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A R T I C L E  I N F O   
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A B S T R A C T   

The use of stem cells is a breakthrough in medical biotechnology which brings regenerative therapy into a new 
era. Over the past several decades, stem cells had been widely used as regenerative therapy and Mesenchymal 
Stem Cells (MSCs) had emerged as a promising therapeutic option. Currently stem cells are effective therapeutic 
agents againts several diseases due to their tissue protective and repair mechanisms. This therapeutic effect is 
largely due to the biomolecular properties including secretomes. 

Injury to peripheral nerves has significant health and economic consequences, and no surgical procedure can 
completely restore sensory and motor function. Stem cell therapy in peripheral nerve injury is an important 
future intervention to achieve the best clinical outcome improvement. Adipose mesenchymal stem cells 
(AdMSCs) are multipotent mesenchymal stem cells which are similar to bone marrow-derived mesenchymal stem 
cells (BM-MSCs). The following review aims to provide an overview of the use of AdMSCs and their secretomes in 
regenerating peripheral nerves.   

1. Peripheral nerve injury 

Peripheral nerve injury is a health problem which can cause signif-
icant disability. Peripheral nerve injury is defined as injury to the major 
peripheral nerves on the distal side of the nerve root [1]. Peripheral 
nerve injury can result in severe morbidity for those suffering from 

sensory loss, motor loss, chronic pain or a combination of those symp-
toms [2]. 

2. Epidemiology 

In the United States, as many as 1.4 million injuries occur annually, 
and these injuries usually cause significant functional impairment. 
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Based on several studies, trauma is the most common cause of these 
injuries. It is estimated that 2.8–5% of all trauma patients have pe-
ripheral nerve injury [3]. 

The most common pathophysiology of peripheral nerve injury is 
traction injury. The natural elasticity of the endoneurium and perineu-
rium of the peripheral nerves allows the nerve to be stretched within the 
collagen fibers. If a heavy traction is applied to the nerves, the avulsion 
can cause anatomic disturbances and complete loss of function. Peri-
neurium has greater elastic strength than endoneurium. Therefore, 
elasticity is maintained within the stretch-injured nerve until the peri-
neurium is devitalized. Peripheral nerve lacerations resulting from 
penetrating trauma from the knife and glass account for up to 7% of all 
brachial plexus lesions. These injuries are usually partial, with the 
injured nerve segment still present. Another common cause of periph-
eral nerve injury is direct compression on the nerve. Pressure on this 
nerve causes mechanical compression and ischemia. Early microvas-
cular damage to nerves can usually be reversed if the adverse mecha-
nism is stopped within 8 h of the initial injury [4]. 

3. Pathophysiology 

There are 3 main cells in the peripheral nervous system (PNS): 
axonal, glial and stromal cells, arranged in long efferent (motor) and 
afferent (sensory) fibers that convey information to and from the central 
nervous system. Nerve fibers in the peripheral nervous system, which 
convey sensory and motor information between the brain, spinal cord, 
and other parts of the body, regenerate more easily than nerve fibers in 
the central nervous system. Unlike central nervous system, neurons in 
the peripheral nervous system have full regenerative potential after 
injury. After injury, recovery is controlled by Schwann cells which 
replicate and modulate the subsequent immune response [4,5]. 

The peripheral nervous system transmits sensory and motor impulses 
from the central nervous system to targets throughout the body. This 
nervous system consists of neurons, glial cells (including Schwann cells), 
and the supporting stroma. After injury, neurons undergo altered ge-
netic expression leading to release of neurotrophic factors and upregu-
lation of their corresponding receptors. These factors support the axonal 
lengthening of the injured nerve from its proximal fragment. The 
damaged axons in the distal nerve fragments undergo degeneration, a 
process called Wallerian degeneration. Schwann cells (SC) and infil-
trating macrophages support this process by clearing myelin debris and 
secreting neurotrophic factors. In addition, macrophages support the 
angiogenesis process and form connective tissue bridges in the nerve 
clefts. Schwann cells form an endoneurial tube called the Büngner band, 
which serves as a guide for the axonal regeneration process which starts 
from a growth cone, usually located at the Ranvier’s node (Fig. 1). The 
rate of recovery is most likely directly related to the level of injury [3]. 

When the axons regenerate, they often get misdirected and do not 
reach the desired target. This condition leading to the formation of a 
benign tumor, known as neuroma, due to a disorganized growth of cells 

associated with peripheral nerves when there is an injury, such as crush, 
stretch or transection. Neuroma may often cause increasing response of 
nerves and pain sensitization (allodynia), a pain response from stimuli 
that normally do not provoke pain [6]. 

3.1. Classification 

The classification of peripheral nerve injury was first described by 
Seddon and subsequently defined by Sunderland, based on the degree of 
injury. According to Sunderland, first degree injury is the result of 
conduction block and is also referred to as neuropraxia. Recovery is 
complete and usually lasts from a few days to months. Second-degree 
injuries result from axonal disturbances and are called axonotmesis in 
the Seddon classification, whereas third-degree injuries affect the axons 
and endoneurium. Recovery occurs spontaneously and the nerve re-
generates at about 1 inch/month, with second degree injuries fully 
recovered, but only partial recovery can be expected in third degree 
injuries. Sunderland’s fourth and fifth degree injuries (neurotmesis in 
Seddon’s classification) have disturbances in the perineurium, and both 
perineurium and epineurium. This category includes nerve avulsions 
and transection, which require surgical intervention [3]. 

3.2. Regenerative process 

Schwann cells have regenerative abilities after peripheral nerve 
injury. Myelinated Schwann cells and those which are not myelinated 
are reprogrammed to become Schwann cell progenitors which prolif-
erate and promote the whole regeneration processes [7–9]. This 
reprogramming process under physiopathological conditions is defined 
as dedifferentiation or transdifferentiation (Fig. 2), because in addition 
to re-expressing immature Schwann cell markers, Schwann cell repair 
exhibits completely different features [10]. Injury that induces conver-
sion to mature Schwann cells in cells that are promoted to regenerate is 
an active phenomenon. This involves downregulation of 
pro-myelinating genes including Early Growth Response-2 (EGR-2) 
which is more commonly called Krox-20, POU domain class 3 tran-
scription factor 1 (Pou3f1 or Oct-6), Myelin Zero Protein (Myelin Protein 
Zero)/MPZ) or Myelin Basic Protein (MBP), as well as upregulation of 
markers for immature and differentiated Schwann cells such as c-Jun, 
low affinity neurotropin receptor (P75NTR) or Glial Fibrilar Acid Pro-
tein (GFAP) and it is also supported by gene-specific repair [11]. After 
damage, the neural network undergoes a complex series of multicellular 
and molecular events played by Schwann’s cells as orchestrators. 

Immediately after a nerve injury, the damaged axon on the distal side 
degenerates in an active process called Wallerian degeneration. An un-
identified signal from the damaged nerve causes reprogramming of 
Schwann cells. These regulating pro-myelin genes begin to clear their 
myelin sheath via an autophagic mechanism called myelinophagia [12, 
13]. Axonal and myelin debris are also cleared by resident macrophages 
and blood-derived-macrophages recruited by Schwann cells [14–16]. An 

Abbreviations 

AdMSCs Adipose derived Mesenchymal Stem Cells 
BDNF Brain derived neurotrophic factor 
BM-MSCs Bone Marrow Mesenchymal Stem Cells 
CM Conditioned Media 
DFX Deferoxamine 
ECM Extra Cellular matrix 
EGR2 Early Growth Response 2 
EVs Extracellular Vesicles 
GDNF Glial-cell line Derived Neurotrophic Factor 
GFAP Glial Fibrilar Acid Protein 

HIF-1α Hypoxia Inducible Factor 1 alpha 
LIF Leukemia Inhibitory Factor 
MBP Myelin Basic Protein 
MPZ Myelin Protein Zero 
MSCs Mesenchymal Stem Cells 
PNI Peripheral Nerve Injury 
PNS Peripheral Nervous System 
SCs Schwann Cells 
SVF Stromal Vascular Fraction 
TGF-β: Transforming Growth Factor-β 
VEGF-A: Vascular Endothelial Growth Factor-A  
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inflammatory reaction occurs, many blood cells migrate to the area of 
the lesion and secrete many cytokines and chemokines [17–19]. After 
nerve axotomy, the basal lamina of Schwann cells and connective tissue 
is severed [20]. A tissue bridge is formed between the two nerve endings 
over the site of the lesion. Fibroblasts play a major role in building this 
bridge by interacting with Schwann cells [21]. The newly formed blood 
vessels play an important role in guiding the growing Schwann cells and 
axons through the lesion site [22]. Many chemical and physical in-
teractions occur in the injured nerve, creating a permissive and benefi-
cial environment for regeneration [23]. 

Schwann cells at the distal end proliferate, secreting several trophic 
factors that support glial and neuronal survival and regrowth including 
artemin, Brain-Derived Neurotrophic Factor (BDNF) or Glial cell line- 
Derived Neurotrophic Factor (GDNF) [24–26]. They also form a band 

called the Büngner band and provide trophic and physical support for 
the axons to properly regrow and re-energize their targets [12,27]. In 
the neuromuscular junction, specialized terminal Schwann cells direct 
reinnervation by helping axons find their way to the appropriate site 
[28]. After axonal regeneration, Schwann cells immediately exit the cell 
cycle and redifferentiate into myelinated and unmyelinated Schwann 
cells to support complete functional recovery. However the newly 
formed myelin sheath is shorter and thinner than expected based on the 
axonal diameter [12]. 

The regenerative process can also be observed in the conduit which 
consists of five phases: (1) fluid phase, (2) matrix phase, (3) cellular 
migration phase, (4) axonal phase, and (5) myelination phase. 

In the first phase, there is an inflow of plasma, which contains neu-
rotrophic factors and an extracellular matrix, from both the proximal 
and distal nerve fragments which peak at 3–6 h. Next, acellular fibrin 
cords are formed between the nerve fragments, starting within 1 week. 
In the third phase, Schwann cells migrate along the fibrin cord of the 
nerve fragments to form Bünger bands. During the axonal phase, nerve 
sprouting is guided by the Bünger band from the proximal to distal nerve 
fragment and reaches its target after approximately 2–4 weeks. Finally, 
in the fifth phase, Schwann cells transform into a myelinated phenotype 
to form myelinated axons 6–16 weeks after repair initiation. When the 
fibrin cord decreases about 2 weeks after repair, any gaps that 
Schwann’s cells cannot pass within this period will remain, resulting in a 
critical limit of 3–4 cm [3]. 

3.3. Mesenchymal stem cells/MSCs 

Mesenchymal stem cells/MSCs are unspecified cells that can be iso-
lated from various tissues in the body including bone marrow, adipose 
tissue, dermal tissue, umbilical cord blood, and synovial fluid [29]. 
MSCs are currently effective agents for the treatment of many diseases, 
due to their tissue protective and reparative mechanisms. The thera-
peutic effectiveness of MSC has been demonstrated by many clinical 
trials worldwide, with most diseases being treated [30]. 

3.4. Adipose-derived mesenchymal stem cells (AdMSCs) 

Adipose-derived Mesenchymal Stem Cells/AdMSCs, have been 
shown to have broadly the same biological capabilities as Bone Marrow 
Mesenchymal Stem Cells (BM-MSCs). The advantages of AdMSCs over 
BM-MSCs and other types of adult stem cells are relatively easy to obtain 
from liposuction performed under local anesthesia, can be obtained in 
large quantities, able to maintain long-term phenotype and plasticity in 
vitro culture and have low immunogenicity. Thus AdMSCs are attractive 
and are the most preferred cell type for tissue engineering and regen-
erative medicine [31–33]. 

There are more stem cells from adipose tissue than stem cells from 
bone marrow. One gram of aspirated adipose tissue yielded approxi-
mately 3.5 × 105 to 1 × 106 AdMSCs, whereas isolation from 1 g of 
aspirated bone marrow resulted in 5 × 102 to 5 × 104 bone marrow- 
derived MSCs (BM-MSCs). In addition, AdMSCs have advantages in 
terms of proliferation and differentiation as well as age and location of 
origin which do not have major difference in its therapeutic effect [34]. 

AdMSCs are considered ideal for applications in regenerative ther-
apy. Their main advantage over mesenchymal stem cells derived from 
other sources, is that they can be easily and repeatedly harvested using 
minimally invasive techniques with low morbidity. These cells are 
multipotent and can differentiate into various cell types from the trigerm 
lineage, including for example osteocytes, adipocytes, nerve cells, 
vascular endothelial cells, cardiomyocytes, pancreatic cells, and hepa-
tocytes. Interestingly, AdMSCs are characterized by immunosuppressive 
properties and low immunogenicity. Their secretion of trophic factors 
strengthens the therapeutic and regenerative results in a variety of ap-
plications. Taken together, the secretion of these trophic factors makes 
AdMSCs highly relevant for clinical applications [35]. 

Fig. 1. Degeneration and regeneration of peripheral nerves after injury.  

T. Sumarwoto et al.                                                                                                                                                                                                                            



Annals of Medicine and Surgery 67 (2021) 102482

4

Zuk and colleagues were the first team to investigate whether human 
adipose could be an alternative source of Mesenchymal stem cells 
(MSC). These authors obtained human adipose from aspiration of lipo-
suction and used the collagenase enzyme to release stromal cells from 
extracellular matrix by processing the stromal vascular fraction (SVF), 
which contains various types of cells including AdMSCs. The isolated 
adipose stromal cells were cultured with specified media to induce 
adipogenic, osteogenic, or chondrogenic differentiation. Adipose stro-
mal cells are capable of developing intracellular lipid stores, alkaline 
phosphatase expression, or proteoglycan expression, markers that indi-
cate adipose tissue, bone, and cartilage, respectively [36]. 

To determine whether isolated adipose stromal cells are indeed stem 
cells, Zuk et al., examined antigen expression as well as surface and 
differentiation capacity of clonogenic cultures. Using flow cytometry, it 
was shown that clonogenic cells express surface antigens similar to bone 
marrow mesenchymal stem cells. In addition to differentiation of the 
mesenchymal lineage, clonal cells are capable of differentiating into 
neuron-like cells, as judged by morphology and expression of pheno-
typic markers. AdMSCs also tend to stimulate angiogenesis, an impor-
tant feature for regenerative purposes [37–39]. 

Neurotrophic and angiogenic properties are due to the secretion of 
Nerve Growth Factor (NGF), Brain-derived Neurotropic Factor (BDNF), 
Glial Cell-derived Neurotrophic Factor (GDNF), Vascular Endothelial 
Growth Factor-A (VEGF-A) and angiopoietin-1 [40]. The secretome of 
AdMSCs is complex, AdMSCs have the ability to secrete proteins 
involved in angiogenesis, wound healing, tissue regeneration and 
immunomodulation [41]. AdMSCs have the capacity to differentiate 
into Schwann cells. Thus, AdMSCs have properties, important for injury 
healing and can be an attractive source of stem cells for tissue engi-
neering as well as regenerative therapy [42]. 

Determining whether adipose tissue is a source of MSCs comparable 
to bone marrow, a comparison of the yield and differentiation capacity 
of cells isolated from each tissue was performed. de Ugarte et al., found 
no significant difference in the number of cultured adherent cells per 

gram of stromal cells obtained from bone marrow or adipose tissue. 
However more than double the mean mass of adipose tissue (17 gr) 
could easily be isolated from each patient compared to bone marrow 
(7gr). There was no difference in the number of cells that developed 
lipid droplets (adipogenic cells) or osteogenic cells phosphate alkaline 
activity at cultured isolated cells in various differentiation media. When 
induced to differentiate into cartilage, adipose derived cells were stained 
positive for chondrogenesis but absent for bone marrow derived cells 
[43]. 

Several other studies have compared the ability of bone marrow and 
adipose cells to differentiate along this lineage using a similar method, 
and demonstrated that cells from both tissues have the same capacity to 
become adipose, bone and cartilage [44–46]. 

Carbone et al., demonstrated that AdMSCs cultured in conditioned 
media from chondrocytes and osteocytes were capable of producing 
glycosaminoglycans and mineralized matrix. These results suggest that 
AdMSCs require growth factor supplementation from the tissue envi-
ronment in order to properly differentiate with mesodermic lineages. 
This evidence suggest that compared to bone marrow, a large number of 
MSCs capable of differentiating multiple lineages could also be obtained 
from adipose tissue [47]. 

3.5. Secretome of adipose derived mesenchymal stem cell (AdMSCs) 

Initially, it was believed that the therapeutic effect of AdMSCs came 
from the migration of these cells to damaged tissue and subsequent 
homing, proliferation and differentiation to replace damaged or dead 
host cells. This mechanism of action was redefined in the early twenty- 
first century when for the first time, Gnecchi and colleagues demon-
strated that MSCs mediate their therapeutic effect by releasing a para-
crine factor, known as secretome [30]. The MSC secretome is a complex 
mixture of dissolved products consisting of a soluble protein fraction 
(formed by growth factors and cytokines), and a vesicular fraction 
consisting of microvesicles and exosomes, which are involved in the 

Fig. 2. Schwann cells response to nerve injury.  
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transfer of protein and genetic material (e.g. microRNA) to other cells, 
with promising therapeutic effects [48]. 

Recently there has been a renewed debate about the regenerative 
effect of these cells. It remains unclear whether AdMSCs exhibit their 
main effect directly by differentiating into mature cells at the implan-
tation site, or by their paracrine effect of multiple growth factors 
prominently to promote regeneration/remodeling and modulate 
inflammation in tissue [49]. 

The regeneration potential of AdMSCs and therapeutic value also lie 

in their secretome, which is rich in extracellular proteins and growth 
factors (Fig. 3) [50]. 

A number of studies have shown that secretomes contain immuno-
modulatory, anti-inflammatory, anti-apoptotic, anti-oxidant, anti- 
fibrotic, anti-bacterial, and neuroprotective properties. Therefore, it can 
be used in various diseases and represents a ready-made therapeutic 
agent [51]. 

Secretomes are hypothesized to enhance endogenous repair and 
immunomodulating mechanisms. It has even now been proposed that 

Fig. 3. Secretome of AdMSCs, contain cytokines, growth factors, angiogenic factors, adipokines and neurotrophic factors, so AdMSCs have ability to regenerate and 
repair the injured tissue. 
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MSCs are medicinal signaling cells to reflect their mechanism of action 
more accurately. This increases the likelihood of administering MSCs- 
derived products as therapy rather than implanting the cells them-
selves, which would overcome some of the major clinical challenges of 
MSCs-based therapy [29]. 

Caplan in 2017 has proposed changing the name of MSCs from 
Mesenchymal Stem Cells to Medicinal Signaling Cells in order to more 
accurately demonstrate the fact that these cells are at the site of injury or 
disease sites and secrete bioactive factors, immunomodulators and 
regenerative trophic factors, meaning that these cells make in situ 
therapeutic agents of a medical nature. And the presence of bioactive 
factors secreted by MSCs after being supplied exogenously, is able to 
stimulate site-specific resident stem cells and patient-specific tissue to 
build new tissue for the regeneration process [52]. 

3.6. The advantages of secretomes 

Using a free cell therapy strategy such as the administration of MSCs 
secretomes provides a major advantage over stem cell transplantation 
(Fig. 4). First, secretomal strategies address cell survival after trans-
plantation; second, secretome compounds fewer cell surface protein 
expression giving lower immunogenicity when compared to living cells 
and proliferative cells [53]; third, using the secretome as a ready-to-use 
product greatly reduces the immensely high cell counts for trans-
plantation (7 × 10 [6] cells/kg), as well as the possible phenotypic 
changes and therapeutic potential due to the expansion of in vitro MSCs 
long before transplantation; fourth, higher rates of production are 
possible through the use of dynamically controlled laboratory condi-
tions (eg bioreactors) [48], providing a suitable source of bioactive 
factors; fifth, in the form of conditioned media, the use of MSCs 

secretome is more economical and practical for clinical applications 
because it avoids invasive cell collection procedures; sixth, the MSCs 
secretome obtained for therapeutic applications can be modified as 
desired; seventh, the time and costs of developing and maintaining 
cultured stem cells can be greatly reduced and ready-to-use secretory 
therapies are readily available for therapy; eighth, MSCs secretomes can 
be evaluated for safety, dosage and potency in a manner similar to 
conventional pharmaceutical compounds; and lastly, the MSCs secre-
tome can be stored safely without loss of its potency, regardless of the 
use of potentially toxic cryoprotectant agents [53]. 

The MSCs secretomes contain many cell signaling molecules, 
including growth factors and cytokines that modulate cell behavior such 
as proliferation, differentiation, and extracellular matrix production or 
exert pro-inflammatory and anti-inflammatory effects. 

Recent study has provided evidence that MSCs also secrete small 
membrane-bound extracellular vesicles (EV) inviting a number of bio-
molecules, including not only growth factors and cytokines but also 
various forms of RNA capable of triggering various biological responses 
throughout the organism [29]. 

4. Adipose derived mesenchymal stem cells and its secretome in 
peripheral nerve injuries 

Over the last decade, a number of studies have emerged supporting 
the neuroprotective and neurotrophic effects of secretory MSCs (Fig. 5). 
In fact, it is known that the MSCs conditioned media contains a number 
of neurotrophic factors. Several studies have reported the beneficial 
effects of MSCs-based approaches in neuronal injury models. These ef-
fects include modulation of the environment at the site of inflammation, 
increased vascularization at the site of regeneration, increased thickness 

Fig. 4. The advantages of the secretome.  
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of the myelin sheath, modulation of the stage of Wallerian degeneration, 
accelerated regeneration of nerve fibers and increased number of nerve 
fibers, decreased scar fibrosis, and increased nerve fiber organization 
[53]. 

The analysis of substances examination showed that the secretome 
contains increased concentrations of FGF, VEGF-A, and NGF which play 
a role in the health of nerve tissue and blood vessels. In addition, 
AdMSCs are known as immunomodulators through the regulation of 
immune cells through mechanisms that include direct cellular contact 
and the release of dissolved factors such as TGF-β, IL-10, LIF and others 
[54]. 

In experimental mice model, Brini et al., demonstrated the effects of 
both human mesenchymal stromal cells of adipose tissue (hASC) and 
their conditioned media (hASC-CM) on neuropathic diabetes. Both 
restored the correct pro/anti-inflammatory cytokine balance and pre-
vented the loss of innervation of the skin [54]. 

Many studies have shown the ability of AdMSCs to increase nerve 
regeneration in experimental animal models with peripheral nerve 
injury, but how to increase nerve regeneration remains unclear. An 

unanswered question that seems to have great relevance at present is “Is 
the tissue regeneration directed by AdMSCs a result of their differenti-
ation into the desired cell type, or do AdMSCs initiate the healing pro-
cess (regeneration) by influencing the surrounding tissue via a paracrine 
signaling mechanism ?” Regarding nerve regeneration, does the ability 
of AdMSCs as neurotrophic mediators trigger an intrinsic healing 
response that result in nerve regeneration ? A review of the current 
literature on the use of AdMSCs in peripheral nerve regeneration has 
been conducted and compared different approaches to transplantation, 
differentiation and utilization of these cells in models peripheral nerve 
injury. The answers to these questions will substantially assist the 
development of a comprehensive cell-based regenerative approach to 
the management of the peripheral nerve injury using the AdMSCs that 
accompany in vitro cell differentiation [33,55]. 

The function of paracrine AdMSCs in nerve regeneration is related to 
the role of dissolved growth factors. These growth factors can induce 
vascularity, protect tissue or suppress host inflammatory pathways to 
promote healing [33]. Like BM-MSCs that secrete several growth factors, 
namely insulin-like growth factor-1 (IGF-1), vascular endothelial growth 

Fig. 5. Immunomodulatory and trophic effects on mesenchymal stem cells.  

T. Sumarwoto et al.                                                                                                                                                                                                                            



Annals of Medicine and Surgery 67 (2021) 102482

8

factor (VEGF), fibroblast growth factor 2 (FGF-2), platelet-derived 
growth factor (PDGF) and BDNF [56,57]; AdMSCs showed the same 
gene expression characteristics in the study by comparing the expression 
profiles of neurotrophic factors of the two sources of MSCs [58] and also 
express level of certain growth factors such as VEGF, CNTF and NGF [39, 
58,59]. The similar neutrophin secretion by these two sources of MSCs 
suggests that they could be promising MSCs as neurotrophic modulators 
of nerve regeneration. These paracrine factors are called secretomes and 
could be central to a new theory of tissue regeneration modulated by the 
secretion of specific solute factors [60]. 

The number of soluble growth factors secreted by AdMSCs includes 
VEGF, hepatocyte growth factor (HGF), NGF, BDNF and a number of 
interleukins [60]. VEGF is considered to be the most important secre-
tome involved in the transformation of in vivo healing, through 
increased vascularity and neoangiogenesis which form the backbone of 
regenerative events [61–64]. Associated with this angiogenic-derived, 
hypoxia becomes a stimulus for VEGF-induced vascularization. The 
conditioned media, obtained from AdMSCs under hypoxic culture con-
ditions, has been used to increase the production of HGF, VEGF and 
transforming growth factor-β (TGFβ), increase endothelial cell growth, 
and reduce apoptosis [65]. Currently, secretomes are thought to be 
involved in the regeneration of various types of tissue and in patho-
physiological healing responses. In the context of nerve regeneration, 
VEGF, basic fibroblast growth factor (bFGF), HGF are important growth 
factors, as well specific growth factors/neurotrophins such as BDNF, 
NGF, GDNF, and neurotensin-1 (NT-1) relevant to this process [66]. 

Although AdMSCs have the ability for neurogenic transformation, 
most of the in vivo studies have not demonstrated direct differentiation 
of AdMSCs transplanted into neurons [33]. Many researchers now 
consider the regeneration capacity of AdMSCs to be more possible 
through paracrine factors than differentiation of AdMSCs [67–70]. This 
effect is due more to the secretion of neurotrophic factors by the 
AdMSCs. Several studies have shown that certain neurotrophic factors 
such as BDNF, NGF, and GDNF are increased in conditioned media from 
culture of AdMSCs [33,68,71–73]. AdMSCs were able to promote 
intrinsic healing using host cells under the orchestration of resident 
Schwann cells. In addition, there is a role for paracrine factors in the 
immunosuppressive effects of AdMSCs [33]. 

Administration of AdMSCs to sciatic nerve injury has been shown to 
accelerate functional recovery in mice. This peripheral nerve regener-
ation mechanism involves the ability of AdMSCs to synthesize factors 
such as BDNF, bFGF, and IGF-1 in vitro and the ability of AdMSCs to 
induce GDNF production by Schwann cells in vivo. AdMSCs do not 
appear to produce GDNF in vitro. GDNF is an important trophic factor 
for neuronal survival, and the ability of AdMSCs to induce GDNF pro-
duction by Schwann cells, despite the lack of GDNF production in cell 
culture, provides convincing evidence for the use of AdMSCs as a 
powerful neuromodulator in nerve repair [74]. 

The neuromodulatory effect of AdMSCs is very interesting, given the 
limited availability of Schwann cells and the difficulty in purifying them 
[75]. The effect of AdMSCs in injured mice was an increase in fiber 
growth and a decrease in inflammatory infiltrates. The results of the 
research by Marconi et al. (2012) led them to the conclusion that the 
effect of AdMSCs in the repair of sciatic nerve damage involves autocrine 
and paracrine mechanisms. 

AdMSCs are reported to synthesize and release NGF, BDNF, GDNF; 
and secrete NGF, BDNF, neurotrophin-3 (NT-3), GDNF, CNTF, and leu-
kemia inhibitory factors (LIF) [74,76,77]. In addition, Lopatina et al. 
(2011) demonstrated increased mRNA coding levels for some of these 
neurotrophins at the site of injury in animals transplanted with AdMSCs. 
The most commonly measured neurotrophic factors are NGF, BDNF and 
GDNF. 

Factors secreted by mesenchymal stem cells can have an immuno-
modulatory effect or a regenerative/reparative (trophic) effect. Immu-
nomodulatory factors (immunoregulation) provide an antiproliferative 
effect on T-cells, reduce the secretion of anti-inflammatory cytokines, 

change the inflammatory profile of T-helper 1 cells towards a more anti- 
inflammatory T-helper 2 profile, and increase the number of anti- 
inflammatory T-regulatory cells. Dendritic cell maturation decreases, 
which is accompanied by a change in secretion profile. Trophic factors 
secreted by mesenchymal stem cells induce angiogenesis, increase 
mobilization of stem cells and progenitors after injury, increase cell 
survival and proliferation, and support stem cells, and reduce scar tissue 
(fibrosis) and apoptosis [78]. 

There are several limitations of transplanting mesenchymal stem 
cells such as poor engraftment and low survival rates of these cells in 
areas of injury, so it is necessary to optimize the viability of mesen-
chymal stem cells by modifying the cells using some stimulation. 
Therefore, it is urgently needed to develop new strategies to increase the 
regenerative efficiency of mesenchymal stem cells. In vitro pre- 
treatment (preconditioning) strategies can improve the survival, im-
plantation and growth (engraftment), and paracrine effects of mesen-
chymal stem cells thereby optimizing their reparative and regenerative 
capacities [79]. 

Preconditioning human adipose tissue-derived MSCs with 150 μM or 
400 μM iron chelator deferoxamine (DFX) for 48 h, increases the 
availability of Hypoxia Inducible Factor - 1α (HIF-1α) in a concentration- 
dependent manner, without affecting the morphology and viability of 
MSCs. This initial condition increases the expression of NGF, GDNF, and 
neurotrofin-3, and cytokines with anti-inflammatory activity such as IL- 
4 and IL-5. In addition, therapeutic useable molecules were also elevated 
in the secretomes of DFX-conditioned MSCs compared with the secre-
tomes obtained from previously unconditioned cells. In addition DFX 
initial conditioning significantly increased the total anti-oxidant ca-
pacity of MSC secretions and they exhibited neuroprotective effects 
when evaluated in an in vitro neuropathic model of diabetes [80]. 

AdMSCs-CM reduces oxidative stress in stressed SH-SY5Y neuron- 
like cells and restores cell morphology, viability, and electrophysiolog-
ical activity. This restructuring activity is associated with the presence of 
antioxidants and growth factors, such as BDNF, GDNF, and TGF-β1. 
Other studies have shown that VEGF-A and VEGF165b, derived from 
AdMSCs and AdMSCs-CM, are effective at reducing pain levels in 
oxaliplatin-treated neuropathic mice [50]. 

Based on the evidences above, AdMSCs and AdMSCs-Conditioned 
Media (Secretome) appear to be a potential agent for peripheral nerve 
regeneration. 
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