics or microalgae *Chaetoceroscalcitrans*, then on the day 15 was injected

with PBS (Phosphate Buffer Saline).

• Positive control (+C): Maintenance of shrimp without the provision of probiotics and microalgae *C. calcitrans*, and on the day 15 infected with *Vibrio harveyi*.

Eco. Env. & Cons. 26 (3): 2020

- PA: Shrimp maintenance by providing Probiotics (Pro), and on the day 15 infected with *Vibrio harveyi*.
- PB: Shrimp maintenance by giving Microalgae (Mic), and on the day 15 infected with *Vibrio harveyi*.
- PC: Shrimp maintenance by providing Probiotics and Microalgae (Promic), and on the day 15 infected with *Vibrio harveyi*.

Observation of Research Parameters

Observation parameters of white shrimp immune response were consisted of Total Hemocyte Count (THC), Phagocytic activity (AF), Survival Rate (SR).

Hemolymph collection

Hemolymph for measurement of immune parameters was taken from all shrimps of each treatment unit. About 0.1 mL of hemolymphwas taken from the ventral sinus at the base of the 5th leg using a 1mL syringe after 0.1 mL of anticoagulant was added (30 mM trisodium citrate, 0.34 M sodium chloride, 10 mM EDTA, pH 7.5) (Mannopo, 2014).

Total Hemocyte Count (THC)

After hemolymph collection, approximately of 100 ml of hemolymph was taken and dropped into the hemocytometer to calculate the Total Hemocyte Count (THC) under a light microscope with 400x magnification. Measurement of total hemocytes was carried out four times: at day 0 (at the beginning of the experiment, H0), at day 14 (H-14), after bacterial infection of *Vibrio harveyi* (at day 16, H-16) and at day 25 (H-25). THCs were expressed as number of cells/ml of hemolymph.

Phagocytic activity (AF)

Phagocytic activity was determined as described below. Retrieval of fresh shrimp hemolymph (20 μ L), inserted into the microtube and added with 20 μ L suspension of *Staphylococcus aureus* with density of 108 cells/mL, incubated at room temperature for 30 minutes. Furthermore, 5 ilwas taken to make a smear on the preparation object glass and let it dry. The preparations were then soaked with 70% alcohol for 20 minutes and rinsed with 0.85% NaCl and

AMBARSARI AND SATYANTINI

dried again. Then painted using 10% Giemsa for 20 minutes and air dried. The curing preparation was then watered for about 5 minutes to remove the remaining color of Giemsa. The preparations were observed under a microscope at 400x magnification. AF values was calculated using the following formula:

AF=a/b x 100%

Where:

AF = Phagocytic Activity (%)

- a = Number of cells undergoing phagocytosis
 (cell/ml)
- b = Total number of cells observed (cell/ml)

Data analysis

Measurement data were expressed as mean \pm SD. THC dan AF data then analyzed using One-way ANOVA by using statistical software SPSS-21. If significant difference were observed, the Duncan test then used to analyze which treatment caused significantly different to immune responses of white shrimpat p<0.05.

Water quality

Water quality parameters (temperature, dissolved oxygen, pH, Salinity, Ammonium, Nitrite, Ammonia, and Nitrite) were measured during the study are presented in. Table 3. The water quality was within the normal range based on standards for white shrimp aquaculture.

Results and Discussion

Survival Rate

The survival rates of infected shrimp by *Vibrio harveyi* after provision of probiotic (Pro), microalgae (Mic) and probiotic+microalge are presented in Figure 1. Both at day 16 and day 25, the provision of probiotic+microalgae (Promic) treatments had a significantly different on survival rate of shrimp com-

Total Hemocyte Count (THC)

The total number of hemocyte count of *Litopenaeus vannamei* at H0, H-14, H-16 and H-25 are presented in Table 1. Hemocytes play an important role in the immune system of crustacea. At H0 the THC values ranged from 4.21 × 10⁶ cell/ml to 4.47x10⁶sel/ml. All treatments were not significantly different at H0. Furthermore, at H-14 (before *Vibrio harveyi* infection) the THC values of Pro and Mic treatments were higher than thoese of -C, +C and Promic treatments.

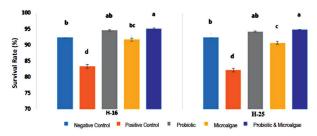


Fig. 1. Application of probiotics and microalgae on survival rate of *Litopenaeus vannamei* infected by *Vibrio harveyi*

One day after *Vibrio harveyi* infection (at H-16) the THC valuesof Pro and Promic were not significantly different. The lowest value of THC was noted at -C. Furthermore, 10 days after Vibrio harveyi infection (at H-25) the THC valuesof Pro, Mic and Promic were not significantly different, and their levels were higher than those of -C and +C.

Phagocytic activity

Phagocytosis is the process of digesting particulate matter, especially bacteria, into the cytoplasm of

Table 1. Average Total Hemocyte Count of White Shrimp during the study

Treatment	Average value of hemocytes on day to- (x10 ⁶) cell/ml				
	H-0	H-14	H-16	H-25	
-C	$4.21^{a} \pm 0.492$	$4.71^{\circ} \pm 0.512$	$9.16^{d} \pm 3.568$	$21.40^{\rm b} \pm 3.290$	
+C	$4.28^{a} \pm 0.543$	$6.16^{\rm b} \pm 0.191$	$11.63^{cd} \pm 2.391$	$13.75^{\rm b} \pm 1.946$	
Probiotics	$4.30^{a} \pm 0.486$	$7.96^{a} \pm 1.346$	$18.64^{a} \pm 2.122$	34.41 ^a ± 8.372	
Microalgae	$4.27^{a} \pm 0.505$	$7.50^{a} \pm 0.493$	$13.81^{bc} \pm 2.121$	$34.50^{\circ} \pm 4.328$	
Probiotics and Microalgae	$4.47^{a} \pm 0.408$	$4.54^{\circ} \pm 0.327$	$17.66^{ab} \pm 2.673$	$42.86^{a} \pm 9.677$	

Treatment	T	The Average value of AE(%) on observation			
	H-0	H-14	F H-16	H-25	
	$61.25^{a} \pm 4.788$	67.25° ± 3.594	$77.50^{ab} \pm 2.082$	$84.50^{\circ} \pm 1.000$	
+C	$60.75^{a} \pm 5.620$	$68.25^{\circ} \pm 4.646$	$74.75^{\circ} \pm 2.500$	$81.00^{d} \pm 1.155$	
Probiotics	$62.50^{a} \pm 2.082$	$78.50^{ab} \pm 2.380$	$83.75^{a} \pm 1.500$	$90.25^{\text{b}} \pm 1.258$	
Microalgae	$62.25^{a} \pm 1.708$	$73.75^{\rm b} \pm 0.500$	$79.75^{\rm b} \pm 0.500$	$88.00^{\rm b} \pm 2.160$	
Probiotics and Microalgae	$63.00^{\circ} \pm 2.449$	$80.50^{a} \pm 4.203$	$85.00^{a} \pm 3.559$	$95.50^{a} \pm 1.732$	

Table 2. Average values of *phagocytic activity* (AF) during the study

Table 3. The Range of Water Quality Media Maintenance Value.

Variable	Treatment					The Range	
	K ⁻	K+	Probiotics	Microalgae	Probiotics and Microalgae	of Normal values	
pН	7.7	7.6	7.7	7.8	7.7	7.5 - 8.5	
Salinity (ppt)	22	21	21.5	20	21	16 - 30	
DO(mg/L)	6.21	5.48	6.01	6.11	6.03	>3-7	
Temperature (°C)	28	27	29.1	26.5	28.7	27 - 32	
Ammonium	0.25	0.3	0.18	0.17	0.17	0.1 - 5	
Nitrit	0.17	0.2	0.15	0.15	0.1	0.1 - 1	
Nitrat	0.4	0.5	0.5	0.6	0.6	>0.2 - 0.8	
Ammonia	0.018	0.021	0.013	0.012	0.012	< 1	

white blood cells (Gullian *et al.*, 2014). The phagocytic activity values of all treatments starting from H-0, H-14, H-16 and H-25 are presented in Table 2. At H-0, all phagocytic activity of all treatments were not significantly different. At H-14, the highest phagocytic activity was recorded at Promic, and the lowest were observed at -C and +C. At H-16 there were not significantly different between -C, Pro and Promic, the lowest phagocytic activity was note at +C. At H-25 the highest phagocytic activity was noted at Promic and the lowest was observed at +C.

Discussion

The level of survival is an opportunity for an individual's life in a certain time. At the end of the study (H-25) the Promic treatment received ansurvival rate (SR) value of around 94.75%, the Pro treatment 94.25%, the Mic treatment 90.75%, the -C treatment 92.37%, and lowest was noted in +C treatments around 82.25%. The high observations of SR values in the Promictreatments compared to other treatments especially to Pro and Mic allegedly due to a balanced work between probiotics and microalgae.

Maximum probiotic work can function as a biological control agent that produces antibacterial molecules such as bacteriocin directly capable of inhibiting other bacteria such as *Vibrio harveyi* and actively participating in fighting infections. Probiotics are also able to inhibit the movement of other bacteria in the intestinal wall (translocation), so they can improve the function of the mucosal barrier by increasing the production of non-specific immune responses or modulating inflammation (Cerezuela *et al.*, 2011). In addition, the microalgae *Chaetoceros calcitrans* has the ability to inhibit the growth of gram-negative bacteria, by increasing the permeability of bacterial membranes (Zheng *et al.*, 2015).

Shrimp blood does not contain hemoglobin, so the blood is not red (Person *et al.*, 2014). In shrimp the function is replaced by hemocyanin, a protein that contains Cu and can bind with oxygen. Hemocyanin functions as oxygen transport, as a buffer in shrimp blood and plays an important role in blood osmotic (Maynard, 2014). White shrimp has nonspecific immunity (innate) which can recognize and destroy foreign objects that enter the body, so that the nonspecific immune system plays an important role in the shrimp immune system. Hemocytes play an important role in the crustacean immune system. Hemocytes play a role in phagocytosis, encapsulation, degranulation and aggregation of pathogens or foreign particles (Sahoo *et al.*, 2014).

This hemocyte value can be measured and can be

AMBARSARI AND SATYANTINI

used as a health assessment of shrimp through the activity of the defense system against infectious agents. This total hemocyte is very important in resistance to pathogens. From the results of data during the research on the observation of THC H0 ranged from 4.21x10⁶ cells/mL to 4.47x10⁶ cells/mL. The H-14 before Vibrio harveyi infection, in Promic treatment at 4.54x10⁶ sel/mL showed the lowest results compared to Pro treatment 7.96x10⁶ sel/mL, Mic treatment at 7.50x10⁶ cells/mL and positive control 6.16x10⁶ cells/mL. This is suspected that the treatment of Promic given during maintenance influence the work of competitors in the utilization of nitrogen nutrients by probiotic bacteria and microalgae, so that the number of probiotics entering the digestive tract becomes less than in the Pro treatment. At H-16 (1 day after Vibrio harveyi infection) where the THC value of Promic increased compared toH-14. This is because as a form of shrimp body's immune system reaction in response to foreign objects that enter the pathogenic bacterium Vibrio harveyi. However, after 10 days after the occurrence of Vibrio harveyi infection (H-25) THC value of Promic, Pro and Mic treatments were not significantly different, but they were significantly different compared to positive control treatments. This is because the mechanism of action of probiotics can also provide resistance to the body against Vibrio harveyi attacks. Where the Pseudomonas diminuta bacterium contains Lipopolysaccharide, LGBP (Lipopolysaccharide β -glucan Binding Protein) will induce hemocyte degranulocytes and stimulate the activation of the ProPO system into PO, hence the opsonin factor protein will produce an increase in phagocytosis. Whereas *Chaetoceroscalcitrans* Microalgae also contains β -1,3 *Glucan* from carbohydrate group which through the introduction of proteins activated by PPA, and PPA itself can be activated by lipopolysaccharides from microorganisms through recognition will form β -1,3 *Glucan Binding* Protein found in granulocytes so as to increase hemocytes in white shrimp. The results of the study reported by Sahoo et al. (2014) also stated that white shrimp treated with Probiotics and Microalgae (Promic) had higher THC values compared to other treatments. The high THC value in white shrimp is due to the high mobilization of hemolymph in the body of the shrimp so that it can increase immunity and the introduction of foreign objects that enter the shrimp body. While the low THC value greatly affects the susceptibility of shrimp to pathogens (Le

Moullac *et al*. 2014).

This study showed that increased THC values in the treatment of Promic also followed by an increase in the value of phagocytic activity (AF). Determination of the value of AF is to determine the increase in shrimp endurance because in the phagocytosis process is a non-specific defense mechanism that is generally able to protect against disease (Fontaine and Lightner, 2013). The AF values of H-25, the Promic treatments showed the highest AF values of 95.50% compared to the Pro 90.25% treatment and the Mic treatment at 88 %. In the Promic treatment, the effect was significantly different compared to controls. So that the treatment of Promic can improve shrimp immune response by increasing phagocytic cells to carry out the process of phagocytosis, namely the ability to phagocyte in destroying the *Vibrio harveyi* attack. The higher the phagocyto-sis value, the immune system of verifies a shrimp is suspected to be getting better, this is because in probiotics there is an antibacterial and antimicrobial content that can inhibit the formation of nucleic acids which causes the target cell membrane to be disrupted so that Vibrio harveyi lysis. Whereas the Pseudomonas bacteria are able to produce extracellular enzymes in the form of bacteriocin, siderophore and antibiotics which can inhibit pathogenic bacteria. Furthermore Itami *et al.*, (2013) support the theory which states that the administration of immunostimulants can prevent disease infections in the host body and cause increased phagocyte activity of hemocytes and proPO enzymes. From the data obtained during the H-25 maintenance period that white shrimp treated with Promic can provide significant SR values on the immune response that can be seen from the data there is a linear increase in THC, and AFvalues and quality water is one of the factors that greatly influences the life of shrimp, so in this study water quality parameters become one of the considerations of the results obtained. The water quality of the maintenance media during the study was in the ideal range for the maintenance of white shrimp. So that with good water quality parameters, and an increased immune response can provide shrimp growth and good survival value, resulting in an increase in production of white shrimp culture.

Conclusion

Based on the results of the research that has been

done, the following conclusions can be drawn: In the combination treatment gives a very real effect on the non-specific immune response in white shrimp. Which results in an increase in the number of hemocytes by 42.86x10⁶ cells/ml, *phagocytic activity* (AF).To obtain an effective protocol for administering *Chaetoceros calcitrans* microalgae, further research is needed to observe.

Acknowlegments

Special thank due to professor AgoesSoegianto for constructive comments to improve this manuscript.

References

- Cerezuela. 2011. Immune Response of Litopenaeusvannamei after Infection with Vibrio harveyi. Aquaculture., 406-407: 115-120.
- Fontaine and Lightner, 2013. A Review of Some Major Disease Significant on Penaeid Prawn Shrimp of The American and Indopasific. Diseases in Asia Aquaculture. Fish and Health Section Asian Fisheries Socienty, Manila, Philipines. 57-62 p.
- Fontaine and Lightner, 2014. In vivo antiviral activity of Potential implication in shrimp disease management. *World Journal of Fish and Marine Sciences*. 1 (4): 278-282.
- Itami and Takeuchi, T. 2013. Body defence system of penaeid. Seminar Avertebrata Physiology and Prevention partemen of Aquaculture and Biology. Shimonoseki University of Fisheries, Japan. 7:59-65.
- Jefri, M., Satyantini, W. H., Sahidu, A. M., Nindarwi, D. D. and Rozi, 2020. Application of Probiotics for Organic Matter and Enhancement of Growth Performance in White Shrimp (*Litopenaeus vannamei*). JurnalIlmiah Perikanan and Kelautan. 12 (1): 97-104. doi.org/ 10.20473/jipk.v12i1.16618.
- Kharisma, A., Tjahjaningsih, W. W. and Sigit, S. 2020. Determination of minimum inhibitory and minimum bactericidal concentration of ketapang (*Terminatiacatappa*) leaves extract against Vibrio harveyi. IOP Conf. Series: Earth and Environmental Science. 441 (2020) 012012. doi:10.1088/1755-1315/ 441/1/012012
- Latifah, L.A., Soekamto, N.H. and Tahir, A. 2019. Preliminary study: *Padina australis* Hauck's antibacterial activity and phytochemical test against pathogenic shrimp bacteria. *Journal of Physics: Conference Series*. 1341 (2019) 022005. doi:10.1088/1742-6596/1341/2/ 022005.
- Le Moullac, G., Soyez, C., Saulnier, D., Ansquer, D., Avarre

J.C. and Levy, P. 2014. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp *Penaeus stylirostris*. *Fish Shellfish and Immunology*. 8 : 621–629.

- Manoppo, Hengky. 2011. Perannukleotidasebagaii mmunostimula nterhadapresponimunnonspesifik dan resistensiudang white (*Litopenaeusvannamei*). Disertasi Pascasarjana Institut Pertanian Bogor.
- Marwiyah, U.C., Mahasri, G., Ratnasari1, R.E. and Wiradana, P.A. 2019. Total plate count and identification of vibrio in pacific white shrimp (*Litopenaeus vannamei*) from ponds and in those exposed to immunogenic protein membrane Zoothamniumpenaei. IOP Conf. Series: Earth and Environmental Science. 236 (2019) 012087. doi:10.1088/1755-1315/236/1/ 012087.
- Maynard, 2014. Immunostimulants. Japan Sci Soc. Press. Tokyo, p 41-56.
- Person, R. G., Gaxiola, G., Taboada, M. Pascual. 2014. Effect of immunostimulants on hemolymph of *Litopenaeus vannamei. Aquaculture Research.* 38:1339-1345.
- Rangka, N.A. and Gunarto. 2012. The effect of bio floc growing on vannamei shrimp culture at intensive system pond. *Jurnalllmiah Perikanan and Kelautan*. 4 (2): 141-149.
- Rusmarilin, H., Nurhasanah, and Andayani, R. Y. 2018. Soy-yamgurt probiotic drink as a natural potential of antioxidant. *IOP Conf. Series: Earth and Environmental Science*. 122 (2018) 012087 doi :10.1088/1755-1315/122/1/012087.
- Sahoo, B., Sethi, S., Mishra, B.K. and Das, B.K. 2014 Effects elecitors on Prophenoloxidase and Superoxidase anion activities of *Litopenaeus vannamei*. *Asian Fish*.
 Sci. 18 : 345-353.
- Silalahi, J., Nadarason, D. and Silalahi, Y.C.E. 2018. The effect of storage condition on antioxidant activity of probiotics in yogurt drinks. *Asian J Pharm Clin Res.* 11 (12) : 280-283.
- Sriwulan, Azwar, A., Rantetondok, A. and Anshary, H. 2019. Screening and application of lactic acid bacteria isolated from vanamei shrimp (*Litopenaeus vannamei*) intestine as a probiotic potential for tiger shrimp (*Penaeus monodon*). AACL Bioflux. 12 (5): 1866-1881.
- Trisnawita, Y., Silalahi, J. and Sinaga, S.M. 2018. The effect of storage condition on viability of lactic acid bacte-
- ria in probiotic product. *Asian J Pharm Clin Res*. 11 (Special issue 1): 84-86.
- Zheng, Y. H., Yoshida, T., Isobe, K., Rahman, M. J., Nagase, F., Ding, L. and Nakashima, I. 2015. Modulation by Glycyrrhizin of the cell-surface expression of H-2 Class I Antigens on Marine Tumor Cell Lines and Normal Cell Populations. *Immunology*. 70: 405-410.