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ABSTRACT

Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells respon-
sible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by
the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways.
Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix.
Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the devel-
opment of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis,
which are transcription factors. Previous studies have heavily examined the role of factors that control
gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relation-
ship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism,
particularly miRNAs, IncRNAs, and circRNAs, has been shown to influence transcriptional factor activity
in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors
involved in osteoblast differentiation, including Runx2, Osx, DIx5, f-catenin, ATF4, lhh, Satb2, and
Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcrip-
tion factors in order to improve our understanding of the transcriptional regulation of osteoblast dif-
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ferentiation. Adequate exploration and understanding
osteoblastogenesis can be a critical strategy
related diseases.

Introduction

Bone is a metabolically active organ that is dynamic in main-
taining its strength and integrity through the actions of
osteoblasts and osteoclasts (El-Ganzuri et al, 2016; Shahi
et al, 2017). In vertebrates, bone formation (ossification)
occurs in the craniofacial intramembrane and endochondral
bones in other parts of the skeletal system. Endochondral
ossification is the replacement of cartilage with mineralized
bone affected by chondrocyte differentiation in the central
cartilage anlagen. This is followed by the invasion of peri-
chondrial osteoblast progenitors, osteoclasts, vascular endo-
thelial cells, and hematopoietic cells into hypertrophic
cartilage. Dense mesenchymal progenitor cells differentiate
into osteoblasts and form bone directly during intramembra-
nous ossification (Berendsen & Olsen, 2015; laquinta
et al, 2019).

Bone tissue has an amazing ability to repair itself and
generally heals through regeneration. Under homeostatic
conditions, the balance between bone formation (mediated
by osteoblasts) and bone resorption (mediated by osteo-
clasts) is tightly regulated without major changes in net
bone mass or mechanical strength, a process known as bone
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remodeling (Kim et al., 2020). Osteoclasts degrade bone by
secreting polarized proteolytic enzymes, such as cathepsin K,
and acids, such as HCl, which dissolve collagen and matrix
proteins during bone resorption. Meanwhile, osteoblasts gen-
erate an extracellular collagen matrix with specific properties
that will be mineralized following hydroxyapatite
(Cas(PO4)3(0OH)) crystal deposition (Kim et al, 2020; Shahi
et al, 2017; Zhang, 2010). Once this balance is disrupted,
abnormal bone remodeling occurs, resulting in bone deform-
ities and a variety of bone diseases (Chan et al, 2021).
Osteoblast differentiation, also known as osteoblastogene-
sis, is a major component of bone formation due to the ini-
tial very rapid cell proliferation followed by extracellular
matrix maturation and mineralization (Huang et al, 2007;
Shahi et al, 2017). Cassically, osteoblast differentiation is
governed by a complex activity involving signal transduction
and transcriptional regulation of gene expression (Huang
et al, 2007). Runx2 has been identified as the master regula-
tory switch in osteoblast differentiation, with Osx acting as
the ‘downstream’ regulator of Runx2 (Baldini et al., 2009;
Komori, 2019). Furthermore, DIx5, B-catenin, ATF4, |hh, Satb2,
and Shn3 are other essential transcription factors known to
be involved in osteoblast differentiation (Bialek et al., 2004;
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Figure 1. Schematic representation of multilineage mesenchymal stem cell (M5C) differentiation. Adipocyte, osteoblasts, and chondrocyte are all part of multiline-
age differentiation. The progression of osteoblast differentiation toward a mature cell phenotype will result in bone formation.

Lee et al., 2003a; Long et al., 2004; Okamoto et al, 2014;
Shim et al, 2013; Tang et al., 2011; Yang & Karsenty, 2004).
The discovery of new molecules, known as ncRNAs, that con-
trol transcription of osteoblast differentiation and function
has recently opened up new avenues to understanding bone
pathogenesis (Aurilia et al., 2021; Beermann et al, 2016).
Thus, a better understanding of the regulatory mechanisms
of osteoblast differentiation provides valuable opportunities
for preventing or treating bone-related diseases.

This review looks at recent advances in the regulation of
signaling and transcription in osteoblast differentiation. We
also discuss about the utilization of these novel molecular
players in this mechanism for future clinical applications.

Mesenchymal stem cells in osteoblast
differentiation

Stem cells are cells with specific functions that can renew them-
selves, have varying potentials, and differentiate into multiple lin-
eages. Mesenchymal stem cells (MSCs) are stem cells that
develop from mesoderm (Ullah et al., 2015). MSCs were first iso-
lated by Friedenstein et al. in the bone marrow and described as
adherent cells capable of forming fibroblastic colonies
(Friedenstein et al, 1970). Extensive MSC evaluations in recent
decades have revealed that MSCs can be isolated from a variety
of locations throughout the body. Furthermore, MSCs are multi-
potent due to their ability to differentiate into specific functional
cells such as osteoblasts, adipocytes, or chondrocytes in response
to specific factors and signaling cascades in the microenviron-
ment (Knight & Hankenson, 2013; Pino et al, 2012). MSCs are
also reported to be capable of expressing CD73, CD90, and
CD105, as well as having a lack of expression of surface mole-
cules CD11b, CD14, CD19, CD34, CD45, (D793, and human
leukocyte antigen-related D antigen (HLA-DR) (Hu et al, 2018).
MSCs can be found in the bone compartment in the bone mar-
row, periosteum, and endosteum, as well as thin layers of con-
nective tissue on the bone surface and the bone itself. They are
also a major source of cellular renewal during bone repair. The

capacity of MSCs to differentiate into functional osteoblasts is
regulated by osteoblast-specific transcription factors that trigger
osteoblast commitment and differentiation, as shown in Figure 1
(Capulli et al, 2014; Hu et al, 2018; Zhang, 2010). The roles of
each essential transcription factor involved in osteoblast differen-
tiation are shown in Table 1.

Osteoprogenitor cells

Osteoprogenitor cells (OPCs), also known as osteoblast pro-
genitors (preosteoblasts), are bone stem cells that help with
tissue formation and bone repair. OPCs are more common
during bone development and can activate a multifunctional
stage for bone reconstruction. OPCs can be found in the
endosteum, the periosteum'’s cellular layer, and the osteo-
genic cell layer (Nahian & Davis, 2021). A large number of
OPCs can also be found in bone marrow stromal cells, which
are multidirectional. Periosteum and bone marrow-derived
osteoprogenitors differentiate directly into osteogenic bone
without involving other inducers. These properties of OPCs
are known as determined OPCs (DOPCs). While OPCs are
found only in pathological situations, such as heterotopic
ossification and fracture repair, they are derived from undif-
ferentiated mesenchymal cells found throughout the body.
These OPCs can differentiate into osteoblasts via cartilage
osteogenesis, hence the name osteoprogenitor-induced OPCs
(Qiu et al, 2019). Alpha smooth muscle actin (aSMA) has
recently been identified as a marker of OPCs in bone and
periodontium, as well as a progenitor of osteochondral in
the periosteum that contributes to fracture healing
(Matthews et al, 2014). SMA-expressing osteoprogenitors
have also been proven to improve site-specific periosteal
osteoblast differentiation induced by mechanical loading
(Matthews et al,, 2020).

OPCs have been shown to divide, propagate, and differentiate
further into functionally specialized cells. The majority of OPCs
differentiate as osteoblasts during bone development. OPCs
attach to the bone surface and are known as inactive osteoblasts
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Figure 2. The Wnt and BMP signaling cascades. Both can be activated via canonical and noncanonical pathways, causing osteoblastic transcription factors to

be expressed.

in mature bone (Qiu et al, 2019). The recruitment of OPCs ini-
tiates the process of new bone formation via a complex and
highly regulated interaction between signaling from the systemic
and local biomechanical and biophysical environments. This sig-
naling regulates the activation and maturation of OPCs into
osteoblasts, which produce and form the extracellular bone
matrix (Ibrahim et al, 2016). Age can have a significant impact
on OPC regenerative capacity. The accumulation of marrow adi-
pose tissue (MAT) in the bone marrow cavity due to aging con=
tributes to a pathological process that interferes with the
maintenance of proper bone tissue repair and the hematopoietic
system, increasing the risk of fractures and complications
(Ambrosi et al, 2017). Furthermore, estrogen deficiency contrib-
utes to increased bone resorption, which results in bone loss
(Manolagas, 2000; Syed et al, 2008). The estrogen receptor o
(ERx) in osteoblast progenitors has been shown to promote
bone formation on the cortex's periosteal surface and prevent
resorption on the endocortical surface (Almeida et al, 2013).

Several studies utilizing OPCs as therapy for bone defects
have been developed due to their promising role in bone
development and healing. Autogenous OPC transplantation
into a porous calcium phosphate scaffold can improve man-
dibular segmental defect repair (Schliephake et al, 2001). In
another study, exogenous murine MC3T3-E1 OPCs with a
high propensity for osteoblast differentiation demonstrated
the ability to migrate systemically to the femoral bone defect
and accelerate bone healing (Gibon et al., 2012). Thus, add-
itional research on this topic may provide a potential thera-
peutic alternative for bone repair in clinical practice.

Osteoblasts

Osteoblasts are mononuclear cuboid cells derived from OPCs in
the bone marrow that differentiate from MSCs. Osteoblasts are
responsible for bone formation. This cell is distinguished from
mesenchymal progenitor cells at the site of membrane and
endochondral bone formation (Kobayashi et al, 2008; Ponzetti

& Rucci, 2021). Osteoblasts occupy 4-6% of the total resident
cells in bone and play an important role in the fulfilment and
maintenance of bone mass along with osteoclasts and osteo-
cytes. In addition, osteoblasts can also differentiate into osteo-
cytes (Capulli et al, 2014; Rutkovskiy et al, 2016). Osteoblasts
can site and secrete bone matrix and contribute to bone min-
eralization to regulate the balance of calcium and phosphate
ions in bone formation. Once the OPCs differentiate into osteo-
blasts, they will be followed by the secretion of collagen | to
form osteoid, followed by the precipitation of calcium and
phosphorus salts from the blood by osteoblasts and the forma-
tion of bonds with osteoid for the mineralization of bone tissue.
Furthermore, the presence of estrogen receptors in osteoblasts
promotes an increase in the number of osteoblasts, which leads
to an increase in collagen production. ALP, an enzyme involved
in bone mineralization and an early marker of osteoblast differ-
entiation, is also produced by osteoblasts. Increased ALP expres-
sion is associated with osteoblast differentiation (Bassi
et al, 2011).

The key role of signalling pathways in osteoblast
differentiation

The differentiation of osteoblasts from MSCs is triggered by
the expression of specific genes, which are subsequently
controlled by pro-osteogenic pathways. The wingless-related
integration site (Wnt)/B-catenin and bone morphogenetic
proteins (BMPs) pathways are the main pathways that play
an important role in promoting MSC's commitment to osteo/
chondroprogenitor cells in the initial steps of osteoblasto-
genesis. Figure 2 illustrates schematically how the Wnt and
BMP signaling pathways regulate osteoblast differentiation.

Wnt signaling pathway in osteoblast differentiation

The wingless-related integration site (Wnt) signaling pathway
is divided into two parts: a canonical pathway that mediates




signaling via P-catenin stabilization, which is involved in
increased bone formation, and a noncanonical pathway that
works independently of B-catenin, which plays a role in regu-
lation of cell migration and polarity during embryogenesis
(Kim et al, 2013; Nemoto et al., 2012). Canonical Wnt, such
as Wnt3a and Wnt10b, binds to Frizzled (Fzd) and low-dens-
ity lipoprotein receptor-associated protein 5/6 (Lrp5/6) to
inhibit glycogen synthase kinase-3p (GSK-3p) activations, an
enzyme that phosphorylates p-catenin, causing it to ubiquiti-
nate and degrade. This inhibition induces the accumulation
of p-catenin in the target cell, which results in translocation
into the nucleus. f-catenin will initiate the transcription of
the target gene through its interaction with members of the
T-cell family factor/lymphoid enhancer factor (Tcf/Lef).
Meanwhile, noncanonical Wnt, such as Wnt5a, binds to the
Fzd, Ror1/2 or Ryk receptor complexes. In addition, some
Wnt antagonists, such as dikkopf-1 (DKK-1), sclerostin (SOST),
kremen, and others, can inhibit this signaling.

Multipotential cells, as previously stated, can differentiate
into osteoblasts and adipocytes. The balance of adipogenic
and osteoblastogenic components via Wnt/-p-catenin signal-
ing is thought to be a determinant of the differences in
outcomes of these mesenchymal precursor cells. Previous
research has shown that ectopic expression of Wnt10b, a
subfamily of the canonical Wnt pathway, suppresses the
expression of adipogenic transcription factors CCAAT/enhan-
cer-binding protein o (C/EBPy) and peroxisome proliferator-
activated receptor y (PPARy) in ST2 cells. Following this con-
dition, osteoblastogenic transcription factors are activated, as
evidenced by increased regulation of Runx2, Osx, and DIx5.
Meanwhile, in Wnt10b-expressing ST2 cells, partially forced
expression of C/EBPx or PPARy promotes lipid accumulation
while decreasing mineralization. Thus, in Wnt/p-catenin sig-
naling, C/EBPx or PPARy repression is required to direct pre-
cursor cells into osteoblasts (Kang et al., 2007).

Furthermore, Okamoto et al. (2014) stated that good bone
formation requires cooperation between Wnt5a-induced non-
canonical signaling, a subfamily of Wnt noncanonical path-
ways, and Wnt/B-catenin signaling. Wnt5a has also been
implicated in osteoblast differentiation. Through upregulation
of Lrp 5/6 expression in osteoblast cell lineages, Wnt5a can
suppress PPARy and increase Wnt/B-catenin signaling
(Nemoto et al., 2012; Okamoto et al., 2014). Wnt5a deficiency
in osteoblast lineage cells reduces Lrp5/6 expression, lower-
ing the sensitivity of canonical Wnt ligands such as Wnt3a
and Wnt10b. This condition interferes with osteoblast differ-
entiation while increasing adipocyte differentiation (Okamoto
et al, 2014). TAZ a Hippo pathway transcription factor, is
also known to induce osteoblastogenesis and suppress
canonical Wnt signaling semiconductor adipogenesis
(Okamoto et al., 2014; Zarka et al.,, 2022). Thus, during osteo-
blast differentiation, Wnt5a can play a role in increasing
Wnt/f-catenin and Wnt/TAZ signaling by upregulating Lrp5/
6 (Okamoto et al, 2014). The receptor tyrosine kinase-like
orphan receptor 2 (Ror2) has been known as the Wnt5a
receptor or co-receptor. Nemoto et al. (2012) has proven that
the Wnt5a/Ror2 signaling pathway is involved in BMP-2-
mediated osteoblast differentiation in Smad-independent
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pathways. The suppression of Wnt5a/Ror2 expression
resulted in the suppression of osteoblast differentiation
marker gene expression, specifically ALP and OCN, induced
by BMP-2 (Nemoto et al., 2012).

BMP signaling in osteoblast differentiation

BMPs are members of the transforming growth factor p (TGF-p)
superfamily that play a role in regulating osteoblast differenti-
ation and inducing bone formation. During development, gen-
etic interventions in the BMP gene cause a variety of
extracellular and bone abnormalities (Kim et al., 2017). BMP sig-
naling is mediated by BMP receptors type | (BMPR-I) and type Il
(BMPR-II) (BMPRAI). Both are serine-threonine receptors that are
required for BMP signaling. BMPR-I is consisting of three recep-
tors: BMPR type |IA (BMPR-IA), which binds BMP-2 and BMP-4
efficiently; BMPR type IB (BMPR-IB), which binds BMP-4 and
BMP-7 efficiently; and activin type | receptor (ActRl), which
binds activins, proteins from TGF-B/BMP family members, and
BMP-7 (Nohno et al, 1995; Chen et al, 2012). Meanwhile, type
Il receptors include BMPR-II, which binds to BMP-4 and BMP-7,
and activin type Il receptors (ActR-ll) and ActR-llb, which bind
to activin and BMP-7 (Rosenzweig et al, 1995; Yamaguchi et al.,
2008). Unlike the TGF-p receptor, BMPR| binds BMP directly
without the involvement of BMPR-Il, which only binds BMPR-I
on the extracellular N-terminus. Furthermore, BMPR-l has a GS
domain, which is a cytoplasmic juxta-membrane area made up
of glycine and serine that serves as a site for phosphorylation
of serine and threonine after the receptor binds to a ligand,
activating BMPR-I. This dynamic interaction directs downstream
BMP signals via BMP-specific Smad (Smad 1, 5 or 8) or p38
MAPK. Activated receptor kinases, in collaboration with other
co-factors, regulate the transcription of specific target genes by
forming heterodimeric complexes with nuclear Smad4 (Kim
et al, 2017; Chen et al, 2012; Yamaguchi et al., 2008).

Based on its role, BMP-2 has been proven to promote the
expression of Runx2, Osx, and osteoblast differentiation
markers (ALP, OCN, and type | collagen) in a variety of cells
(Yamaguchi et al, 2008 ; Ogasawara et al, 2004).
Furthermore, BMP-2 and BMP-4 are involved in the formation
of bone nodules (Wada et al, 1998). The application of
recombinant human bone morphogenetic protein-2
(rhBMP-2) therapy has shown promising results both preclini-
cally and clinically. rhBMP-2 has the ability to stimulate bone
repair and regeneration ( Chen et al, 2012; Ueyama et al,
2021). BMP-7 is well-known for its osteogenic activity (Chen
et al, 2019; Lavery et al, 2009). It was recently discovered
that immature BMP-7, also known as bone-forming peptide-2
(BFP-2), has higher osteogenic activity than mature BMP-7
and induces bone formation in vitro and in vivo (Kim
et al., 2017).

The osteoblast differentiation regulation, essential
transcription factors involved, and their links

The osteoblast differentiation begins with the commitment
of MSCs into osteoblast lineage progenitor cells, later known
as preosteoblasts. Preosteoblasts then undergo proliferation,




6 @ J. KHOTIB ET AL

The role of essential transcription factors in the regulation of osteoblast differentiation
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Figure 3. Regulation of osteoblast differentiation by essential transcription factors. ncRNAs (miRMNAs, IncRMAs, and circRNAs) are novel players that can influence
the molecular regulation of osteoblast differentiation by targeting essential transcription factors.

extracellular matrix (ECM) secretion, matrix maturation, and
matrix mineralization, which are complexly regulated by vari-
ous transcription factors (Figure 3). Runx2 is a transcription
factor that is required for osteoprogenitor proliferation and
osteoblast differentiation. Runx2 expression is known to be
low in MSCs, but it increases throughout cell proliferation
and then decreases in maturing osteoblasts. Regulation of
Runx2 expression in osteoprogenitors requires |lhh at the
stage of MSC's commitment formation into preosteoblasts
(Amarasekara et al, 2021; Nakashima & De Crombrugghe,
2003; Shimoyama et al, 2007). In this regard, the upstream
of Runx2 is involved in controlling the early stages of osteo-
blast differentiation, including Twist-1 and Satb2. Twist-1,
through its physical interaction with Runx2, functions as a
switch that blocks Runx2 function, delaying osteoblast differ-
entiation and preventing premature osteoblast formation.
Twist-1 expression is also downregulated when osteogenesis
begins. Satb2 regulates the expression of BSP and OCN, the
osteoblast-forming components during the cell differenti-
ation phase, as well as inhibiting Hoxa2, a bone formation-
inhibiting gene (Bialek et al, 2004; Liu & Lee, 2013).

Following cell commitment, preosteoblasts proliferate and
express OPN, fibronectin, collagen, and TGF-f1 receptors
(Rutkovskiy et al. 2016). The proliferation phase is regulated
in order to induce maturation during osteogenesis (Vimalraj
et al, 2015). Runx2 expression is still increasing at this stage,
promoting Osx to mediate osteoblast commitment and dif-
ferentiation. Moreover, DIX5 is present to aid in early osteo-
blast differentiation and advanced stages of osteogenesis.
DIx5 has been shown to influence the expression of Osx,
ALP, OCN, and BSP (Holleville et al, 2007; Samee et al,
2008). Following the proliferation phase, the formed osteo-
blasts begin to express the bone matrix protein gene at vari-
ous levels depending on cell maturation. ATF4 is also
involved in indirect interactions with Runx2 during cell mat-
uration to increase OCN expression, a marker of terminal
osteoblast differentiation (Xiao et al, 2005). Along with this,
Satb2 also acts as a mediator to increase the synergy of both
actions (Dobreva et al, 2006). Mature osteoblasts secrete
COL1A1, a key component of ECM, as well as ALP, which
aids in ECM maturation. This process is then followed by
matrix mineralization. This step is triggered after osteoblasts




Table 2. Essential osteoblastic markers.
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No. Marker Role References

1. ALP ECM maturation. Stein and Lian, 1993

2. BSP-II Promotes mineralization by Gordon et al., 2007; Kim et al, 1994;
regulating the formation of Lin et al,, 2020
hydroxyapatite crystals.

3. COL1AT ECM main constituents. Stein and Lian, 1993

4, OCN Terminal osteoblast differentiation Xiao et al, 2005
markers, which regulate calcium
metabolism and promote mineral
deposition in ECMs.

5 OPN Increases M5C proliferation capacity Lin et al,, 2020

in a dose-dependent manner and
promotes bone formation and

mineralization.

bind to the existing matrix via integrin 1, forming a single
layer that is linked to cadherin. Furthermore, cells secreted
the matrix by expressing OPN, OCN, and BSP, as well as
maintaining ALP and COL1A1 expression (Table 2) (Huang
et al, 2007; Stein & Lian, 1993). Runx2 protein levels
decreased at the end of this stage, which could be regulated
by Shn3, an adapter that induces Runx2 degradation via
ubiquitination (Jonason et al., 2009; Jones et al, 2006; Shim
et al, 2013). Additionally, osteoblasts that have completed
their roles in bone homeostasis will undergo apoptosis,
becoming bone-lining cells, or terminally differentiate osteo-
cytes (Nakashima & De Crombrugghe, 2003; Amarasekara
et al, 2021).

The following are reviews of the essential transcription
factors involved in osteoblast differentiation:

Runt-related transcription factor 2

Runt-related transcription factor 2 (Runx2) is a transcription
factor that is required for osteogenesis and is responsible for
activating osteoblast differentiation marker genes. Runx2
specifically increases the expression of osteoblastogenic
markers such as ALP, BSP-ll, collagenial chain (ColL1A1),
OCN, and OPN, which leads to osteoblast commitment
(Vimalraj et al., 2015; Ponzetti & Rucci, 2021). Furthermore,
Runx2 regulates osteoblast progenitor proliferation by induc-
ing fibroblast growth factor receptor (Fgfr}-2 and Fgfr3
expression. Both promote proliferation by activating the
mitogen-activated protein kinase (MAPK) pathway (Kawane
et al, 2018; Komori, 2019).

Osterix

Osterix (Osx) or Sp7 is an osteoblast-specific transcription fac-
tor that is involved in preosteoblast differentiation into
osteoblasts and bone formation. Osx has a proline-rich
region (PRR) transactivation domain near the N-terminus of
the protein and a three-type DNA binding domain C2H2 zinc
finger near the C-terminus with motifs similar to Sp1, Sp3,
and Sp4 (Zhang et al, 2008a). Osx may play a role in the
bone microenvironment during osteogenesis (Liu et al,
2020). As a downstream of Runx2, Osx is expressed specific-
ally in osteoblasts of all endochondral bones and mem-
branes, as well as at low levels in pre-hypertrophic

chondrocytes (Zhang et al., 2010; Tang et al, 2011). Zhou
et al. (2010) demonstrated that inactivating Osx during and
after birth resulted in the cessation of osteoblast differenti-
ation and new bone formation in mice. Furthermore, Osx is
required for cartilage resorption, maturation, and osteocyte
function. During the bone formation, osteoblasts are known
to store osteoid, which are unmineralized matrixes contain-
ing type | collagen. In this case, osteocytes participate in the
osteoid mineralization process by regulating extracellular
matrix mineralization and Fgf23 production by bone via
Dmp1 and Phex, gene products that are highly expressed in
normal osteoblasts and osteocytes (Martin et al, 2011; Zhou
et al, 2010). Osteocyte anomalies in OsxP®™M mutants
revealed defects in the mineralization process due to
decreased Dmp1 and Phex expression. Furthermore, termi-
nalized cartilage resorption also defects OsxP*"%! mutants
due to a significant decrease in osteoclast density (Zhou
et al., 2010).

Distal-less homeobox 5

Distal-less homeobox 5 (DIx5) is a proliferation and early
osteoblast differentiation driver that also influences the later
stages of osteogenesis. This transcription factor is expressed
specifically in osteogenic lineage cells, such as chondropro-
genitor cells (Samee et al., 2008). DIx5 can induce osteoblast
differentiation from endochondral and membrane oscillating
bone (Erceg et al., 2003). Furthermore, in vitro studies have
reported that DIx5 acts as a direct transcription activator of
Runx2 by binding to the P1 promoter, which is the transcrip-
tional regulator of the Runx2-ll isoform. DIx5 expression is
specifically induced by BMP signaling pathways such as BMP-
2 or BMP-4 stimulation (Holleville et al, 2007; Samee et al.,
2008). Earlier studies have shown that the DIx5 modulation
of osteoblast differentiation mediates Runx2 expression via
BMP-2 stimulation (Lee et al, 2003a; Holleville et al., 2007).
DIx5 has also been shown to promote ALP and Osx via a
Runx2-independent pathway. Osx expression was also
reduced in DIx5 '~ osteoblast cultures (Holleville et al., 2007;
Samee et al, 2008). Osx, as previously stated, is a down-
stream of Runx2 (Samee et al, 2008; Lee et al, 2003b).
Moreover, DIx5 directly controls OCN and BSP transcription
in in vitro studies due to a significant decrease in DIx5~"
osteoblast culture (Samee et al., 2008).
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f-catenin

B-catenin is an important component that transduces canon-
ical Wnt signaling to determine the direction of mesenchy-
mal progenitor differentiation, regardless of regional location
or oscillation mechanism. Activation of p-catenin leads to
increase oscillation and suppression of chondrocyte forma-
tion. In the meantime, its inactivation inhibits osteoblast dif-
ferentiation during intramembranous and endochondral
ossification and promotes chondrocyte differentiation (Day
et al., 2005; Hill et al, 2005; Hu et al, 2005). Furthermore,
B-catenin/TCF1 has been shown to increase Runx2 promoter
expression and activity, causing osteoprogenitor cells to dif-
ferentiate into preosteoblasts. f-catenin, along with Osx, reg-
ulates the differentiation of preosteoblasts into immature
osteoblasts (Gaur et al., 2005).

Activating transcription factor 4

Activating transcription factor 4 (ATF4) is a leucine basic zip-
per (bZip) transcription factor from the ATF/cAMP family
response element-binding protein (CREB). The ATF4 gene
appears to be expressed in variety of cells during develop-
ment and embryonic life. However, the accumulation of
ATF4 protein is strongly inversely related to its gene expres-
sion because ATF4 protein is degraded in most cells, except
osteoblasts, via ubiquitination mediated by B-TrCP1, ligase
ubiquitin E3 (Yang & Karsenty, 2004; Zhang et al, 2019).
ATF4 is required for terminal osteoblast differentiation via
OCN activation, as well as regulation of chondrocyte prolifer-
ation and differentiation during skeletal development via Ihh
activation (Wang et al., 2009; Yang & Karsenty, 2004; Zhang
et al, 2019). ATF4 ablation has been linked to severe osteo-
penia, impaired terminal osteoblast differentiation, and
decreased OCN expression and type | collagen production in
mice (Yang et al, 2004). Previous studies demonstrate that
ATF4 acts as a specific activator of osteocalcin-specific elem-
ent 1 (OSE1) in an RSK2-dependent manner, and that it indir-
ectly associates with Runx2 to increase OCN expression,
which eventually leads to terminal osteoblast differentiation
(Xiao et al., 2005; Yang et al, 2004). Satb2 mediates the syn-
ergistic action of both. Transcription factor general llag
(TFIIAg) has also been reported to increase OCN expression
via interactions with Runx2 and ATF4 (Dobreva et al, 2006;
Yu et al., 2008). Furthermore, Tominaga et al. (2008) stated
that CCAAT/enhancer-binding proteins (C/EBPs), a bZip pro-
tein family, are responsible for increasing OCN promoter
activity via a heterodimeric bond with ATF4 on OSE1. C/EBPJ
is expressed in osteoblastic cells, and its regulation becomes
more active during osteoblast differentiation. This hetero-
dimerization also facilitates it to collaborate with Runx2
(Tominaga et al., 2008). Xiao et al. (2005) demonstrated that
the physical interaction between C/EBPf and Runx2 pro-
motes OCN promoter gene expression. Thus, C/EBPp pro-
motes the formation of complexes and associations between
ATF4 and Runx2 in order to encourage OCN expression dur-
ing terminal osteoblast differentiation (Tominaga et al,
2008). Moreover, ATF4 also plays a role in the regulation of

chondrocyte proliferation and differentiation during skeletal
formation by involving Ihh transcription and signaling. ATF4
overexpression in mutant chondrocytes restored osteoblastic
marker gene (OCN and BSP) expression in developing bone,
according to studies using the ATF47;COL2A1-ATF4 mouse
model, in which ATF4 was expressed in chondrocytes select-
ively in an ATF4-null background. This is followed by correc-
tion of the bone elongation defect as well as improvement
in decreased |hh expression and Hh signaling. As a result,
ATF4 is involved in the autonomic role of chondrocytes in
growth plate development and may also be involved in
osteogenesis regulation during postnatal bone development
and remodeling (Wang et al., 2009, 2012).

Indian hedgehog

The transcription factor Indian hedgehog (lhh) is a Drosophila
hedgehog (Hh) mammalian homologue that is important for
osteoblast differentiation and bone formation. |hh acts as the
primary regulator in the longitudinal growth and develop-
ment of the endochondral skeleton. It is primarily expressed
by peritrophic chondrocytes that have recently exited the
cell cycle and send signals to proliferative chondrocytes to
divide and perichondrial mesenchymal cells to differentiate
into osteoblasts. The dysfunctional regulation of Hh signaling
causes problems with bone homeostasis and development,
as well as the onset of several bone diseases such as pro-
gressive heteroplasia and osseous dysplasia (Long et al,
2004; Wang et al, 2012; Yang et al, 2015). In vivo studies
revealed that Ihh gene deficiency reduced chondrocyte pro-
liferation and maturation, as well as failed osteoblast devel-
opment in endochondral bone (St-Jacques et al, 1999). In an
in vitro study using MC3T3-E1 osteoblast cells, Ihh expression
increases ALP activity through cooperation with BMP-2
(Nakamura et al., 1997). Meanwhile, knocking out |hh causes
an increase in apoptosis, cell cycle termination in the G1 to S
phases in osteoblasts, as well as a decrease in ALP activity
and osteoblast mineral deposition, which are associated with
the TGF-f/Smad and OPG/RANKL signaling pathways (Deng
et al., 2017). Furthermore, Hh proteins, including Ihh, exert
biological effects via their receptor components, patched
(PTCH) and smoothened (Smo). Ihh binding to PTCH acti-
vates Smo and transduces signals in the cytoplasm via the
fusion of intracellular signal molecules and transcription fac-
tors from the Gli family with the zinc finger domain. Gli2 and
Gli3 are direct Ihh signaling mediators. Ihh/Gli2 signaling pro-
motes mesenchymal cell differentiation in osteoblastogenesis
by regulating expression and stimulating Runx2 osteoblasto-
genic function. Gli2 physically increases Runx2 expression
and Runx2 osteogenic activity (Shimoyama et al, 2007).
Meanwhile, Gli3 functions as a transcriptional repressor of
the Hh target gene (Hilton et al, 2005).

Special at-rich sequence binding protein 2

Special AT-rich sequence binding protein 2 (Satb2) is a gene
derived from a family of special AT-rich binding proteins that
bind nuclear matrix attachment regions (MARs), an AT-rich




DNA sequence involved in gene transcription regulation.
MAR affects the organization of eukaryotic chromosomes by
structurally defining the boundary of the chromatin domain
and increasing the ability of enhancers to work over long
distances. Satb2 is known to be located in the poor region
of the 2g32-q33 gene, and its coding transcript consists of
11 exons and 191kb of genomic DNA (FitzPatrick et al.,
2003; Dobreva et al, 2006 ). Satb2 is thought to increase
expression of gene differentiation-specific type cells by regu-
lating chromatin recurrence in MAR (Dobreva et al, 2006).
Satb2 has been proven to be a multifunctional determinant
of craniofacial pattern and osteoblast differentiation.
Activation of Satb2 by Osx overexpression is responsible for
MSC differentiation into osteoblasts by targeting inhibition of
several Hox genes (Hoxal3, Hoxa2, and Hoxb2) in osteo-
blasts. Hox is a gene that regulates branchial arch patterns
by directly recognizing MAR-like sequences (Dobreva et al.,
2006; Mouillé et al., 2022). Furthermore, Satb2 also targets
BSP as an initial marker for osteoblast differentiation and
OCN as a terminal marker for osteoblast differentiation
(Dobreva et al., 2006). BSP is the main structural protein of
the bone matrix that promotes osteoblast differentiation and
thus increases the production of terminalized matrix (Gordon
et al., 2007; Kim et al, 1994). Satb2 directly binds to the BSP
promoter region associated with the three osteoblast-specific
element sequences, according to ChIP and EMSA analysis of
fully-differentiated osteoblasts (Dobreva et al., 2006; Kim
et al, 1994). Meanwhile, OCN, which is involved in bone
matrix mineralization, is the second most abundant protein
in bone after collagen. OCN is highly expressed in matured
osteoblasts, which initiate the bone formation (Li et al, 2016;
Rutkovskiy et al, 2016). Existing literature has shown that
Runx2 and ATF4, transcription factors that promote mineral-
ization at different stages of the bone formation process,
play a role in OCN regulation. In their functional synergy,
Runx2 and ATF4 have indirect interactions. Satb2 acts as a
synergistic activation mediator of Runx2 and ATF4 in this
regard because double heterozygous mutant mice, Satb2/
Runx2 and Satb2/ATF4, showed defects in bone formation.
Thus, Satb2 physically interacts with Runx2 and ATF4,
increasing their transactivation function; incorporates the
specific-transcription factor at the OCN promoter, encourag-
ing OCN expression indirectly (Bidwell et al, 1993; Dobreva
et al, 2006; Ducy & Karsenty, 1995).

Schnurri-3

Schnurri-3 (Shn3) is a large zinc finger protein that plays an
important role in embryogenesis as a cofactor for
Decapentaplegic signaling (Dpp), a Drosophila homolog of
the BMP/TGF-p signaling pathway. Shn3 is one of three
Drosophila Shn mammalian homologs that act as essential
regulators of bone formation, regulating osteoblast activity
(Jones et al, 2006). Shn3 knockout mice had a higher bone
tenure phenotype due to increased synthetic osteoblast
activity and bone formation. In osteoblasts, a multimeric
complex composed of Runx2, Shn3, and the Nedd4 family's
E3 ubiquitin ligase WWP1 can inhibit Runx2 function. This is
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because Shn3 promotes Runx2 poly-ubiquitination and pro-
teasome-dependent degradation via WWP1. Therefore, the
absence of Shn3 in osteoblasts causes an increase in Runx2
protein levels, followed by an increase in Runx2 transcrip-
tional activity and target gene, which increases extracellular
matrix mineralization during the bone formation process
(Jones et al., 2006). Furthermore, Shn3 mediates interaction
and inhibition of ERK activity in the Wnt signaling pathway
in osteoblasts. In vivo studies revealed that knockout in this
section causes abnormal ERK activation, resulting in osteo-
blast hyperactivity and bone development problems (Shim
et al., 2013).

Twist-associated protein 1

Twist-related protein 1 (Twist-1) is a basic helix-loop-helix
(bHLH) transcription factor that acts as an anti-osteogenic
and osteogenesis initiator (Komaki et al., 2007; Lee et al,
1999; Zhang et al., 2014). In humans and mice, heterozygous
loss of Twist-1 functions causes Saethre-Chotxen syndrome,
which is characterized by craniosynostosis, a condition
caused by premature osteoblast differentiation in the skull
(Quarto et al, 2015). Twist-1 has been shown to suppress
osteoblast differentiation by inhibiting Runx2 function. The
decreasing Twist-1 gene expression triggers osteoblast differ-
entiation through increased expression of Runx2 downstream
in vivo. Twist-1 overexpression also inhibits osteoblast differ-
entiation while having no effect on Runx2 expression (Bialek
et al., 2004; Zhang et al, 2014). Similar to Runx2, Twist-1 also
inhibits ATF4 function without interfering with ATF4 protein
levels (Danciu et al, 2012). In vitro experiments with
C3H10T1/2 cells revealed that decreased Twist-1 gene
expression resulted in increased ALP and COL1A1 expression.
Moreover, Twist-1 has been shown to modulate Fgfr2 expres-
sion, activating ERK1/2 and PI3K signaling during osteoblas-
togenesis (Guenou et al, 2005; Miraoui et al., 2010). Twist-1
and Twist-2 haploinsufficient mouse models revealed that
hereditary expression of Fgfr2 and Fgfr1-4 causes a decrease
in bone formation, proliferative disorders, and osteoprogeni-
tor differentiation (Huang et al, 2014).

Noncoding RNAs and their interplay with essential
transcription factors: an advanced regulation
concept for osteoblast differentiation

Noncoding RNAs (ncRNAs) are functional RNA molecules that
do not have the ability to encode proteins, so they were ini-
tially considered ‘evolutionary garbage’. However, emerging
evidence has established the role of ncRNAs as potent and
multifunctional regulators in all biological processes, includ-
ing transcriptional regulation of osteoblast differentiation
(Beermann et al., 2016; Aurilia et al., 2021). In parallel, these
studies have discovered an association between ncRNA
expression and disease progression in humans, including
bone-related diseases. MicroRNAs (miRNAs), small interfering
RNAs (siRNAs), PIWl-interacting RNAs (piRNAs), long noncod-
ing RNAs (IncRNAs), circular RNAs (circRNAs), and other
ncRNAs have been identified due to advances in RNA-Seq
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Table 3. miRNAs involved in osteoblast differentiation regulation.

No. miRMAs Therapeutic prospects Roles References

1. miR 23a-27a-24-2 Bone formation Inhibits bone formation by targeting Runx2 Hassan et al., 2010
and Sath2.

2. miR-39a and -b Bone loss Promotes osteoblast differentiation by Kapinas et al,, 2010; Xia
decreasing the expression of Wnt et al,, 2020
signaling antagonists (DKK-1, Kremen2,
and sFRP2) and AKT/[-catenin (PTEN).

3. miR-214 Osteoporosis Inhibits osteoblast differentiation by Wang et al, 2013
targeting ATF4.

4. miR-34b and -c Skeletogenesis Inhibits osteoblast terminal differentiation by Wei et al,, 2012

(embryogenesis and targeting Satb2.
postnatally)

5. miR-31 Bone formation Inhibits osteoblast differentiation by Baglio et al., 2013; Deng
reversing Osx expression and suppressing et al,, 2013; Xie
the level of the Satb2 protein. et al, 2014

b. miR-322 Bone formation Enhances BMP-2 response and Osx Gamez et al., 2013
expression by targeting Tob2.

7. miR-203 and miR-320b Bone formation Inhibits BMP-2 stimulates osteoblast Laxman et al., 2016
differentiation by targeting DIx5, which
inhibits the roles of Runx2 and Osx.

8. miR-27a Bone formation Inhibits Osx expression and attenuates Gong et al., 2016
Sath2-induced osteoblast differentiation.

9. miR-467g Bone formation Inhibits osteoblast differentiation by Kureel et al., 2017
targeting Runx2 and Ihh signaling.

10. miR-376c-3p Skeletal abnormalities Inhibits osteoblast proliferation and Camp et al,, 2018
differentiation through Twist-1 regulation.

1. miR-145 Adolescent Disrupt osteoblast and osteocyte function Zhang et al,, 2018

idiopathic scoliosis through upregulation of
[-catenin expression.
12, miR-26b Osteoporosis and Promotes osteoblast differentiation by Hu et al, 2019; Yang
osteoarthritis regulating [i-catenin. et al,, 2022

13. miR-103 Osteoporosis Inhibits osteoblast proliferation and Lv et al., 2020
differentiation by targeting Satb2.

4. miR-92a-3p Fracture healing Inhibits IBSP expression and promotes Hu et al,, 2021

osteoblast differentiation via the PI3K/AKT
signaling pathway.

sFRP2, secreted frizzled related protein 2; PTEN, phosphatase and tensin homolog; IBSP, integrin binding sialoprotein.

(Lekka & Hall, 2018; Li et al., 2020, 2021). Here, we will dis-
cuss three ncRNAs that have been hot topics in the develop-
ment of new therapeutic targets for bone-related diseases:
miRNA, IncRNA, and circRNA. Figure 3 depicts the involve-
ment of these ncRNAs in osteoblast differentiation.

MicroRNA

MicroRNAs (miRNAs) are a type of short noncoding RNA that
contains 20-22 nucleotides. MiRNAs do not encode proteins,
but they do regulate the levels of other proteins, particularly
at the post-transcriptional level, by lowering messenger RNA
(mRNA) levels or inhibiting translation by binding to the
3'UTR of the target mRNA (Inose et al, 2009; Wang et al.,
2020). Interestingly, Davis and Hata (2009) reported that
miRNAs regulate approximately one-third of human genes.
Evidence of miRNA involvement in regulating osteoblast dif-
ferentiation and bone formation has been studied continu-
ously over the last two decades. Wnt and BMP are the main
signaling pathways in osteoblast differentiation, as previously
described, and miRNAs have been shown to target both.
Understanding the role of miRNAs in osteoblastogenesis
will provide important therapeutic insights. Previous research
has found that miRNAs play a role in the regulation of osteo-
blast differentiation (Table 3). Several miRNAs, including miR-
322, miR-27a, miR-26b, and miRNA-92a-3p, act as positive
regulators of osteoblast differentiation. MiR 23a27a24-2, miR-
214, miR-34b and -c, miR-31, miR-203, miR-320b, miR-467g,

miR-376c-3p, miR-145, and miR-103 are examples of nega-
tive regulators.

Long noncoding RNA

Long noncoding (Inc) RNA (IncRNAs) is a diverse class of
transcripts that is 200-10,000 nucleotides longer than other
types of ncRNAs (Nardocci et al, 2018; Silva et al, 2019). This
type of ncRNA is widely transcribed in the nucleus by RNA
polymerase |l via 5’ capping, 3’ poly-A tail addition, and RNA
splicing (Aurilia et al, 2021). LncRNAs are poorly conserved
among mammalian species but play critical roles in transcrip-
tional and post-transcriptional regulation, mRNA translation
control, and chromatin structure regulation (Nardocci et al.,
2018). Furthermore, IncRNAs can act as endogenous RNAs
(ceRNAs) for miRNA ‘sponges’ and influence miRNA expres-
sion, thereby reducing the regulatory effect of miRNAs on
miRNA targets (Thomson & Dinger, 2016; Xiao et al., 2017).
Unlike miRNAs, IncRNAs can be folded into complex sec-
ondary and higher-order structures to improve target recog-
nition (Huang et al., 2015). These findings point to their role
in the emergence and development of a disease. Several
recent studies have found that IncRNAs play a role in osteo-
blast differentiation and act as ceRNAs targeting downstream
miRNAs (Table 4). H19, TUG1, MEG3, and MALAT1 are
IncRNAs that act as positive regulators of osteoblast differen-
tiation. H19, ANCR, ODIR1, AK045490, HOTAIR, UCA1, Xist,
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DANCR, AK039312, and AK079370 are examples of nega-
tive regulators.

Circular RNA

Circular RNAs (circRNAs) are a type of ncRNA that is being
studied extensively as therapeutic targets and biomarkers.
CircRNA has a covalently closed ring structure and is an
endogenous biomolecule that lacks a 5 end cap or 3
poly(A) tail, making it highly stable and resistant to RNase R
and other exonucleases, with a mean half-life of more than
48 hours (Barrett & Salzman, 2016; Chen et al, 2021).
CircRNAs are found exclusively in the cytoplasm, but some
can also be found in the nucleus, particularly circRNAs con-
taining introns. Like IncRNA, circRNA also acts as a
miRNA sponge.

Furthermore, circRNA regulates gene transcription and
translation, modifies alternative splicing, and can interact
with regulatory RNA-binding protein (RBP) (Chen et al.,, 2021;
Patil et al, 2020). Recent research has revealed that circRNAs
play an important role in bone disease by regulating osteo-
blast differentiation. Table 5 shows some examples of
circRNA's role in osteogenic regulation. CircRNAs that pro-
mote osteoblast differentiation include AFF4, has_-
circ_0074834, circSIPA1L1, has_circ_0076690, circ_0024097,
circRNA124534, c¢irc_0076906, circRNA-vgll3, circ_0000020,
circStag1, and circ_0019693. CircRNA 25487, circRNA TGFBR2,
and circ_0003204, on the other hand, inhibited osteoblast
differentiation.

Prospect for the future

Rapid technological advances have created a plethora of
new therapeutic targets for bone-related diseases. In recent
years, studies on the involvement of ncRNAs in osteoblast
differentiation among the classical mechanisms were
reported to influence the activity of transcription factors in
regulating physiological and pathological processes.
According to this evidence, there is a growing interest in
ncRNA-based therapies for bone diseases. Various exogenous
ncRNA delivery systems to target sites have also been inves-
tigated. Several base scaffolds and carriers are being devel-
oped for delivery of ncRNAs, including liposomes, hydrogels,
exosomes, synthetic and natural nanoparticles, nanofibers,
and microspheres (Balagangadharan et al, 2018; Guan et al.,
2022; Li et al, 2021). These findings suggest a new challenge
in the discovery and development of therapeutic strategies
for bone-related diseases, as well as a promising opportunity
in controlling bone regeneration. Notably, it was discovered
that microchannel porous hydroxyapatite scaffolds interfere
with miRNA expression (Jiajun et al., 2020). More intriguingly,
the combination of ncRNAs and specific scaffold biomaterials,
such as hydroxyapatite, is expected to not only improve the
osteogenic performance of the scaffolds but also act as
drugs for bone-related diseases (Damiati & El-Messeiry, 2021;
Khotib et al., 2021; Pan et al, 2021). Unfortunately, studies
on the potential role of ncRNAs in the mechanism of osteo-
blast differentiation have not yet covered all bone-related
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diseases. The research available is limited to common cases
like osteoporosis, fractures, and osteoarthritis. Meanwhile, it
has not been widely investigated in other cases, such as
Paget's disease of bone (PDB), periodontitis, osteogenic
imperfecta, osteosarcoma, etc.

As an example, consider PDB. It is a bone regeneration
disorder characterized by excessive osteoclastic bone resorp-
tion followed by an increase in osteoblastic activity to com-
pensate for bone remodeling (Nebot Valenzuela &
Pietschmann, 2017). Despite the fact that PDB is the second
most common bone disease after osteoporosis, recent
reports indicate a global decline in prevalence and severity,
which may be due to changes in environmental and lifestyle
factors. Finally, these conditions lead to a decrease in PDB
diagnoses (Michou & Orcel, 2019; Gennari et al., 2019).
Current research on PDB therapeutic targets has focused on
osteoclast-related pathways, such as the receptor activator of
nuclear factor-B ligand (RANKL). Surprisingly, Marshall et al.
(2009) and Yavropoulou et al. (2012) described the role of
osteoblasts in PDB. SOST and DKK-1 levels of antagonists of
the Wnt signaling pathway were found to be higher in PDB
patients than in healthy controls. By contrast, Idolazzi et al.
(2017) and Werner de Castro et al. (2019) reported that
serum levels of SOST and DKK-1 in PDB patients were com-
parable to healthy subjects. On the other hand, the role of
the Wnt/p-catenin signaling system in the pathogenesis of
PDB cannot be denied.

Likewise, periodontitis is a chronic bacterial (Porphyromonas
gingivalis)-related inflammation of the soft tissues that support
tooth structure. The significant proportion of the variation in
periodontitis severity is thought to be due to genetic factors
(Sayad et al, 2020). In this case, osteoblasts are functionally
important cells that, along with periodontal ligament stem
cells (PDLSCs), contribute to the physiological function of
periodontal tissues and participate in periodontal regener-
ation (Yu et al, 2017). Several recent studies have reported
the role of ncRNAs in the regulation of osteogenic differenti-
ation gene expression in human PDLSCs (Cuevas-Gonzalez
et al, 2021; Santonocito et al, 2021; Sayad et al., 2020).
Anyway, more detailed reports on the various roles of ncRNAs
in osteoblast differentiation and their potential effects in this
area are still lacking.

Overall, further exploration into the roles of major signal-
ing pathways, essential transcription factors, and ncRNAs in
the molecular mechanisms of osteoblast differentiation is
urgently needed in order to develop better therapeutic strat-
egies for bone-related diseases.

Conclusion

Studies into the molecular mechanisms of osteoblast differ-
entiation have greatly evolved. Previously, classical mecha-
nisms thought that essential transcription factors were
present to control MSC differentiation and commitment to
osteogenesis. Surprisingly, in recent years, the use of high-
throughput sequencing technology in conjunction with bio-
informatics analysis has successfully identified the involve-
ment of ncRNAs in bone regeneration, gaining insights in
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the orthopaedic and endodontic fields. This review described
advances in the understanding of molecular mechanisms of
osteoblast differentiation involving the roles of essential tran-
scription factors and ncRNAs. Both interactions form a regu-
latory complex that controls gene expression. These findings
provide exciting and valuable information in the identifica-
tion of novel molecular players, paving the way for the
future development of therapeutic agents as well as bio-
markers for diagnostic and beneficial follow-up procedures in
the treatment of bone-related diseases.
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