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ABSTRACT

Cervical cancer is a malignant tumour that attacks the female genital area originating from epithelial
metaplasia in the squamous protocol junction area. One method of diagnosis of cervical cancer is to do
a Pap smear examination by taking a cervical cell smear from the woman's cervix and observing its cell
development. However, examination of cervical cancer from Pap smear results usually takes a long time.
This is because medical practitioners still rely on visual observations in the analysis of the results of Pap
smear 50 that the results are subjective. Therefore, we need a programme that can help the classification
process in establishing a diagnosis of cervical cancer with high accuracy results. In this study, a cervical
cancer classification program was developed using a combination of the Grey Level Co-occurrence Matrix
(GLCM) and Extreme Learning Machine (ELM) methods. There are three classes of cervical cell images
classified, namely adenocarcinoma, High Squamous Intraepithelial Lesion (HSIL) and Squamous Cell
Carcinoma (SCC). From the results of the training program obtained an accuracy 100% and from the
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testing program obtained an accuracy of 80%.

Introduction

Cancer is one of the leading causes of death worldwide. In
2018, the death rate caused by cervical cancer in Indonesia is
18,279 people. This amount resulted in an average value of
death from cervical cancer of 13.8%. The average death rate in
Indonesia is higher than in Southeast Asia with 10.90% (ICO,
2018). The high number of deaths from cervical cancer in
Indonesia is caused by delays in the examination and treatment
of the disease. The examination is usually done when the
symptoms caused by cervical cancer are obvious or the condi-
tion of the cancer is severe.

Pap smear is generally performed as an early detection of
cervical cancer. Through the Pap smear image, abnormal cell
growth can be identified which is the forerunner to cancer. This
is what makes the importance of early examination of Pap smear
where it can prevent the occurrence of more severe cancers.
Examination of cervical cancer from Pap smear results usually
takes a long time. This is because medical practitioners still rely
on visual observations in the analysis of the results of Pap smear
so that the results are subjective. Therefore, we need a program
that can help the classification process in establishing a diagnosis
of cervical cancer with high accuracy results.

One of the most important changes in cells when they are
precancerous is the change in chromatin texture. Texture analy-
sis of the cell nucleus provides information about the spatial
distribution of grey levels of pixels in the cell nucleus through

digital microscopic images (Liang 2012). Medical image classifi-
cation using texture analysis has been developed for various
types of medical images, such as breast cancer, liver cancer,
lung disease and cervical cancer. Initially, cell textures were
analysed based on first-order statistical textures and second-
order statistical textures. Feature extraction using a cohesion
matrix was first performed by Haralick (1973). Then, Weszka
(1976) compared texture feature extraction using Fourier
Power Spectrum, second-order grey level statistics, Grey Level
Co-Occurrence Matrix (GLCM) and Grey Level Run Length Matrix
(GLRLM). Based on his research, obtained feature extraction from
cell images using GLCM gives the best results. This method
measures the appearance of pixels with a certain paired grey
intensity at certain relative positions.

Junita (2017) conducted a study using mammogram images
to identify breast cancer by extracting the Grey Level Co-
Occurrence Matrix (GLCM) feature and the Support Vector
Machine (SVM) classification method. In this study, GLCM fea-
ture extraction was performed to obtain the value of the
Contrast, Correlation, Energy and Homogeneity features as
input in the SVM classification process. The implementation of
the GLCM feature extraction method and the SVM classification
method on mammogram images produces an accuracy value
of 60% with testing data used 10 combined images (5 benign
and 5 malignant) and learning data used 10 benign data and 10
malignant data.
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There are many computational methods that can be used in
the classification process with a good degree of accuracy. To
improve the performance of cervical cancer identification in pre-
vious researches, this study used Extreme Learning Method (ELM)
to classify the value of features obtained from the Grey Level Co-
occurrence Matrix (GLCM) method, where the method extracts
five texture features, namely, Contrast, Correlation, Energy,
Entropy and Homogeneity. The advantage of ELM algorithm is
the level of generalisation that is better than gradient-based
learning so that it can handle minimal local problems (Huang,
Zhu, & Siew, 2006). Another advantage of the ELM method is that
it can work optimally on complex functions with both linear and
non-linear data (Toprak, 2018). ELM is also able to do learning well
so as to produce a classification with accurate results.

Materials and methods
Datasets

The data used in this research were collected from microscopy
cervical cell slides, based on the results of Pap smear examination
at Dr. Soetomo General Hospital Surabaya Indonesia. Observations
were made using a microscope Olympus BX 41 with a magnifica-
tion of 400x. This microscope is equipped with a digital camera
connected to a PC to capture an image of each FoV (Field of View)
with the data stored in a jpg format. The dimensions of the Pap
smear images are 1440 x 1024 pixels. The number of the datais 76
images data of squamous cell, Adenocarcinoma, HSIL (as shown in
Figure 1) based on the condition the patients who come to the
doctor mostly are already in the high risk of cervical cancer cases.
The obtained image data are 2560 x 1920 and saved in .bmp
format.

Feature extraction

Grey Level Co-occurrence Matrix (GLCM) is a feature extraction
method by analysing texture features from dataset images. Each
dataset image is composed of several pixels of a certain grey
intensity. Texture analysis performs feature extraction by com-
paring the value of grey intensity between two neighbouring
pixels in a certain distance and direction in an image (Mullangi
et al. 2017). The tabulation of the relationship between the two
neighbouring pixels is then stated in a Grey Level Co-occurrence
Matrix. GLCM is a matrix of size m x n, where m is equal to n,
which is the maximum grey intensity value of an image, with the
matrix element p (i, j). Each element p (i, j) states the frequency of
occurrence of a pixel related to a particular pixel in the distance
r and the direction 8 (Cherian et al. 2017).

There are 5 different features that are calculated from
a cohesion matrix, namely contrast, correlation, homogeneity,
entropy and energy features. Each feature is calculated using
the following equation.

Contrast
The contrast feature states the variation in the difference in
intensity of a pixel with neighbouring pixels.

L L
Contrast = Z Z li — jI*Pr.6(i.j) m
i=1 j=1

Correlation
The correlation feature expresses linearly the grey level of
pixels of a neighbouring pixel.

Lo iy L
Correiarion:ZZ(' Hi) (= 1) Proli.j) @)

=1 j=1 i9j
Where,
L L
=32 i(Pesliif)) (3)
i=1 =1
L L
=33 J(Prolin)) @
==l
L L
g = Z Z PI.BUJ) (‘ - MJ':IZ (5}
i=1 j=1
L L 2
o= | DD Praliof) (i 1) ©
i=1 j=1
Homogeneity

Homogeneity features show the homogeneity of variations in
pixel intensity in an image.

Homogeneity = ZL: iiz

7

Entropy
The entropy feature calculates the irregularity in the grey inten-
sity distribution of an image.

Figure 1. Cervical cancer cell (a) Squamous cell (b) Adeno carcinoma () HSIL.
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L L
Entropy = Z Zprs i.j)(logP; g(i.j)) @

i=1 j=1

Energy
The energy feature calculates the uniformity of pixels in an
image. Energy is a reverse form of entropy.

L L
Energy = > > " Prglij)? (9)
i=1 j=1

ELM classification

The Extreme Learning Machine (ELM) method is a Single-
Hidden-Layer Feed-forward Networks (SLFNs) method with
the main function of generalising a pattern. The selection
of input weights and input refractive values is done ran-
domly so that SLFNs can be considered a linear system and
output weights can be analysed using simple generalised
inverse operations. In addition, ELM also has the ability to
generalise with a smaller error value of training (training
error) and the determination of the value of a lower train-
ing weight so that it has a better generalisation ability
(Huang et al, 2006).

Figure 1. ELM structure

The structure of ELM has similarities with feed-forward
artificial neural networks in general, but ELM has a different
mathematical model. N different number of input and out-
put pairs (Xi, Xt), with:

= [Xiy. Xip..... . Xip) €R” (10

= [Xty, Xty,... Xt,]  €R™ (1)

The following is a mathematical model of SLFNs with the
number of hidden nodes as N and the activation function g(x):

Zﬁgj X)

Where:
wi = (Wi, Wia, .o W)": vector of weights connecting all
components to i of hidden nodes and input nodes

Zﬁjg, Wi + b)) = 0,j=1,2,....N (12

—

Input
layer

B = B, Bar .. Bi): vector of weights that connect all
components to i of hidden nodes and output nodes

b; = threshold from data to i hidden nodes

wix; = inner product from Wiand Xj

SLFNs with N hidden nodes and activation function g(x)
are assumed to be approximate with an error rate of 0 or

N

have the meaning %" oj —tj = 0, so that there are i, wi and
j=1

bi such that:

N
Zﬁ[gl'(wi-xj"r b:') = r_JJ =12,....N

(13)
i=1
Equation (13) can be written as follows:
B=H'T where T=[t.tr.....t" (14)
Where:
g(wy.x; + by) g(wyxy + by)
H= ; ; (15)
g(wyxy + by) g(wyxy + by)

H* is a matrix of H that has been changed by the Moore -
Penrose Pseudo Generalised Inverse method to force matrix
multiplications of inputs that have different matrix dimensions
to the matrix dimensions of the hidden layer. Equation 14 has
the following conditions:

B

B=: (16)
Bl
t

T=: (17)
t

Where,
H in Equation (15) = matrix of hidden layer output
g(wixj+bi) = the output of hidden neurons related to
input xi
B = matrix of output weights
T = matrix of target or output

Hidden
layer

Output

Xi1
—_—
[ ] [ ]
[ ] L ]
[ ] L]
Xin

layer

Yi

Figure 2. Struktur ELM (Agustina et al., 2005)
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As previously stated, ELM has randomly determined input
weight and hidden bias values, so the value of the output
weights associated with hidden layers can be determined
from Equation (14).

Results and discussion

The results of the average value of the GLCM feature in each
data are used as an input for the ELM classification system. The
ELM training and testing process using 5 GLCM texture features
produces an accuracy value of 100% and 80%.

Feature value

In this study, the formation of a cohesion matrix was performed
with a pixel spacing of 1 and 4 orientation angles, namely, 0°, 45°,
90° and 135°. The use of 4 orientation angles causes the forma-
tion of 4 cohesion matrices for 1 data so that 4 values are
generated for 1 type of feature based on the cohesion matrix.
Calculation of averages is used to simplify this condition. Each
feature value is an average of 4 feature values based on its
cohesiveness matrix.

In this study, the introduction of the condition of cervical
cancer has not been able to achieve maximum results at the
testing stage that is 100%. This is caused by the existence of
overlapping feature values in different classes. This overlapping
condition can be overcome by doing pre-processing to
improve image quality so that important information is
obtained from images with minimum noise.

Classification result

The classification stage using the Extreme Learning Machine
method is divided into two processes, namely the training
process and the testing process. Based on 76 overall data,
each class is divided into 80% (61 data) used as training data
and 20% (15 data) as test data. The ELM method has an archi-
tecture consisting of three types of layers, namely the input
layer, hidden layer and output layer (Sun et al., 2008). The input
used is obtained from the feature extraction in the previous
process, while the output or target of this study is to classify
each data into three classes; namely Adenocarcinoma,
Squamous Cell and HSIL. The value of the hidden layer, espe-
cially the input weight value and the hidden layer input bias
value is randomly determined, and 55 hidden nodes are used
because they produce maximum accuracy values.

The classification results from the system are then validated
by comparing these results with the target value, where the
results of the validation of the training process and the testing
process are shown in Tables 1 and 2, respectively.

Accuracy values for the training process are calculated as
follows:

Accuracy = (33 + 20 + 8)/61 x 100% = 100%

In the training process, the accuracy value for each class
classification is 100%, which means that the system is able to
predict the results of the classification output based on the
specific pattern that has been trained. Value input weight,
input bias and output weight obtained from the training process
are then used to carry out the testing process. In this process,

20% of the dataset is used or as many as 15 other data are tested
for system performance in generalising patterns from new data.

Accuracy values for the training process are calculated as
follows:

7441

Accuracy = x100% = 80%

System performance in the testing process produces an
accuracy value of 80% which is caused by several things,
including overlapping parameter values on some data, so the
system is less able to generalise patterns. In addition, the
amount of data in this study is not balanced for each class,
and the lack of overall data used is also a limitation that can
reduce system performance.

To be able to show the advantages of the method pro-
posed in this study, table 5 will show the results of compar-
isons with other journals using ELM method for pap smear
image. Where it can be seen that the accuracy value
obtained from the method proposed in this study is higher
than the other methods and has more class divisions of 3
classes. In this study has better performance indicator with
the accuracy value 100% than other studies (in Table 5).
This study has excess result by using the original own data
from Dr. Soetomo Hospital, Surabaya, Indonesia with the
whole slide of Pap smear images compared with other

Table 1. Confusion Matrix.

System’s dassification (Prediction)

1 2 3
Doctor's diagnosis (Actua) 1 AC-ACIA) AC-5C(B) AC-HSILIC)
2 SC-AD(D) SC-5CIE) SC-HSL(F)
3 HSIL-ACIG)  HSIL-SC(H)  HSIL-HSIL(I)

where 1 = Adeno Carcinoma (AC), 2 = Squamous Cell Carcinoma (SC), 3 = HSIL

Table 2. Testing process validation results.

System’s classification (Prediction)

1 2 3

Doctor's diagnosis (Actual) 1 33 0 0
2 0 20 0

3 0 0 8

Where 1 = Adenocarcinoma, 2 = Squamous Cell Carcinoma, 3 = HSIL

Table 3. Testing process validation results.

System’s classification (Prediction)

1 2 3

Doctor's diagnosis (Actual) 1 7 1 0
2 0 4 1

3 1 0 1

where 1 = Adeno Carcinoma, 2 = Squamous Cell Carcinoma, 3 = HSIL

Table 4. The resume of ELM performance.

Training Testing
Squamous Squamous
Adeno Cell Adeno Cell
Indicator ~ Cardnoma Carcinoma  HSIL  Carcinoma Carcinoma — HSIL
Accuracy 100% 100% 100% B0% 8% B0%
Sensitivity 100% 100% 100%  875% B0% 50%
Specificity 100% 100% 100%  85.71% 90% 92.31%
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Table 5. Comparison with similar journals.

No Author Paper Title Datasets Features Extraction Classification Result
1 Khamparia, Internet of Health Things-Driven 1168 of Pap smear images of CNN encorder with K-MN, naive Bayes, The highest accuracy
Aditya Deep Learning System for diferent types from Herlev diferent types of pre- RF and SVM obtained by ResMet50 with
(2020) Detection and Classifcation of ~ dataset. trained transfer random forest classifer is
Cervical Cells Using Transfer learning models like 97.89% for normal and
Learning InceptionV3, abnormal.
SqueezeNet, VGG19
and ResNETS
2 Sigi, Li Structure Convolutional Experimental data containing Lasso, PCA and mRMR  random forest The highest average ACC
(2018). Extreme Learning Machine 127 liver pathology images (RF), support obtained by mRMR with
and Case-Based Shape (76 vector machine SVM classifer is 96.47%,
Template for HCC Nucleus patients) (SVM) and ELM and the lowest average
Segmentation ACC obtained by PCA with
ELM dassifier is 87.43%.
3 Ahmed, Cervical Cancer Classification There are total 917 cells and  Convolutional Neural ELM The proposed CNN-ELM-
Ghoneim Using Cenvolutional Neural seven dasses from Herlev Netwaorks (CNNs) with based system achieved
(2019) Networks And Extreme University Hospital architecture of 99.5% accuracy in the
Learning Machines (Denmark), There are 242 Shallow, VGG-16 Net, detection problem (2-class)
images for normal and 675 CaffeNet and 91.2% in the
images for abnormal. classification problem
(7-class).
4 Lili, Zhao An Efficient Abnormal Cervical — The dataset contains 917 Multi-instance The highest accuracy shown
(2017) Cell Detection System Based single-cell images in which extreme by MI-ELM is 97.45%
on Multi-instance Extreme there are 675 dysplastic learning
Learning Machine cells and 242 normal cells machine (MI-
from Herlev datasets. ELM) as main
method, KNN,
mi-S¥M and MI-
SVM
5  Authors Classification of Adeno The dataset contains 76 pap  Grey Level Co- Extreme Learning  The authors
proposed Carcinoma, High Squamous smear images in which occurrence Matrix Machine (ELM) proposed GLCM-ELM-
method Intraepithelial Lesion and there are 33 data for Adeno  (GLCM) method based system achieved
Squamous Cell Carcinema in Carcinoma, 20 data for 100% accuracy for Adeno
Pap Smear Image Based on Squamous Cell Carcinoma Carcinoma, Squamous Cell
Extreme Learning Machine and 8 data for HSIL Carcinoma and HSIL
studies which used one single cervical cell cropping images Funding

form Herlev dataset.

Conclusion

In this study, a classification system for cervical cancer was devel-
oped which automatically recognises the Pap smear image and
classifies it into adenocarcinoma, High Squamous Intraepithelial
Lesion (HSIL) or Squamous Cell Carcinoma (SCC). The benefit of
this research is that it can help doctors to enforce decisions in
classifying cervical cellimage classes. The method used to develop
the system is a combination of the Grey Level Co-Occurrence
Matrix (GLCM) method and Extreme Learning Machine (ELM).
The 5 feature extraction results from GLCM then become input
values at the classification stage using ELM. From the research it
was found that the combination of GLCM and ELM was able to
extract features of cervical cells well, that is 100% from the training
process accuracy and 80% from the testing process accuracy.
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