Unique Role of Microbiota for Brain Development in Early Age by Ahmad Suryawan **Submission date:** 13-Sep-2022 11:55AM (UTC+0800) **Submission ID:** 1898575561 **File name:** C._19_Unique_Role_of_Microbiota_for_Brain_Development.pdf (993.61K) Word count: 2671 Character count: 16461 ### Unique Role of Microbiota for Brain Development in Early Age (Peran Unik Mikrobiota dalam Perkembangan Otak Anak Usia Dini) Ahmad Suryawan* *Departemen Ilmu Kesehatan Anak, Fakultas Kedokteran Universitas Airlangga, RSUD Dr. Sutomo, Surabaya #### Pendahuluan Keterkaitan antara otak dan mikrobiota saluran cerna telah lama dipelajari para ahli, namun demikian konsep adanya komunikasi dua arah dengan apa yang dinamakan "microbiota-gutbrain axis" baru mendapat perhatian yang luas dalam beberapa dekade terakhir ini.¹ Konsep tersebut mendorong para ahli untuk mengungkap lebih dalam lagi hipotesis yang menyatakan bahwa mikrobiota saluran cerna mempunyai peran penting dalam memprogram perkembangan otak anak hingga masa dewasa.² Dengan demikian tidak mengherankan bila muncul hipotesis lanjutan yang mengemukakan bahwa perubahan komposisi mikrobiota saluran cerna juga mempunyai keterkaitan dengan berbagai gangguan tumbuh kembang anak, seperti obesitas, kecemasan, autisme, dan gangguan perilaku lainnya.¹ ### Mikrobiota saluran cerna dan plastisitas otak di usia dini Plastisitas otak yang terjadi pada tahun-tahun pertama kehidupan anak ditandai dengan perubahan struktural dan fungsional yang dramatis di otak anak. Proses ini memerlukan tahapan migrasi, pembelahan, dan diferensiasi prekursor neuronal dan glial yang tepat waktu dan memadai.³ Plastisitas otak merupakan kunci dari keberhasilan perjalanan perkembangan anak normal, yang akan memodulasi keberlangsungan koneksi antar sinaps dan pembentukan jaringan sirkuit persarafan. Bila terjadi deviasi perjalanan perkembangan maka akan terjadi peningkatan risiko kerawanan mengalami berbagai gangguan fungsi otak dikemudian hari.¹ Saat ini terjadi peningkatan perhatian para ahli tentang adanya keterkaitan antara perkembangan otak dengan kolonisasi mikrobiota saluran cerna. Studi eksperimental membuktikan bahwa hewan coba yang bebas mikrobiota ternyata menunjukkan perkembangan otak yang abnormal.^{4,5} Studi pada hewan coba yang mengalami kekurangan mikrobiota menunjukkan perubahan ekspresi gen yang terlibat dalam proses neurofisiologi, seperti neurotransmisi, plastisitas neuron, metabolisme dan morfologi di amigdala dan hipokampus,^{6,7} serta juga menunjukkan peningkatan permeabilitas blood brain barier.⁸ Semua perubahan dalam proses perkembangan otak tersebut secara fungsional akan menunjukkan gejala-gejala berupa peningkatan respon stres,⁵ reaksi kecemasan dan ketakutan,^{9,10} defisit kognitif,¹¹ dan perubahan interaksi sosial.¹² Dengan demikian, dapat dikatakan bila tanpa adanya kolonisasi mikrobiota dalam saluran cerna akan menghasilkan perubahan yang dramatus dalam perkembangan dan fungsi otak. Fakta dasar adanya keterkaitan antara kolonisasi mikrobiota saluran cerna dan perkembangan otak anak Terdapat dua fakta utama yang dipergunakan sebagai dasar dugaan adanya keterkaitan antara kolonisasi mikrobiota saluran cerna dengan perkembangan otak anak pada saat usia dini. ^{13,14} Fakta Pertama, fakta bahwa periode kritis perkembangan otak anak terjadi secara paralel dan bersamaan dengan periode kritis kolonisasi mikrobiota saluran cerna, dimana terjadi interaksi dua arah yang ekstensif antara otak dan saluran cerna. Pada masa awal kehidupan, kedua sistem tersebut berkembang dengan pesat. Kolonisasi mikrobiota pada usia dini terjadi paralel dengan proses migrasi neuron di otak. Kemudian, perubahan kolonisasi mikrobiota saluran cerna hingga usia 2-3 tahun terjadi secara paralel dengan proses perkembangan aksonal, mielinisasi dan sinaptogenesis. Proses yang berlangsung secara fisiologis ini akan mengawali terciptanya kondisi dimana komposisi kolonisasi mikrobiota saluran cerna akan bersifat stabil dan tidak banyak mengalami perubahan lagi, dan sementara itu di otak akan terjadi proses konsolidasi sirkuit otak, yang keduanya terjadi pada masa *toddler* atau anak usia dini.¹⁴ Fakta Kedua, fakta bahwa terdapat perubahan komposisi mikrobiota saluran cerna di setiap tahapan perkembangan anak. Secara umum pada awal baru lahir saluran cerna akan didominasi oleh spesies Enterobacteria, namun pada beberapa hari kemudian akan digantikan oleh spesies bakteri anaerob, hingga pada bulan-bulan pertama spesies bifidobacterial akan mendominasi komposisi mikrobiota saluran cerna anak. Setelah itu, pada setiap peralihan tahapan perkembangan anak akan terjadi juga perubahan komposisi mikrobiota saluran cerna. Misalnya, pada saat perkembangan anak mencapai tahap untuk kemampuan awal untuk duduk di usia sekitar 6 bulan, dominasi mikrobiota beralih ke spesies clostridial. Setelah itu mikrobiota dari famili Ruminococcaceae akan semakin meningkat jumlahnya, dan saat anak mencapai usia sekitar 2 tahun, dimana anak mulai memasuki tahapan perkembangan bicara, komposisi mikrobiota akan didominasi oleh famili Bacteroidaceae, Lachnospiraceae, dan Ruminococcaceae, dan akan relatif bertahan sampai usia dewasa.¹³ Saat ini diketahui bahwa komunikasi dua arah antara otak dan saluran cerna ternyata dimodulasi oleh mikrobiota di dalam saluran cerna. Sehingga konsep "gut-brain axis" mengalami evolusi menjadi konsep "microbiota-gut-brain axis", yang menunjukkan adanya peran spesifik mikrobiota saluran cerna dalam perkembangan otak. Berbagai pendekatan, terutama berasal dari studi eksperimental, digunakan untuk mengungkap lebih dalam konsep tersebut sebagai dasar untuk mengetahui peran mikrobiota saluran cerna dalam perkembangan perilaku dan kecerdasan anak. 15,16 ## Konsep "Microbiota-Gut-Brain Axis" dan implikasinya dalam perkembangan otak anak Konsep *microbiota-gut-brain axis* merupakan sebuah konsep untuk menjelaskan interaksi dua arah antara saluran cerna dan otak, yang secara fungsional diperankan oleh mikrobiota di dalam saluran cerna. Para ahli mempunyai pendapat dan cara bervariasi dalam menjelaskan konsep interaksi dua arah tersebut, namun demikian kesemuanya bersifat saling melengkapi. Salah satu pendapat menyatakan bahwa studi eksperimental membuktikan bahwa peran mikrobiota dalam perkembangan dan fungsi otak dapat melalui berbagai cara yang cukup kompleks, seperti: (1) Pengaruh diversitas komposisi kolonisasi mikrobiota; (2) Peran jalur persarafan n. vagus; (3) Peran sistem imun dengan berbagai sitokin; (4) Peran metabolisme triptofan; (5) Peran neurometabolit mikrobiota; dan (6) Peran lapisan dinding sel mikrobiota. Perbagai mekanisme tersebut di atas, akan berjalan secara dua arah. Jalur dari atas ke-bawah (dari otak ke saluran cerna), dimana aktivitas dan fungsi otak akan mempengaruhi komposisi mikrobiota saluran cerna. Dan sebaliknya, jalur dari bawah ke-atas (dari saluran cerna ke otak). Peran perangan per Pendapat lain menyatakan adanya perubahan permiabilitas saluran cerna sebagai pemicu translokasi mikrobiota atau produk metabolit dari mikrobiota melalui barier intestinal, yang akan mengaktivasi respon imun dan peningkatan berbagai sitokin pro-inflamatori. Peristiwa ini akan memicu reaksi persarafan, hormonal, dan pelepasan neuro-peptida yang mempunyai efek langsung pada kerja dan fungsi otak. Demikian pula sebaliknya, bila terdapat gangguan fungsi otak, seperti dalam bentuk stres dan kecemasan, maka akan berdampak pada permiabilitas saluran cerna.¹⁹ Strategi pembuktian konsep *microbiota-gut-brain axis* awalnya dikembangkan lebih banyak berbasis pada studi eksperimental. Saat ini telah mulai banyak didapatkan bukti studi dari manusia, anak, dan bayi yang secara langsung atau tidak langsung menunjukkan berbagai peran penting mikrobiota saluran cerna dalam proses pembentukan dan perkembangan otak anak di usia dini. Sehingga tidak mengherankan konsep *microbiota-gut-brain axis* mempunyai implikasi yang meluas hingga ke ranah pertumbuhan anak, ²⁰ perkembangan perilaku-emosi, dan kecerdasan anak. ²¹⁻²⁵ Salah satu implikasi yang cukup menonjol pada dekade terakhir ini dari konsep *microbiota-gut-brain axis* adalah munculnya istilah "Psychobiotics", yaitu adanya penggunaan mikrobiota sebagai regimen dalam manajemen berbagai gangguan perkembangan dan psikologis pada anak.²⁶ Mikrobiota di dalam saluran cerna terbukti mempunyai kemampuan untuk memproduksi berbagai substrat neurokimiawi dan mentranspor berbagai neuropeptida yang berfungsi memodulasi sistem persarafan dalam saluran cerna (*enteric nervous system*) untuk kemudian menjalin komunikasi dengan otak anak, dan hasil akhirnya adalah adanya perubahan perilaku pada anak.^{26,27,28} Pemahaman tentang mekanisme peran mikrobiota saluran cerna dalam perkembangan fungsi otak akan membuka cakrawala baru dalam alternatif penanganan berbagai gangguan perkembangan dan perilaku pada anak. Hal tersebut diperkuat dengan identifikasi adanya disregulasi komposisi mikrobiota saluran cerna pada anak dengan gangguan kecemasan, ADHD, dan autisme.²⁹ Pemberian psikobiotik tertentu menampakkan hasil yang positif dengan berkurangnya berbagai gejala perilaku pada kondisi tersebut.³⁰ Namun demikian, bukti tersebut masih sangat terbatas dan belum dapat dipergunakan sepenuhnya untuk dapat menjawab apakah psikobiotik dapat digunakan sebagai regimen terapeutik pada anak dengan gangguan perilaku. Translasi dari studi ekesperimental binatang coba ke studi pada manusia, masih menghadapi berbagai tantangan isu teknis dan etis, terutama pada anak atau bayi.²⁸ Potensi mikrobiota saluran cerna sebagai salah satu bentuk strategi terapeutik dan nutrisional untuk perkembangan otak telah dan akan dikembangkan melalui berbagai studi. Bahkan, pada salah satu tinjauan ahli dimasukkan sebagai faktor kunci ke-empat yang menentukan perkembangan otak yang sehat dan normal, selain ketiga faktor lain yang sudah kita kenal sebelumnya: faktor genetik, faktor lingkungan pre-natal, dan faktor lingkungan pasca-natal.² Secara garis besar, studi pembuktian potensi tersebut dilakukan melalui pendekatan suplementasi diet dengan probiotik, prebiotik, sinbiotik, omega-3,^{2,31} diet tinggi serat yang dapat meningkatkan produksi SCFA oleh mikrobiota saluran cerna,²² hingga transplantasi feses.³³ # Harapan dan tantangan studi mikrobiota saluran cerna dan perkembangan otak di masa depan Pada satu dekade terakhir ini terdapat peningkatan yang pesat jumlah studi yang mengeksplorasi adanya kemungkinan peran mikrobiota saluran cerna dalam perkembangan fungsi otak dalam hal memori, proses belajar, kecemasan, dan berbagai gangguan perkembangan anak. Hal tersebut menimbulkan konsekuensi dalam bentuk pergeseran arah atensi para ahli untuk dapat membuktikan bagaimana mikrobiota dapat menjadi sebuah regimen terapi untuk memperbaiki dan meningkatkan kesehatan dan kemampuan otak anak. Sejumlah mekanisme yang diharapkan terungkap lebih dalam di masa depan untuk dapat menjelaskan kontribusi mikrobiota saluran cerna spesifik dalam perkembangan otak anak usia dini,³⁴ antara lain: - Efek imunologis dari mikrobiota saluran cerna spesifik dan peranannya dalam perkembangan dan berbagai gangguan perilaku pada anak. - Sebuah pemataan yang detail dan tepat dari neurotrasmiter otak yang diregulasi oleh mikrobiota saluran cerna spesifik, substansi hormonal dari neurotransmiter tersebut, dan mekanismenya dalam mengaktivasi aksis HPA. - Penjelasan tentang bagaimana caranya produk-produk mikrobiota saluran cerna, seperti SCFA, asam lemak dan berbagai peptida, dapat mempengaruhi fungsi otak melalui kerjasama dengan berbagai molekul imunologis dan neurologis. Sementara pemahaman tentang mekanisme yang mendasari peran mikrobiota pada fungsi otak masih sangat terbatas, saat ini masih terus dikembangkan berbagai studi melalui beberapa pendekatan, yang menampakkan hasil cukup menjajikan. Namun demikian, mayoritas studi tersebut masih berupa studi pre-klinis daripada studi uji klinis yang terkontrol. Sehingga untuk menutup keterbatasan ini, di masa depan diharapkan akan muncul metodologi standar dalam uji klinis di manusia, terutama pada anak dan bayi, yang spesifik pada area *microbiota-gut-brain axis*, analisis sampel bilogis yang lebih luas, dan menemukan biomarker yang spesifik.³⁴ ### Kesimpulan Studi tentang peran mikrobiota saluran cerna pada perkembangan otak anak usia dini semakin meningkat tajam jumlahnya, semakin dalam dan semakin luas, sepanjang satu dekade terakhir ini, yang membuka cakrawala alternatif strategi baru intervensi berbagai gangguan perkembangan anak yang berbasis mekanisme *microbiota-gut-brain axis*. Studi yang menekankan pada intervensi selama masa periode kritis pada otak anak usia dini memberikan klarifikasi bahwa pendekatan konsep *microbiota-gut-brain axis* lebih mempunyai peluang dalam hal preventif dibandingkan terapeutik untuk gangguan otak atau perkembangan anak. Masih dibutuhkan berbagai penelitian uji klinis yang bersifat *randomized controlled trial* pada bayi dan anak di masa depan yang dapat menjawab berbagai hipotesis yang saat ini belum dapat dijelaskan sepenuhnya, sebelum menyimpulkan bahwa terdapat manfaat yang spesifik dari mikrobiota dalam manajemen gangguan perkembangan dan fungsi otak pada anak. #### Daftar Pustaka - Codagnone MG, Stanton C, O'Mahony SM, Dinan TG, Cryan JF. Microbiota and Neurodevelopmental Trajectories: Role of Maternal and Early-Life Nutrition. Ann Nutr Metab 2019;74(suppl 2):16–27. - 2. Codagnone MG, Spichak S, O'Mahony SM, dkk. Programming bugs: microbiota and the developmental origins of brain health and disease. Biol Psychiatry. 2019;85(2):150–63. - 3. Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci 2018;19(4):215–34. - 4. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011;23(3):255–64. - Clarke G, Grenham S, Scully P, dkk. The microbiome- gut-brain axis during early life regulates the hippocampal serotonergic system in a sexdependent manner. Mol Psychiatry 2013;18(6):666–73. - Stilling RM, Ryan FJ, Hoban AE, dkk. Microbes & neurodevelopment—absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun 2015;50:209–20. - 7. Chen JJ, Zeng BH, Li WW, dkk. Effects of gut microbiota on the microRNA and mRNA expression in the hippocampus of mice. Behav Brain Res 2017;322 Pt A:34–41. - 8. Braniste V, Al-Asmakh M, Kowal C, dkk. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014;6(263):263ra158. - 9. Diaz Heijtz R, Wang S, Anuar F, dkk. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011;108(7):3047–52. - 10. Hoban AE, Stilling RM, Moloney G, dkk. The microbiome regulates amygdala-dependent fear recall. Mol Psychiatry 2018;23(5):1134–44. - 11. Gareau MG, Wine E, Rodrigues DM, dkk. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011;60(3):307–17. - 12. Sgritta M, Dooling SW, Buffington SA, dkk. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 2019;101(2):246–259.e6. - 13. Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM and Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol 2014;5:427. - Wang A, Harvey L, Martin R, dkk. Targeting the gut microbiota to influence brain development and function in early life. Neuroscience and Biobehavioral Reviews 2018;95:191–201. - Cerdó T, Ruíz A, Suárez A, Campoy C. Probiotic, Prebiotic, and Brain Development. Nutrients 2017;9:1247. - Skonieczna-Zydecka K, Marlicz W, Misera A, Koulaouzidis A, Łoniewski I. Microbiome - The Missing Link in the Gut-Brain Axis: Focus on Its Role in Gastrointestinal and Mental Health. J Clin Med 2018; 7:521. - 17. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13, 701–712. - 18. Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity 2014;38:1–12. - 19. Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases. J Neurogastroenterol Motil 2016;22:201-212. - 20. Onubi OJ, Poobalan AS, Dineen B, Marais D, McNeill G. Effects of probiotics on child growth: a systematic review. J Health Popul Nutr 2015;34:8. - 21. Pärtty A, Kalliomäki M, Wacklin P, Salminen S, Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res 2015;77(6):823-828. - 22. Luk B, Veeraragavan S, Engevik M, dkk. Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice. PLoS One 2018;13(5): e0196510. - 23. Lacorte E, Gervasi G, Bacigalupo I, dkk. A Systematic Review of the Microbiome in Children With Neurodevelopmental Disorders. Front Neurol 2019;10:727. - Sordillo JE, Korrick S, Laranjo N, dkk. Association of the Infant Gut Microbiome With Early Childhood Neurodevelopmental Outcomes. An Ancillary Study to the VDAART Randomized Clinical Trial. JAMA Netw Open 2019;2(3):e190905. - 25. Laue HE, Coker MO and Madan JC. The Developing Microbiome From Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Front Pediatr 2022;10:815885.doi: 10.3389/fped.2022.815885. - Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry 2013;74:720–726. - 27. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 2011;33:574–581. - Lowry CA, Smith DG, Siebler PH., dkk. The Microbiota, Immunoregulation, and Mental Health: Implications for Public Health. Curr Envir Health Rpt. 2016;3:270–286. - Iglesias-Vázquez L, Van Ginkel RG, Arija V, Canals J. Composition of gut microbiota in children with autism spectrum disorder: a systematic review and meta-analysis. Nutrients 2020;12:3. - 30. Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the Force Be With You: The Light and Dark Sides of the Microbiota–Gut–Brain Axis in Neuropsychiatry. CNS Drugs 2016;30:1019–1041. - 31. Gibson GR, Hutkins R, Sanders ME, dkk. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017;14(8):491–502. - 32. de Wouters DA, Rastelli M, Van Hul M, Delzenne NM, Cani PD, Everard A. Gut microbes participate in food preference alterations during obesity. Gut Microbes 2021;13(1):1959242. - 33. Liu X, Li X, Xia B, dkk. High-fiber diet mitigates maternal obesity induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metab 2021;33(5):923-938.e926. - 34. Chakrabarti A, Geurts L, Hoyles L, dkk. The microbiota—gut—brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cellular and Molecular Life Sciences 2022;79:80 https://doi.org/10.1007/s00018-021-04060-w. ### Unique Role of Microbiota for Brain Development in Early Age **ORIGINALITY REPORT** SIMILARITY INDEX **INTERNET SOURCES** **PUBLICATIONS** STUDENT PAPERS **PRIMARY SOURCES** saripediatri.org Internet Source www.nestlenutrition-institute.org Internet Source Exclude quotes Off Exclude matches < 3% Exclude bibliography ### Unique Role of Microbiota for Brain Development in Early Age | GRADEMARK REPORT | | |------------------|------------------| | FINAL GRADE | GENERAL COMMENTS | | /0 | Instructor | | | | | PAGE 1 | | | PAGE 2 | | | PAGE 3 | | | PAGE 4 | | | PAGE 5 | | | PAGE 6 | | | PAGE 7 | | | PAGE 8 | | | PAGE 9 | | | PAGE 10 | |