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This study aimed to analyze the interaction of primaquine (PQ), chloroquine (CQ), and liposomes to
ppurt the design of optimal liposomal delivery for hepatic stage malaria infectious diseas@]e
liposomes were composed of hydrogenated soybean phosphatidylcholine, cholesterol, and distearoyl-
sn-glycero-3-phosphoethanolamine-N-{methoxy[polyethyleneglycol]-2000), prepared by thin film
method, then evaed for physicochemical and spectrospic characteristics. The calcein release was
her evaluated to determine the effect of drug co-loading on liposomal membrane integrity. The
results showed that loading PQ and CQ into liposomes produced changes in the infrared spectra of
the diester phosphate and carbonyl ester located in the polar part of the phospholipid, in addition
to the alkyl group (CH;) in the nonpolar portion. Moreover, the thermogram revealed the loss of the
endothermic peak of liposomes dually loaded with PQ and CQ at 186.6 °C, which is identical to that of
the phospholipid. However, no crystallinity changes were detected through powder X-ray diffraction
analysis. Moreover, PQ, with either single or dual loading, produced the higlmalcein release profiles
from the liposomes than that of CQ. The dual loading of PQ and CQ tends to interact with the polar
head group of the phosphatidylcholine bilayer membrane resulted in an increase in water permeability
of the liposomes.

41
Primaquine Primaquine (PQ) is the only effective anti-malarial used for the treatment of sporozoites in the

hepatic phase of malaria infectious disease. However, it lacks efficacy against the asexual form of Plasmodium
spp. in blood, indicating that it can not be used as a monotherapy, but should be administered in combination
with blood schizonticides'~. In addition, the use of PQ is limited by its tendency to cause serious side effects,
including hemolysis in individuals deficient in glucose-6-phosphate dehydrogenase!*#. | Despite its currently
limited therapeutic use because of widespread resistance’ ’, the combined use of chloroquine (CQ), a blood
schizonticide, reduces the toxicity of PQ while i1masing its activity. A study by Fasinu et al.l® reported that
CQ influences several metabolic pathways known to play a role in the activity and toxicity of PQ, encompassing
the effect of hemolysis. In particular, CQ suppresses the number of metabolites generated through CYP2D6-
mediated metabolism. Moreover, CQ changes the disposition and pharmacokinetic profiles 0, resulting in
higher drug levels and tissue exposure''. In addition, the combination is also used dinically in the treatment

lasmodium vivax malaria, and CQ also enhances the sensitivity of Plasmodium falciparum to PQ'[. The
use of liposomes as drug delivery carriers increases the activity of anti-malaria drugs". However, PQ is known
to influence the structure of the liposomal bilayer membrane. Basso et al.'* reported the existence of an elec-
trostatic interaction between the negative charges of a phosphate group on the polar phospholipid portion of
dimyristoylphosphatidylcholine (DMPC) and a positive nitrogen charge in the PQ structure. Furthermore, a
hydrophobic interaction also occurs between the quinoline ring of PQ and the hydrocarbon chain of DMPC!*15,
Therefore, the existence of these two interactions leads to the insertion of PQ into the DMPC structure, thereby
disrupting the arrangement and dynamics of the acyl chain rotation and resulting in enhanced fluidity of the
bilayer membrane. Conversely, it was reported that CQ induces th posite effect via its interaction with the
polar part of dipalmitoylphosphatidylcholine (DPPC), causing the absorption of CQ molecules on the surface
of the liposomes! -7, This inhibits the movement of the acyl chain, consequently enhancing the rigidity of the
bilayer membrane!'®.

Changes in lippsome membrane rigidity affect drug release'*'?, as denoted by the more rapid drug release
from egg yolk phosphatidylcholine, which possesses a more fluid structure, than from the relatively rigid DPPC*.
Moreover, lipids constituted in a non-rigid liposomal membrane often cause leakage of entrapped drugs, a
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Polydispersity index Encapsulation efficiency
Formula Particle size (nm) | (PDI) {-Potential (mV) | (%) Loading capacity (%)
Lipo-P0) 114.0+4.2 0.24 +0.04 -1233+298 B0.65+11.26 16.50+3.70
Lipo-CQ 123.4+£59 0.31+0.01 -1638+3.91 54.56+ 10.59 6.05+0.97
7.17+2.25 (PQ) 1.02+£0.37 (PQ)
Lipo-POCO 130.8 £8.3 0.31 £0.01 -1233+£298
31.78+3.85 (CQ) 452+0.63 (CQ)

Table 1. Characteristics of liposomes loaded with aquine/PQ (Lipo-PQ), chloroquine/CQ (Lipo-CQ),
and both drugs (Lipo-PQCQ) following incubation at 60 °C for 20 min. Each value represents the mean +SD
(n=3).

acteristics of the lipid compositio ployed, as well as the addition of cholesterol to the exterior of the liposo-
mal membrane*"*%, Furthermore, drug release is potentially influenced by the presence of precipitation or the
aggregation of drugs in the liposomes®. A previous study reported the tendency for colloidal aggregate formation
between drugs and polymers in liposomes which can slow drug release*!.

Combining two or more drugs within the same nanocarrier using a dual loading technique can control the
drug release rate, thereby affecting the biodistribution and metabolism of each drug®. A previous study under
taken by the authors of this article revealed that the dual loading of PQ and CQ significantly influenced the effi-
ciency of drug trapping and release®®. In single-loaded liposomes, the encapsulation efficiencies were 72% +4%
for PQ and 56% + 15% for CQ, whereﬁ;} co-loaded liposomes, they were 6%+ 1% and 31% + 2%, respectively.
In addition, liposomes co-loaded with PQ and CQ exhibited relatively slower drug release than those loaded with
either drug alone. It has been reported that the encapsulation of two drugs in the same nanocarrier can modify
the release profile of each when they both interact with the bilayer membrane”. Optimal delivery to hepatocytes
should constitute the main objective when treating a malarial sporozoite invasion. Both positive therapeutic
effects and reduced hemolysis in cases of patients suffering from glucose-6-phosphate dehydrogenase deficiency
should be produced. Therefore, the use of liposomes as drug carriers is indispensable, rendering an effective
str for further liposome formulation essential in order to achieve high and stable drug encapsulation.

n the current study, the effect of dual-loaded PQ and CQ on the integrity of the liposomal bilayer membrane
was analyzed in relation to changes in membrane rigidity. This evaluation involved determining the physico-
chemical characteristics and release profile of the fluorescent compound calcein as indicators of membrane
leakage**-". Calcein was used because of the ease with which it is entrapped in the aqueous intraliposomal phase
because of its low Log Pvalue. In add@, calcein is hydrophilic and exhibits no interaction with the liposomal
membrane®!. Analyzing the integrity of the liposomal bilayer membrane is extremely important for observing
the level of carrier leakage which is positively correlated with stability during distribution through systemic cir-
culation before reaching the hepatocytes. It is anticipated that the data obtained will prove useful for evaluating
changes in the membrane structure of liposomes containing PQ and CQ.

5

Results and discussion q

This study aimed to provide information related to the effect of PQ and CQ co-loading on the integrity of the
bilayer membrane of liposomes. This analysis should be beneficial for designing optimal PQ and CQ delivery
systems for malaria therapy, especially with regard to the hepatic phase. The liposomes were analyzed to deter-
mine their physicochemical characteristics and assess their calcein release profiles to confirm the integrity of the
liposomal membrane. The physicochemical characteristics were specifically, evaluated using FTIR spectroscopy,
P-XRD, and DTA. These evaluations were performed to analyze the interaction between the drugs and the lipid
membrane of the liposomes™*.

In a previous study, the drug-to-lipid ratios of PQ and CQ were optimized during the drug loading process®,
in consideration of the dose ratios of both drugs in clinical practice’ . In this study, a saturated phospholipid,
ie. HSPC, was used as the lipid component and the liposomes were prepared under equal conditions. Moreover,
citrate buffer pH 5.0 was employed as the hydrating solution since low pH may result in hydrolysis of phospho-
lipid. In the previous report referred to above, a change in pH of the citrate buffer from 4.0 to 5.0 reduced drug
loading with the result that only 35% of PQ and 69% of CQ was encapsulated in the liposomes™**. Moreover,
the report showed that incubating the mixtures at a higher temperature than T, of phospholipid, i.e. 60 °C,
reduced the encapsulation efficiencies of PQ and CQ due to the increase in membrane water i meability caus-
ing a decrease in pH gradient during heating®*. All liposomes were similar with regard to particle size, PDI,
and {-potential, reflecting the fact that loading PQ and CQ had no significant effects on their physical charac-
teristics. However, when PQ was dually loaded with CQ into liposomes, the encapsulation efficiency decreased
significantly, as shown in the authors’ previous study®. However, there were differences in their spectroscopic
and crystallinity profiles, as demonstrated by the ﬁndiﬁs of this study.

4
Physical characteristics of the liposomes. The particle size, PDI, {-potential, drug encapsulation
efficiency, and loading capacity of Lipo-PQ, Lipo-CQ, and Lipo-PQCQ are presented in Table 1. The results
revealed no significant differences in the obtained values, as particle size, PDI, and {-potential ranging from
114.0 to 130.8 nm, 0.24-0.31, and - 16.38 to — 12.33 mV, respectively. Following dual loading of these two drugs,
the encapsulation efficiencies decreased significantly from approximately 80 to 7% and 54 to 31% respectively for

condition known to affect the theraEeutic index'*"**!.In this case, membrane rigidity is influenced by the char-
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Figure 1. Fourier-transform infrared spectra of primaquine, chloroquine, blank liposomes (Lipo-Blank),
primaquine-loaded liposomes (Lipo-PQ), chloroquine-loaded liposomes (Lipo-CQ), and liposomes loaded with
both primaquine and chlorogquine (Lipo-PQCQ) analyzed using the KBr pellet method.

PQ and CQ. The loading capacities were approximately 16% and 6% for Lipo-PQ and Lipo-CQ, but there were
significant reductions in the amounts of PQ and CQ loaded into Lipo-PQCQ which stood at only 1% and 4% in
each case. While PQ is soluble in water™, its solubility is still almost 10-30 times lower than that of CQ which is
categorized as freely water soluble™. The solubility of both drugs has been known to be affected by pH**". The
contrasting solubility probably influences the intraliposomal physical condition of drugs after active loading
using a pH gradient whicHEfhay affect the drug loading. However, in t udy, the drugs i.e. PQ and CQ were
added as drug solutions in PBS pH 7.4 (the outer liposomal phase) with citrate buffer pH 5 as the intraliposomal
phase, in order to ensure that solubility exerts a minimal influence on the research results. Moreover, the trans-
mission electron microscopy (TEM) images reveal that no drug aggregates were observed inside the liposomes,
as presented in Supplementary Fig. S1. These results show that both PQ and CQ are still soluble in the intralipo-
somal media, thus providing no or minimal effects of drug solubility on membrane integrity. These results were
similar to those of the previous study*® proving that dual loading of PQ and CQ affects drug encapsulation with-
out changing particle size or {-potentials. Consequently, physicochemical analysis is required. Having identified
the typical interactions, appropriate further courses of action would be decided on for optimal dual delivery of
PQ and CQ in cases of malaria.

Analysis of the physicochemical characteristics of the liposomes. FTIR profiles of the li-
posomes.  In this study, FTIR analysis was used to determine the interactions of PQ and CQ with the liposomal
membrane by observing the absorption band in the wavenumber ranges of particular functional groups. This
incuded the diester phosphate (R-PO,-R") and carbonyl ester (R-CO-0-R") located in the polar part of the
HSPC phospholipid, as well as the alkyl group (CH,) in the nonpolar portion*"*, Lipo-PQ, Lipo-CQ, and Lipo-
PQCQ were analyzed for their spectra identification using FTIR, and their profiles were compared with those of
Lipo-Blank, free PQ, and free CQ. As shown in Fig. 1, in accordance with the wavenumbers of each functional
group listed in Table 2, variations in the absorption intensity of functional groups were observed among the li-
posomes. The FTIR spectrum of Lipo-PQ exhibited absorption bands with reduced intensities in the§venum-
ber ranges of carbonyl ester and diester phosphate groups compared with the findings for Lipo-Blank. It has been
reported that PQ interacts electrostatically with lipid polar head group causing local acyl chain disorder and less
densely packed bilayer membrane gel. Moreover, the quinoline ring of PQ) inserts between the acyl chain of the
hydrophobic tail of phospholipids causes membrane fluidity'*'. Therefore, the primaquine has probably been
completely concealed inside the liposomes, producing the similar FTIR spectra of the Blank and Lipo-PQ.

Meanwhile, Lipo-CQ and Lipo-PQCQ featured no phosphate and carbonyl group bands at 1740 cm™" and
1230 cm™!, which reflect the interfacial and head region of the bilayer membrane®. Hence, it was assumed that
interaction probably occurred between the drugs and liposomes rendering them undetectable.

Furthermore, the CH;, CH,, and CH bonds of Lipo-CQ and Lipo-PQCQ exhibited weaker absorption bands
than those of Lipo-Blank and Lipo-PQ. The absorption band of the alkyl group possibly serves as an indicator
of the lipid sequence which reflects the order of arrangement. The shift to a higher wavenumber, reduction in
intensity, and widening of the absorption band were indicative of an increase in the gauche conformation of the
aliphatic lipid chain®. The FTIR spectrum also revealed a decline in intensity of Lipo-PQ compared with those
of Lipo-CQ and Lipo-PQCQ, indicating an increase in the gauche conformation of its hydrocarbon chain. Thus,
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Wavenumber (cm™)

Functional groups | Ref Prima-quine Chloro-quine Lipo-Blank Lipo-PQ |Lipo-CQ |Lipo-PQCQ
O-H/N-H stretching | 3550-3200 | 3297 3411; 3236 3442 3441 3441 3437
CH,, CH,, CH 2 2 2 2
s 3000-2850 | 2968; 2945; 2883 | 2969; 2935; 2850 | 2956; 2919 2851 2920; 2851 2924 2923
stretching
R-CO-OR (carbonyl 1730 ~ ~ 1738 1739 ~ ~
ester)
C=C stretching 1630-1680 | - - 1636 1636 1632 1638
C-C ring stretching
(quinolone) 1612 1612 1614 - - - -
C-N stretching 1558 1533 1552 - - - -
CH,, CH, bending 14701350 | 1469; 1430; 1385 | 1458; 1393; 1368 | 1467; 1384 1384 1458; 1384 | 1457; 1384
R-PO, K (diester | 1550 1329 | 1234 1245 1254 1253 - -
phosphate)
C-0 stretching 1250-970 1165 1132 1120 1165 1121 1121
P-0 Asymmetric 1058 1050 1065 1067 1070 1074 1066
stretching
N'-CH, (choline) 970 - - - - - -
=C-H, =CH, 995- 880 953,899 942; 907; 881 951; Ba3 950; 8ol 953; Ba3 952; 865

Table 2. The peak absorbance value of the infrared spectra of free primaquine (PQ), free chloroquine (CQ),
blank liposomes (Lipo-Blank), primaquine-loaded liposomes (Lipo-PQ), chloroquine-loaded liposomes
(Lipo-CQ), and liposome co-loaded with primaquine and chloroquine (Lipo-PQCQ).
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Figure 2. Powder X-ray diffraction analysis of primaquine, chloroquine, blank liposomes (Lipo-Blank),
primaquine-loaded liposomes (Lipo-PQ), chloroquine-loaded liposomes (Lipo-CQ), and liposomes loaded with
both primaquine and chloroquine (Lipo-PQCQ).

the arrangement and density of the hydrocarbon chain had changed, possibly reflecting increased membrane
fluidity**.

P-XRD profiles of the liposomes.  The diffractograms of the liposomes were obtained using P-XRD. As shown
in Fig. 2, the P-XRD pattern of the free PQ and free CQ exhibited several sharp peaks indicative of crystallinity.
However, these crystal patterns were absent from the diffractograms of Lipo-PQ, Lipo-CQ, and Lipo-PQCQ, as
well as Lipo-Blank. The X-ray diffractogram patterns of liposomes displayed sharp peaks showing a high degree
of crystallinity and all these samples had peaks identical to one another, indicating a similar degree of crystalin-
ity.

DTA profiles of the liposomes. In addition, the effects of PQ and CQ on the changes in the physical proper-
ties of liposomes were also supp by the DTA thermograms. The DTA results of liposomal membranes
are contained in Figs. 3 and 4. As shown in Fig. 3, two endothermic peaks were observed for HPSC at 77.0 °C
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ggure 3. Differential thermal analysis of hydrogenated soybean phosphatidylcholine (HSPC),gstearoyl—sn—
glycero-3-phosphoethanolamine-N-(methoxy [polyethylene glycol] -2000) (DSPE-mPEG2000), cholesterol, and
blank liposomes (Lipo-Blank).

and 195.1 °C, one endothermic peak and one exothermic peak were found for DSPE-mPEG,;, at 53.7 °C and
143.1°C, respectively, and a single endothermic peak was identified for cholesterol at 146.9 °C. Moreover, endo-
thermic peaks were identified at 44.6 °C, 84.2 °C, 186.6 °C, and 241.0 °C for Lipo-Blank. Meanwhile, following
liposome formation, the peaks in the Lipo-Blank thermogram were identical to those of each of the lipid com-
ponents, although some melting point shifts were identified. .

Figure 4 presents the DTA thermograms of drug-loaded liposomes, free PQ, and free CQ. PQ had a sharp
endothermic peak at 200.2 °C and a broad peak at 71.0 °C. Conversely, two sharp endothermic peaks were found
at 188.5 °C and 216.6 °C for CQ. The drug-encapsulated liposomes displayed significant changes compared
with those of the free drugs. Lipo-PQ had no identical endothermic peak to that of PQ. Moreover, compared
with the findings for Lipo-Blank, the endothermic peak at 186.6 °C was not present, while a new endothermic
peak appeared at 244.7 °C. There were also peak shifts at 44.0 °C and 81.2 °C. Moreover, in the thermogram of
Lipo-CQ, the endothermic peak at 44.0 °C had disappeared, whereas an identical peak observed for Lipo-Blank
had shifted to 183.8 °C. Lipo-CQ also had noidentical peak to that of CQ, but a weak broad endothermic peak
appeared at approximately 210 °C. m

Meanwhile, Lipo-PQCQ experienced broad endothermic peaks at 62.1 °C and 75. and a sharp peak at
239.1 °C. However, the peak at 186.6 °C was absent. The thermogram peaks of Lipo-PQCQ were identical to
those of PQ and Lipo-PQ.

There were shifts and losses of endothermic peaks in both the Lipo-PQ and Lipo-CQ thermograms com-
pared with the findings in the Lipo-Blank thermogram. Furthermore, the endothermic peak displayed a major
transition of the crystalline gel-liquid phase within the liposomes which is gelatinous at higher temperatures®.
In addition, the Lipo-PQCQ thermogram demonstrated the loss of the qurmic peakat 186.6 °C, identical
to that for HSPC observed in the Lipo-Blank thermogram. The loss of the endothermic peak identical to that of
HSPC was also observed in the Lipo-PQ thermogram, but not in the Lipo-CQ thermogram. The loss or decline
of this peak is indicative of an increase in the distance between membranes which can reduce the strength of the
phospholipid arrangement in the gel phase'*'*. This change is usually accompanied by a reduction in membrane
rigidity together with decreased van der Waals bonds between acyl chains and phospholipids®*. Therefore,
Lipo-PQCQ may experience diminished strength of its phospholipid arrangement as denoted by aliquid phase,
resulting in increased fluidity of the bilayer membrane of the liposomes.

NMR spectra of liposomes. Data obtained via NMR analysis are proton signals which include chemical shifts
and multiplicity, as well as signal integration. From the results of 'H NMR, both CQ and PQ experienced interac-
tions with liposomes.

The '"H NMR spectrum of Lipo-Blank featured chemical shifts at 3.02 (s, 9H) and 3.82 ppm (m, 2H), which
reflected the proton signals of C,; and C,,, respectively, which bound to N atoms in the polar head of lipids in the
bilayer (Fig. 5A). Moreover, the signals of C,;, ., bound to the CH; group underwent a chemical shift at 0.70 ppm
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Figure 4. Differential thermal analysis of blank liposomes (Lipo-Blank), primaquine-loaded liposomes
(Lipo-PQ), chloroquine-loaded liposomes (Lipo-CQ), and liposomes loaded with both primaquine and
chloroquine (Lipo-PQCQ).

(m, 3H). The proton signals of alkyl (C-C) groups bound to an acyl group was observed for C,_, and C,._, with
a chemical shift at 1.09 ppm (m, 40H). In addition, the proton signals of C, and C,4 experienced chemical shifts
at 2.14 (m, 2H) and 1.41 ppm (m, 2H), respectively. In addition, the proton signals of C,, and C,, appeared at
2.01 (m, 2H) and 1.67 ppm (m, 2H), respectively. These signals reflect the hydrocarbon chain as the hydrophobic
por of the lipid bilayer. C-O groups which were observed at Cy;, C ¢, C,7,and C,4, appeared as chemical shifts
at 5.10 (m, 1H), 4.10 (m, 2H), 348 (m, 2H), and 340 ppm (m, 2H), respectively.

However, the NMR sfifictra of Lipo-PQ and Lipo-CQ were similar to those of Lipo-Blank, as shown in
Fig. 5B and C. However, dual loading of PQ and CQ into liposomes resulted in the appearance of the proton
signals of the aromatic quinoline ring of PQ, whereas that of CQ had weak signal intensity, as shown in Fig. 5D.
Some proton signals were noted for the aromatic ring of PQ. The proton signals of C, bound to N and C, atoms
appeared as chemical shifts at 8.53 (m, 1H) and 7.49 ppm (m, 1H), respectively. Moreover, the chemical shift at
8.16 ppm (d, ] =7.1 Hz, 1H) indicated that C; was coupled to the proton of C,. The proton signals of C, and C;
in the aromatic ring appeared as chemical shifts at 7.49 (m, 1H) and 6.65 ppm (d, ]=7.3 Hz, 1H), respectively,
coupled with N7, whereas the C; methoxy group was represented by the chemical shift at 3.07 (s, 3H). The N7
proton signal appeared as a chemical shift at 6.25 ppm (m, 1H). The NMR spectra provided evidence that {€¥
signal intensity of the aromatic quinoline ring was stronger for PQ than for CQ. This indicates that PQ had an
important role in the fluidity of the membrane.

Profile of calcein release from liposomes.  The effect of dual drug loading on membrane integrity was supported
by the profiles of calcein release from the liposomes which was higher for Lipo-PQCQ and Lipo-PQ than for
Lipo-CQ, as presented in Fig. 6. The results illustrated that the Lipo-CQ had the lowest percent calcein release
of 7% after 48 h. Conversely, the percent calcein release for Lipo-PQ and Lipo-PQCQ was relatively similar,
ranging from 17 to 20%. It is known that drug release from liposomes if§fases with increasing fluidity of
the membrane?®!. Therefore, it has been established that the dual loading of and CQ affected the fluidity of
liposomes.

The physicochemical characteristics of the liposomal membrane and calcein release profile revealed that Lipo-
PQ had relatively higher fluidity than Lipo-CQ leading to increased calcein release. Furthermore, the decreased
integrity observed in Lipo-PQCQ was attributable to the increased membrane ﬂuic? resulting from the inter-
actions of PQ and CQ with the phospholipid bilayer. However, in a previous study, dual loading of PQ and CQ
resulted in slower drug release compared with that in single drug-loaded liposomes®. Calcein is a polyanionic
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Figure 5. 'H nuclear magnetic resonance spectra of blank liposomes (Lipo-Blank), primaquine-loaded
liposomes (Lipo-PQ), chloroquine-loaded liposomes (Lipo-CQ), and liposomes loaded with both primaquine

and chloroquine (Lipo-PQCQ) in CDCL, at 400 MHz.
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Figure 6. Profiles of calcein release from primaquine-loaded liposomes (Lipo-PQ), chloroquine-lo@fed
liposomes (Lipo-CQ), and liposomes loaded with both primaquine and chloroquine (Lipo-PQCQ) in

phosphate-buffered saline (pH 7.4) at 37 °C.

molecule with negative surface potential charges which mainly diffuses through the phospholipid bilayer®!.
The burst release of calcein during the first hour of this study could be due to the higher amount of unionized
calcein molecules in the low pH of the intraliposomal phase containing citrate buffer pH 5.0"". This would, in
turn, cause the release of a larger amount of calcein in the outer phase. The previous study of calcein release from
liposomes also indicated that approximately 20-25% of calcein release from liposomes occurs in buffer pH 7.4.
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Formulation
Component Lipo-Blank Lipo-PQ Lipo-CQ LipoPQCQ
PQ - 1.00 - 1.66/
Co)y - - 333img L.66 mg
HSPC nl mg 5.94 mg 594mg 5.94 mg
DSPE-mPE G 1.94 mg 1.94 mg 194mg 1.94 mg
Cholesteral 213 mg 213 mg 213mg 213 mg

Table 3. Formulation glank and drug-loaded liposomes. P maquine, CQ chloroquine, HSPC
hydrogenated soybean phosphatidylcholine, DSPE-mPEG2000 distearoyl-sn-glycero-3-phosphoethanolamine-
N-(methoxy[polyethylene glycol]-2000).

? is lower than that the 40-50% released from the liposome in pH 4.0 over a period of 48 hours*. However,
ue to the high intrinsic permeability of protons through the lipid bilayer, H** ions will permeate from the acidic
intraliposomal phase to the exterior until a state of equilibrium is reached. This resulted in no further calcein
release to that observed in the early phase™*. It has been reporlemat calcein release is limited by lipid packing
order’ and drug interaction within the bilayer membrane®'. The stronger the interaction between the drug and
lipid, the less calcein will be desorbed leading to burst effects. In this study, the interaction between PQ, CQ, and
liposomes was observed, resulting in burst release of calcein from liposomes.

Moreover, as confirmed by the NMR and FTIR spectra, interaction could occur between PQ, CQ, and
liposomes resulting in similar calcein release profiles of Lipo-PQ and Lipo-PQCQ, although the use of CQ
could rigidify the bilayer membrane'®*. This may be attributable to the differences in chemical characteristics
between calcein and PQ/CQ. Furtesearch evaluating the molecular interaction and changes in liposomes
structure is required to confirm the results of this study. These findings will provide some insights into the design
of liposomes for delivering the combination of PQ and CQ specifically for hepatic stage malaria.

Conclusions
As delivery of PQ in thes early stages of sporozoite invasion of the liver largely determines the success of prevent-
ing blood stage malaria infection, a strategy combining PQ load with CQ, a blood schizontocide, in Efosomes

offers strong therapeutic efficacy as well as reduced drug toxicities. However, this study reveals that dual drug
loading of PQ and CQ into PEGylated liposomes greatly affects liposomal membrane fluidity. Changes in the
FTIR spectrum intensities and DTA profiles were indicative of those in the gauche conformation of the hydro-
carbon chain of the phospholipid, and of increased calcein release from liposomes which indicate the fluidity
of the bilayer membrane of the liposomes. These results suggest that further studies on designing a theoretical
model for enhancing liposome stability, er by using optimizing liposome formulation or other strategies to
reduce membrane fludity, are imperative to support the development of strategies for the liposomal delivery of
drugs targeting hepatic stage malaria.

Methods
Materials. Primaquine bisphosphate (PQ) was purchased from Sigma-Aldrich (Rehovot, Israel), while
Chloroquine diphosphate (CQ) was obtained Sigma-Aldrich (Gyeonggi-do, South Korea). Hydrogen-

ated soybean phosphatidylcholine (HSPC) and I,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(m
y[polyethyleneglycol ]-2000) (DSPE-mPEG ), with an average molecular weight of 2800, were procured from
Nof Corporati okyo, Japan). Cholesterol was obtained from Wako Inc., Ltd. (Osaka, Japan). Calcein was
acquired from Nacalai 'I?que Inc. (Kyoto, Japan). KH,PO,, Na,HPO,, chloroform, and methanol were pur-
chased from Merck Inc. (Darmstadt, Germany). Sephadex® G-50 was obtained from Sigma-Aldrich (Steinheim,
Germany). Other reagents and materials used were of the finest grade available.

Preparation of liposomes. The liposomes were prepared by means of thin-film hydration® using the for-
mula listed in Table 3. All lipid components, including HS cholesterol, and DSPE-mPEG,, were initially
dissolved in chloroform before being homogenously mixed in a round-bottom flask. The organic solvent was
subsequently evaporated using a rotary evaporator to form a thin lipid layer which was then hydrated with cit-
rate buffer (pH 5.0) and extruded to produce liposomes of 100 rmq:ize. The extrusion process consistEpRt
passing through three membranes with various pore sizes; the first with a pore size of 400 nm, the second w1
a pore size of 200 nm and the third with a pore size of 100 nm. Each step involved passing liposomes 1gh
a polycarbonate membrane in 30 repeated cycles by means of an extruder kit with a heating block (Avanti®
Mini-Extruder, Avanti Polar Lipid Inc., Alabama, USA) at 55-60 °C. Furthermore, each drug was consfijhently
loaded using a pH gradient method. The liposomal outer phase was replaced by passing the liposomes through
a Sephadex” G-50 column saturated with phosphate-buffered saline (PBS, pH 7.4). The mixture was then mixed
with PQ and CQ solution and incubated 8 20 min at 60 °C. This was followed by separation of the PQ- and
CQ-loaded liposomes from the free drugs using a Sephadex® G-50 column (Sigma-Aldrich).

The molar ratio of HSPC:DSPE-mPEG2000:cholesterol was 59:5:36. Primaquine and chloroquine were
added by considering the weight ratios of the drugs to the lipid components of the liposomes, which were
1:10 for primaquine:total lipid in primaquine-loaded liposomes (Lipo-PQ), 1:3 for chloroquine:total lipid in
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chloroquine-loaded liposomes (Lipo-CQ), and 1:1:6 for primaquine:chloroquine:total lipid in liposomes loaded
with primaquine andiloroquine (Lipo-PQCQ).
2

[E3termination of particle size and C-potential of liposomes. The preparation was evaluated for
particle size anffpolydispersity index (PDI) via dynamic light scatteri nd {-potential was determined via
electrophoresis light scattering using a " Nano C Particle Analyzer at room temperature (25 | Approxi-
mately 100 pl of liposomes were diluted with 3 ml of distilled water and then placed into a cuvette to determine
the particle size, PDI, and {-potential.

Evaluation of encapsulation efficiency and drug loading capacit§El After PQ, CQ, and their com-
bination (PQCQ) had been loaded into liposomes, the mixtures were eluted through a Sephadex” G-50 column
with PBS 7.4 to separate free drugs from their encapsulated counterparts. The samples were then lysed with
methanol (50%, v/v), with PQ and CQ subsequently being determined by means of UV spectrophotometric
mefBibhd as previously reported®.

e encapsulation efficiency (EE) and loading capacity (LC) were calculated using Eqs. (1) and (2)

2 2
respectively*®*:

Amount of drug encapsulated

EE(%) = x 100, (1

Amount of drug encapsulated + Amount of free drug

LC(%) = Amount of drug encapsulated - 100 @

Total amount of drug + Total amount of liposomal components

Spectroscopy and crystallography of the liposomes. Fourier—mform infrared (FTIR) spectroscopy
of liposomes. The FTIR profiles of liposomes were analyzed using an R spectrophotometer [Shimadzu,
Kyoto, Japan). The freeze-dried liposomes were finely crushed and mixed with potassium bromide at a weight
ratio of 1:100. The mixture was then pressed in a mechanical mold to form thin and translucent pellets, which
were subsequently examined at wavenumbers of 4000-450 cm ™. The results of the infrared spectra obtained for
the samples were compared with the literature values.

@wder X-ray diffraction (P-XRD) analysis of liposomes. ERD analysis was performed using a PRD instru-
ment (Phillips X'Pert PRO PANalytical, Netherlands). Freeze-dried lipofeines were placed in a container and
flattened. This process was performed under the following conditions: Cu metal anode, Ka filter, voltage of
40 kV, 30 mA, and 2o of 5°-90°,

3
Differential thermal analysis (DTA) of h'posona. A DTA !strument (Mettler Toledo FP 85, Switzerland) was
used to perform a DTA. The dried liposomes were placed in aluminum crucibles and subsequently heated from
30 to 300 °C at a rate of 5 °C/min.

ﬁ:f&ar magnetic resonance (NMR) analysis of liposomes. The 'H NMR spectra of blank liposomes (Lipo-
Blank) and liposomes loaded with PQ (Lipo-PQ), CQ (Lipo-CQ), and both drugs (Lipo-PQCQ) were analyzed
usingOL 400 ECA spectrophotometer (JEOL, Tokyo, Japan) at 400 MHz", Approximately 5 mg of freeze-
dried samples were dissolved in CDCL; to produce a concentration of 10 mg/ml with the data integration sub-

sequently analyzed by computer using JEOL Delta v5.04.

Calcein release test as affjindicator of membrane leakage. Preparation of calcein-loaded li-
posomes.  The liposomes were co sed of HSPC, cholesterol, and DSPE-mPEG,, at a molar ratio of 55:40:5
using the thin-layer method. The thi lipid layer formed was then hydrated with a citrate buffer pH 5.0 con-
taining 17 mM calceirpollowed by the extrusion process using a 100-nm polycarbonate membrane. At the
next stage, the calcein-loaded liposomes were separated from free calcein by passing the liposomes through a
Sephadex® G-50 column saturated with PBS. The eluted liposomes were mixed with PQ and CQ solution, fol-

d by incubation at 60 °C for 20 min. Finally, to obtain liposomes loaded with calcein and PQ and/or CQ, the
iposomes were passed through a Sephadex” G-50 column saturated with PBS.

11

Calcein release study.  Calcein release was studied using the dialysis method*!. Liposomes containing equivalent
am of 2 mM calcein were inserted into the Spectra Por® 7 dialysis membrane with a MWCO of 3500 Da.
PBS pH 7.4 was used as the release medium with an agitation speed of 400€fm at 37 °C., Sampling was sub-
sequently conducted after 0.5, 1, 2, 4, 8, 12, 24, and 48 h, with each sample replaced with the same volume of
PBS pH 74, heated at 37 °C. The cumulative amount of calcein released from liposomes was determined using
a GloMax®-Multi + Detection System (Promega) in the fluorescence mode at Aex=490 nm and Aem=530 nm*.

Because of medium dilution during the release test procedure, the quantified amount of calcein was corrected
using the dilution factor contained in Eq. (3), as follows*:
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. a
Cr::CrH—E;Cs (3)

Description: Cn: measured percent drug release at tfele point n after correction; C'n: measured percent drug
release at time point n before correction; Cs: measured percent drug release at time point n - 1; a: volume of the
obtained sample (ml); b: volume of released medium (ml}.

Statistical analysis. All data were obta from three replicates and presented as the mean £5D. In addi-
tion, differences were further analyzed using one-way analysis of variance followed by the least significant differ-
ence test. Significance was indicated by p <0.05.

Ethical conduct of research statement. Thisarticle does not contain any studies with human and ani-
mal subjects performed by any of the authors.
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