Does propolis have any effect on rheumatoid arthritis? A review study

by Trias Mahmudiono

Submission date: 30-Mar-2023 03:49PM (UTC+0800)

Submission ID: 2050797408 **File name:** BELUM2.pdf (792.12K)

Word count: 16643 Character count: 91242

REVIEW

Does propolis have any effect on rheumatoid arthritis? A review study

Accepted: 7 November 2021

Elyas Nattagh-Eshtivani^{1,2} | Naseh Pahlavani^{3,4} | Golnaz Ranjbar² | Jamshid Gholizadeh Navashenaq⁵ | Ammar Salehi-Sahlabadi⁶ | Trias Mahmudiono⁷ | Mohammed Nader Shalaby⁸ | Mohammadhassan Jokar⁹ | Mohsen Nematy¹⁰ | Hanieh Barghchi^{1,2} | Shahrzad Havakhah¹¹ | Mona Maddahi¹ | Mohammad Rashidmay van¹ | Maryam Khosravi²

Correspondence

Maryam Khosravipepartment of Nutrition, School of Medicine, Mashhad University of Medical Sciences, PO Box 9117948564 Mashhad, Iran. Email: khosravim@mums.ac.ir

Funding information None

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disease in which inflammation and oxidative stress play a key role in its pathophysiology. Complementary therapies along with medications may be effective in the control of RA. Propolis is a natural substance extracted from beehives, which have confirmed anti-inflammatory and antioxidant effects. The present study aimed to review the possible effects of propolis on inflammation, oxidative stress, and lipid profile in patients with RA. English articles in online databases such as PubMed-Medline, AMED, Google Scholar, EMBASE, Scopus, and Web of Science databases were searched. Pieces of evidence show that supplementation with propolis may have therapeutic effects on RA patients. Due to increased inflammation and oxidative stress in the affected joints of RA patients, propolis could inhibit the inflammatory cascades by inhibiting the nuclear factor kappa B pathway and reducing reactive oxygen species, malondialdehyde, and interleukin-17 by increasing some antioxidants. Therefore, inflammation and pain reduce, helping improve and control RA in patients. Further investigations are required with larger

his is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC.

¹Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran

²Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

³Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran

⁴Children Growth and Development Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences,

⁵Noncomanicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran

⁶Student Research Committee, Department of Clinical Nutrition and Dietetics, School of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Airlangga, Indonesia

⁸Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt

⁹Rheumatic Diseases Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

¹⁰Metabolic ndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

¹¹Addiction and Behavioral Sciences Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran

inflammation, oxidative stress, propolis, rheumatoid arthritis

1 | INTRODUCTION

Rheumatoid arthritis (RA) is a heterogeneous autoimmune and systemic disorder in which cytokines and inflammatory responses play a key role in its pathogenesis (Lubberts & van den Berg, 2013; Nattagh-Eshtivani et al., 2021). Chronic inflammation starts in the synovial membrane and develops into subsequent lesions in the joint cartilage (Lubberts & van den Berg, 2013). The prevalence of RA is estimated at 0.5%–1.0% in the adult population we stimated at 0.5%–1.0% in the adult population we higher in patients with RA than in the general population (Helli et al., 2016). Evidence suggests that the higher mortality rate of RA patients is due to the increased cardiovascular risk (Myasoedova & Gabriel, 2010).

Despite the extensive research that has unveiled some of the contributing factors to the initiation and development of RA, the exact etiology of the disease remains unknown (Tobón et al., 2010). Oxidative stress and inflammation may be significantly involved in the physiopathology of RA, and evidence attests to the increased level of oxidative stress biomarkers and decreased blood antioxidants in patients with RA (Filippin et al., 2008; Kalpakcioglu & Şenel, 2008; Kamanlı et al., 2004; Taysi et al., 2002). Furthermore, it is proposed that reactive oxygen species (ROS) could cause inflammatory responses in RA by activating nuclear factor kappa B (NF-κB) (Filippin et al., 2008). Therefore, using antioxidant supplements may help reduce the symptoms and improve the

The treatment of RA patients with nonsteroidal anti-inflammatory drugs, glucocorticoids, and disease-modifying antirheumatic drugs could ameliorate the symptoms, although the patients may experience complications such as osteoporosis, diabetes mellitus, and weight gain; these treatments are also rather expensive (Gautam & Jachak, 2009; Mousa et al., 2021; O'Dell, 2004). Therefore, complementary treatments have attracted the attention of researchers to reduce the complications and costs of RA treatment. Studies regarding herbal medicines have confirmed the beneficial effects of medicinal plants on the prevention and management of chronic diseases such as RA (Ernst, 2012; Sarker et al., 2020).

Propolis (bee glue) is a resinous substance that honeybees collect from various plants and mix with wax and other construction and protection of beehives (Barlak et al., 2011; Cardoso et al., 2011; Pascoal et al., 2014; Sforcin & Bankova, 2011). Propolis contains more than 300 chemical compounds, such as flavonoids (flavones, flavanones, flavonols, and dihydroflavonols), fatty acids, phenolic acids, aliphatic and aromaticacids, steroids, amino acids, polyphenolic acids, alcohols, terpenes, sugars, and esters (Bankova, 2005; Barlak et al., 2011; Nattagh-Eshtivani et al., 2021). The numerous

biological and pharmacological properties of propolis have also been confirmed, including antimicrobial (Scazzocchio et al., 2006; Uzel et al., 2005), antiviral (Kujumgiev et al., 1999), antifungal (Kujumgiev et al., 1999), free radical-scavenging (Ichikawa et al., 2002; Scheller et al., 1990), anti-inflammatory (Boufadi et al., 2021), hepatoprotective, anticancer, antioxidant (Russo et al., 2002), antineurodegenerative, and immune system-stimulating properties (Farooqui & Farooqui, 2012; Sforcin, 2007). Moreover, propolis has been reported to positively influence cartilage, bones, and dental pulp regeneration (Ramos & Miranda, 2007). The aim of this study was to review the previous publications on the anti-inflammatory, antioxidant, and cardioprotective effects and also its possible mechanisms related to propolis supplementation in RA disease.

2 | METHODS

A systematic search was carried out in the PubMed-Medline, AMED, Google Scholar, EMBASE, Scopus, and Web of Science databases by two independent reviewers (M. M. and H. B.) to identify the relevant articles. The key terms, including "propolis," in combination with "inflammation," "oxidative stress," "antioxidant," "anti-inflammatory," "dyslipidemia," "lipid profile," "cardiovascular disease," "heart disease," "atherosclerosis," and "inflammatory markers," were used for an electronic search strategy. After checking the titles and abstracts of the resulting articles, all the relevant studies published only in English were reviewed subsequently; the eligible animal and clinical trials studies were selected, and duplicate citations were then removed.

2.1 | The effects of propolis supplementation on inflammation in RA

Ample evidence suggests that systemic inflammation plays a key role in the development and progression of several chronic diseases, including RA (Balkarli et al., 2016; Laveti et al., 2013). As such, diminishing inflammation may be associated with the reduced risk of RA. In addition, environmental factors have been shown to induce immune cell responses, causing the immune system to release large amounts of 15 p-inflammatory cytokines (Fox, 2005). Among these cytokines, tumor necrosis factor-alpha (TNF- α), interleukin-1 beta (IL-1 β), and interleukin-6 (IL-6) could cause joint degradation by inducing inflammation and synovial cell activation (Furst et al., 2003; Weinblatt et al., 1999; Yaykasli, 2013).

Inflammatory cascades are responsible for the overexpression of TNF- α . This cytokine leads to synovitis, articular damage, and overproduction of other cytokines, particularly IL-6, which increases inflammation and joint degeneration (Scott et al., 2010). Interleukin-17 (IL-17) is another pro-inflammatory cytokine, the catabolic effects of which are mediated by its ability to stimulate cartilage and bone degradation (Figure 1) (Koenders et al., 2005; Van Den Berg & Miossec, 2009). Therefore, these cytokines are often targeted in the treatment of RA patients, and researchers have attempted to effectively prevent and manage the inflammatory cascade by using dietary supplements, which have fewer side effects and are cost-efficient.

Propolis as a complementary medicine has been used in the treatment of various diseases (Farooqui & Farooqui, 2012; Fukuda et al., 2015; Huet al., 2005; Santos, 2012), and investigations in this regard have confirmed that propolis and its flavones could cause reduction in inflammation (Afsharpour et al., 2017; De Almeida & Menezes, 2002; Jalali et al., 2020). Furthermore, several studies have been conducted on animal models (Table 1). Fang et al. (2013) reported that 160 mg/kg/day of the ethanol extract of propolis (EEP) could significantly decrease IL-6 in mice after 14 weeks of treatment. In another study, Corrêa et a 64 pserved that 100 mg/kg/day of Brazilian red propolis reduced the IL-6 and TNF-α levels in mice after 9 days of administration (Corrêa et al., 2017). The findings of Kismet et al. also demonstrated that the intraperitoneal daily dosage of propolis (200 mg/kg) could significantly decrease

TNF-α and IL-6 in rats with no 13 coholic fatty liver disease after 2 weeks of treatment (Kismet et al., 2017) 2 another study, the administration of propolis by gavage (500 mg/kg/day) for 4 days has shown reduction in the intraperitoneal permeability of mice by lowering the effects of inflammatory factors (Lima et al., 2014).

According to the studes by Chen et al., propolis gavage (919.5 mg/kg/day) could decrease serum TNF- α , IL-1 β , and IL-6, whereas a lower dose (183.9 mg/kg/day) induced moderate responses in terms of TNF- α and IL-1 β levels (Chen et al., 2018). Furthermore, Cheung K. W. et al. report that Brazilian propolis and its components (artepillin C) inhibited IL-17 production in human CD4 T cells (Cheung et al., 2011). Therefore, it could be concluded that propolis has antiarthritic effects as T-helper 17 cells, which are involved in the pathogenesis of RA (Iwakura & Ishigame, 2006; Steinman, 2007). Therefore, it is suggested that propolis supplementation in patients with RA could control the disease by decreasing the inflammatory cascade and the secretion of pro-inflammatory indices. Tables 1 and 2 summarize the animal studies and clinical trials regarding the anti-inflammatory effects of propolis, respectively.

2.2 | Anti-inflammatory mechanism of propolis

44 ing the inflammation process, macrophages activate and release pro-inflammatory cytokines such as TNF- α , IL-1, and IL-6. These

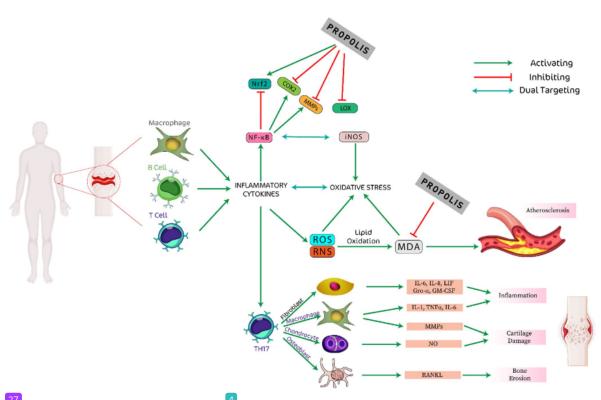


FIGURE 1 Hypothetical mechanism of effects of propolis on reduction of inflammation, oxidative stress, and atherosclerosis

TABLE 1 Summary of animal studies on anti-inflammatory effects of propolis

First author (year)	Country	Subjects 56	Administered dose of propolis	Duration (day)	Outcomes 7	Reference
Hu et al. (2005)	China	Mice	1 ml/100 g	-	↓IL-6	Hu et al. (2005)
Machado et al. (2012)	Brazil	Mice	5 mg/kg/day	6	↓ IL-6 and TNF-α levels	Machado et al. (2012)
Fang et al (2013)	China	Mice	160 mg/kg/day	98	↓IL-6	Fang et al. (2013)
Hemieda et al. (2015)	Egypt	Rat	50/100 mg/kg/day	42	↓ CRP, TGF-β	Hemieda et al. (2015)
Elissa et al. (2015)	Egypt	Rat	0.6 g/kg/day	21	↓TNF-α	Elissa et al. (2015)
Corrêa et al. (2017)	Brazil	Mice	100 mg/kg/day	9	↓ IL-6 and TNF-α levels	Corrêa et al. (2017)
Wang et al. (2018)	China	Rat	300 mg/kg/day	7	Colonic inflammatory markers IL-1β, IL-6 suppressed by propolis	Wang et al. (2018)
Kismet et al. (2017)	Turkey	Rat	200 mg/kg	14	TNF-α and IL-6 levels	Kismet et al. (2017)
El Rabey et al. (2017)	Saudi Arabia	Rat	20% w/w	28	122	El Rabey et al. (2017)
Chen et al. (2018)	Taiwan	Rat	919.5 mg/kg/day	56	TNF- α , IL-1 β , and IL-6	Chen et al. (2018)

Abbreviations: \uparrow , increase; \downarrow , decrease; \leftrightarrow , no effect; CRP, C-reactive protein; IL, interleukin; TGF- β , transforming growth factor β ; TNF- α , tumor necrosis factor-alpha.

TABLE 2 Summary of clinical trials on anti-inflammatory effects of propolis

First author (year)	Country	Sample size (T/C)	Subjects	Type and dose of propolis	Duration (week)	Outcomes	Reference
Zhao et al. (2016)	China	32/33	T ₂ DM	900 mg/day	18	↓ 7 F-α ↑ IL-6	Zhao et al. (2016)
Khayyal et al. (2002)	Egypt	22/24	Patients with mild-to- moderate asthma	2 ml/day	8	↓ TNF-α, IL-6, and IL-8 ↑ IL-10	Khayyal et al. (2002)
Fukuda et al. (2015)	Japan	41/39	T ₂ DM	226.8 mg/day	8	\leftrightarrow CRP, \leftrightarrow TNF- α and IL-6	Fukuda et al. (2015)
Gao et al. (2018)	China	25/30	T ₂ DM	900 mg/day	18	↑ IL-6	Gao et al. (2018)
Mujica et al. (2017)	Chile	35/32	Healthy subjects	-	12	↔ CRP	Mujica et al. (2017)
Afsharpour et al. (2017)	Iran	30/30	T ₂ DM	1500 mg/day	8	\downarrow CRP and TNF- α	Afsharpour et al. (2017)
Zhu et al. (2018)	China	30/30	Elderly subjects	66 mg/day	96	↓ IL-6	Zhu et al. (2018)
Zakerkish et al. (2019)	Iran	50/44	T ₂ DM	1000 mg/day	12	\downarrow C 7 and TNF- α \leftrightarrow IL-6	Zakerkish et al. (2019)
Gholaminejad et al. (2019)	Iran	29/28	Men with asthenozoospermia	1500 mg/day	10	↓ CRP and TNF-α	Gholaminejad et al. (2019)
Darvishi et al. (2020)	Iran	26/24	Patients with breast cancer	500 mg/day	12	\leftrightarrow TNF- α	Darvishi et al. (2020)
Soleimani et al. (2021)	Iran	24/25	Healthy subjects	900 mg/day	4	↓ IL 6	Soleimani et al. (2021)

Abbreviations: \uparrow , Increase; \downarrow , decrease; \leftrightarrow , no effect; C, control; CRP, C-reactive protein; IL, interleukin; T, treatment; T_2DM , type II diabetes mellitus; TNF- α , tumor necrosis factor-alpha.

activated 71 rophages induce the translocation of NF- κ B. NF- κ B activation plays a pivotal role in the production of stimulation of various cytokines and inflammatory mediators (TNF- α , IL-1, IL-2, IL-6, and IL-8) while also participating in the regulation of inflammation (Baeuerle, 1991; Surh et al., 2001). Furthermore, NF- κ B is critically involved in modulating the survival, differentiation, and activation

of immun 20 ells (Liu et al., 2017). The NF-κB signaling pathway also partakes in the production of nitric oxide (NO) by stimulating inducible nitric oxide synthase (iNOS), which is an inflammatory mediator (Pahlavani et al., 2019; Xie et al., 1994).

Propolis has potent anti-inflammatory activities (Ying-Hua et al., 2012). It reduces the gene expression of iNOS, the cytokines

1002/fsn3.2684 by Online I [07/03/2023] 80

mediated by NF-κB activation, and the immune response in T cells (Banskota et al., 2001; Paulino et al., 2008). Also as demonstrated in previous research, propolis components could have directly regulated the basic immune cell functions (Wolska et al., 2019). For example, in lipopolysaccharide-stimulated RAW264.7 macrophages. neovestitol, an isoflavonoid derived from propolis, showed an immunological modulatory impact by inhibiting NO production and lowering pro-inflammatory cytokine levels (Bueno-Silva et al., 2017). Propolis extracts and propolis compounds (caffeic acid, phenethyl esternauercetin, and hesperidin) could suppress DNA synthesis and the production of inflammatory cytokines (IL-1, IL-12, IL-2, and IL-4) in Th1- and Th2-type T cells while enhancing the production of transforming growth factor-β1 (TGF-β1) (Ansorge et al., 2003). Furthermore, the suppression of macrophage activation and differentiation has been proposed as one of the possible mechanisms causing propolis' anti-inflammatory and immunological benefits (Arauja et al., 2012).

Caffeic acid phenethyl ester (CAPE) is an important component of propolis with anti-inflammatory properties (Tolba et al., 2013). Evidence suggests that CAPE is a potent modulator of arachidonic acid (AA) that blocks the release of AA from the cell membrane, thereby suppressing the gene expression of lipoxygenase and cyclooxygenase (COX) enzymes (Mirzoeva & Calder, 1996). According to various investigations, CME is a dominant and selective inhibitor of NF-κB activation; CAPE has been shown to inhibit NF-κB activation precisely and completely by a wide range of inflammatory stimuli, including TNF- α and H₂O₂ (Ramos & Miranda, 2007).

Propolis also prevents the production of leukotriene and prostaglandin. Propolis flavonoids may be responsible for their effects on the COX enzyme, which has been reported to suppress prostaglandin-endoperoxide synthase (Mirzoeva & Calder, 1996). In this regard, Woo et al. examined the effects of chrysin on the expression of COX-2, reporting that chrysin could significantly suppress the expression of COX-2 tein and mRNA (Woo et al., 2005). In an in vitro study by Kao et al., the anti-inflammatory effects of artepillin C were investigated on mice, and the obtained results indicated that artepillin C inhibited prostaglandin E2 synthesis and NO production while also reducing NF-kB activity in mice (Kao et al., 2010).

Notably, the anti-inflammatory effects of quercetin have been attributed to the downregulation of the extracellular signalregulated kinase, p38, Akt, Janus kinase-1, tyrosine kinase 2 (TYK2), signal transducer, and NF-κB activator. This compound has also been shown to scavenge free radicals (Kao et al., 2010). Furthermore, a large number of other flavonoids such as apigenin, galangin, and pinocembrin are foun 12 propolis. Zhang et al. reported that apigenin reduced the mRNA levels of IL-1, IL-6, and TNF-α in human THP-1derived macrophages (Zhang et al., 2014). In addition, pinocembrin significantly reduced the levels of these pro-inflammatory cytokines in RAW 264.7 macrophage cells, whereas it significantly increased the levels of IL-10 (Soromou et al., 2012). Galangin significantly lowered the levels of IL-6 and TNF- α cytokines in the same RAW 264.7 cell line (Lee et al., 2018). In vivo, oral administration of propolis in C57BL/6 mice for 14 days inhibited spleen cell production of IL-1, IL-6, IL-2, IL-10, and IFN-γ (Missima et al., 2010). Moreover, an ethanolic extract of Brazilian propolis inhibited the expression of IL-17 in mice with collagen-induced arthritis (Tanaka et 2012). Another study found that the anti-inflammatory activity of Brazilian green propolis in stimulated J776 A.1 macrophages is mediated through the inhibition of NO and pro-inflammatory cytokines such as TNF- α , IL-1, and IL-6 (Szliszka et al., 2013). As a result, propolis and its ingredients might exert potential natural anti-inflammatory agents that work by modifying immune responses.

2.3 | Effects of propolis in relation to oxidative stress in RA

Although the exact etiology of RA remains unknown, several studies have confirmed the role of ROS in the pathophysiology of the disease (Bauerova & Bezek, 2000). ROS are naturally produced during aerobic metabolism, and the cells are protected against ROS by the antioxidant defense system (Roy et al., 2017). When ROS production exceeds the capacity of the antioxidant system, oxidative stress occurs and causes metabolic dysfunction and extensive damage to fats, proteins, and DNA. Ultimately, the free radicals produced from oxygen metabolism destroy the antioxidant system (Tao et al., 2018).

In RA, the activation of neutrophils and macrophages (main cells of inflammatory synovial fluid) increases the production of ROS, which are important mediators of tissue damage in arthritis (Kamanlı et al., 2004; Oztürk et al., 1999). On the contrary, malondialdehyde (MDA) is the main indicator of lipid peroxidation, which increases in synovial fluid of RA patients. Previous findings have suggested that MDA increases in the serum, plasma, and synovial fluid in RA under normal conditions (Das et al., 2020). Studies have also shown that serum antioxidants are ver in RA patients than in healthy individuals, and the activity of antioxidant enzymes such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) is altered in the serum of these patients. However, contradictory results have been proposed in this regard (Akyol et al., 2001; Kiziltunc et al., 1998; Sarban et al., 2005).

In addition to acting as a protective mechanism against ROS, antioxidants could suppress the expression of the cytokines and collagenase induced by TNF- α , which is also a protective mechanism against arthritis (Halliwell et al., 1988; Sato et al., 1996). It is hypothesized that natural compounds with antioxidant properties may exert protective effects against RA (Bae et al., 2003; Wang et al., 2019). Propolis is a natural compound that is prected to be effective in reducing oxidative stress levels (Abass et al., 2017; Mujica et al., 2017; Pahlavani et al., 2020). Several studies have demonstrated that propolis could also decrease oxidative stress-related markers (MDA) and increase free radical scavenging enzymes (SOD and GPX) and the total antioxidant capacity (TAC) (Afsharpouget al., 2019; Jasprica et al., 2007). Table 3 presents the summary of the animal studies investigating the effects of propolis on oxidative stress.

TABLE 3 Summary of animal studies on the effects of propolis on oxidative stress

First author (year)	Country	Animal species	Propolis dosage	18 tion (day)	Outcomes	Reference
Remirez et al. (1997)	Cuba	Rat	25, 50, and 100 mg/ kg/day	-	↓ MDA in liver	Remirez et al. (1997)
Chopra et al. (1995)	India	Rat	50 and 100 mg/kg/day	-	↓ MDA	Chopra et al. (1995)
Rodriguez et al. (1996)	Cuba	Rat	10, 50, and 100 mg/ kg/day	=	↓ MDA	Rodriguez et al. (1997)
llhan <u>et al</u> . (1999)	Turkey	Rabbit	10 μmol/kg/day	-	↓ MDA	Ilhan et al. (1999)
Ozyurt et al. (2001)	Turkey	Rat	10 μmol/kg/day	-	↓ MDA	Ozyurt et al. (2001)
Shinohara et al. (2002)	Japan	Rat	-	-	↓ LPO	Shinohara et al. (2002)
Shukla et al. (2004)	India	Rat	200 mg/kg/day	-	↓ LPO ↑ Hepatic GS H level	Shukla et al. (2004)
Hu et al. (2005)	China	Rat	1 ml/100 g	56	↓ Fructose amine and MDA ↑ SOD	Hu <mark>et al</mark> . (2005)
Tan-no et al. (2006)	Japan	Mice	At dilutions of 1:100 and 1:1000	-	↓ NO production	Tan-no et al. (2006)
Sobocanec et al. (2006)	Croatia	Mice	100 mg/kg/day	-	↑ CAT and SOD ↓ TBARS	Sobocanec et al. (2006)
Eraslan et al. (2007)	Turkey	Rat	200 mg/kg/day	7 and 21		Eraslan et al. (2007)
Nirala and Bhadauria (2007)	India	Rat	100 and 200 mg/kg/day	-	GSH was restored by propolis treatment	Nirala and Bhadauria (2008)
Kismet et al. (2008)	Turkey	Rat	100 mg/kg/day	7	↓ Plasma and liver levels of MDA↑ Liver GPX activities	Kismet et al. (2008)
Kanbur et al. (2008)	Turkey	Rat	100 mg/kg/day	28	↓ MDA levels ↑ SOD, CAT, and GPX	Kanbur et al. (2009)
Alyane et al. (2008)	Algérie	Rat	100 mg/kg/day	4	↓ MDA formation and production of superoxide anion	Alyane et al. (2008)
Yousef et al. (2009)	Egypt	Rat	50 mg /kg/day	70	↓ TBARS ↑ GSH, CAT, and GST	Yousef et al. (2009)
Zhao et al. (2009)	China	Mice	200 mg/kg/day	3	Propolis inhibited lipid peroxidation and oxidized ↑ GSH	Zhao <u>et al</u> . (2009)
Abo-Salem et al. (2009)	Egypt	Rat	100, 200, and 300 mg/ day	40	↓ MDA ↑ Mand SOD activities	Abo-Salem et al. (2009)
El-Sayed et al. (2009)	Egypt	Rat	200 mg/kg/day	35	↓ MDA pancreatic content and serum NO ↑ Serum GSH and CAT activities ↑ Pancreatic SOD activities	El-Sayed et al. (2009)
Khalil et al. (2010)	Egypt	Rat	Dietary propolis powder (0.1% and 0.2%)	42	↓ MDA ↑ GSH, SOD, and CAT activities	Khalil and El-Sheikh (2010)
Nader et al. (2010)	Egypt	Rabbit	75 mg/kg/day	28	↓ TBARS ↑ GSH	Nader et al. (2010)
Seven et al. (2010)	Turkey	Broiler	1 g/kg/day	42	↓ MDA	Seven et al. (2010)
Zhu et al. (2010)	China	Rat	100 mg/kg/day	56	↓ MDA and NOS ↑ SOD and GPX	Zhu et al. (2011)
Bhadauria (2011)	India	Rat	200 mg/kg/day	14	↓ TBARS ↑ CAT and GSH	Bhadauria and Medicin (2012)
Zhu et al. (2011)	China	Rat	100 mg/kg/day	56	↓ Blood and renal MDA	Zhu, Chen, et al. (2011)

TABLE 3 (Continued)

IABLE 3 (Continue	u)					
First author (year)	Country	Animal species	Propolis dosage	Duration (day)	Outcomes	Reference
Garoui et al. (2011)	Tunisia	Rat	1 g propolis/100 g diet	-	Propolis † activity of 29 xidant enzymes (GPX, CAT, and SOD) and the level of GSH in the kidney	Garoui et al. (2012)
Yonar et al. (2011)	Turkey	Rainbow trout	50 mg/kg/day	14	\downarrow MDA \uparrow SOD, GPX, GSH, and CAT	Yonar et al. (2011)
Attia et al. (2012)	Egypt	Rat	50 mg/kg/day	70	↑ CAT, SOD, and GPX ↓ LPO	Attia et al. (2012)
Oršolić et al. (2012)	Croatia	Mice	50 mg/kg/day	7	↓ MDA content in liver and kidney	Oršolić et al. (2012)
Gulhan et al. (2012)	Turkey	Rainbow trout	10, 20, and 30 PPM	96 hr	↓ MDA	Fuat Gulhan et al. (2012)
Selamoglu-Talas et al. (2013)	Turkey	Rat	200 mg/kg/day	5	↑ CAT activity ↓ MDA	Selamoglu-Talas et al. (2013)
El-Awady et al. (2013)	Egypt	Isolated rat aorta	400 μg/ml	3 hr	In vitro: ↑ SOD ↓ MDA	El-Awady et al. (2014)
Newairy et al. (2013)	Egypt	Rat	50 mg/kg/day	28	↓ TBARS ↑ CAT, SOD, and GSH	Newairy and Abdou (2013)
Su et al. (2014)	Taiwan	Hepatic stellate cells of rat	200 and 400 mg/kg/day	28	↓ MDA	Su et al. (2014)
Abou-Zeid et al. (2015)	Egypt	Chick	0, 125, 2 ₁₉ and 500 mg/kg/day 19	42	↓ MDA ↑ SOD, GPX, and CAT activity	Abou-Zeid et al. (2015)
Hemieda et al. (2015)	Egypt	Rat	50 or 100 mg/kg/day	42	↓ MDA ↑ GSH, SOD, CAT, and TAC	Hemieda <mark>et al</mark> . (2015)
Sameni et al. (2015)	Iran	Rat	100 and 200 mg/kg/day	42	↓ 69 A ↑ The activity of SOD and GPX	Sameni <mark>et al</mark> . (2016)
Al-Hariri et al. (2015)	Saudi Arabia	Rat	23 0.3 g/kg/day	14	↓ TBARS	Al-Hariri et al. (2016)
Elissa et al. (2015)	Egypt	Rat	0.6 g/kg/day	21	↓ MDA ↑ GSH	Elissa et al. (2015)
Kismet et al. (2017)	Turkey	Rat	200 mg/kg/day	14	↑ Total thiol ↓ MDA	Kismet et al. (2017)
Arslan et al. (2016)	Turkey	Japanese quail	0.5, 1, and 1.5 g/kg/day	8-42	↓ MDA	Sur Arslan and Tatlı Seven (2017)
Gul Baykalir et al. (2016)	Turkey	Rat	100 mg/kg/day	-	↓ MDA ↑ GSH and CAT level	Baykalir et al. (2018)
Bazmandegan et al. (2017)	Iran	Mice	100 and 200 mg/kg	24 and 48 hr	↑ SOD and GPX activity ↓ LPO	Baz 24 degan et al. (2017)
Gong et al. (2017)	China	Mice	10 μmol/kg/day	28	↓ MDA and NO ↑ SOD and CAT activities and GSH	Gong et al. (2017)
El Rabey et al. (2017)	Saudi Arabia	Rat	20% w/w	28	↓ MDA ↑ CAT, SOD, and GST	El Rabey et al. (2017)
Alm-Eldeen et al. (2017)	Egypt	Mice	0.2 mg/kg/day	14	↓ MDA ↑ GSH, 700 and SOD	Alm-Eldeen et al. (2017)
Rivera-Yañez et al. (2018)	Mexico	Mice	300 mg/kg/day	15	↑ SOD, CAT, and GPX	Rivera-Yañez et al. (2018)
Udo Nna et al. (2018)	Malaysia	Rat	300 mg/kg/day	28	↑ SOD, CAT, GPX, GSH, GST, and GSR ↓ MDA	Nna et al. (2018)
					-	27

204871717,2022, 4, Downloaded from https://calineltheray.wikly.com/doi/10.1002/5n3.2084 by Nat Prov Indonesia, Wiley Online Library on (07/03/2023). See the Terms and Conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. License

TABLE 3 (Continued)

First author (year)	Country	Animal species	Propolis dosage	Duration (day)	Outcomes	Reference
Aydin et al. (2018)	Turkey	Rabbit	200 mg/kg/day	28	↓ MDA ↑ GPX and CAT	Aydin et al. (2018)
Chen et al. (2018)	Taiwan	Rats	183.9 and 919.5 mg/	56	↑ SOD and GPX ↓ TBARS	Chen et al. (2018)
Abdel-Rahman et al. (2019)	Egypt	Rat	50 and 100 mg/kg/day	-	↓ MDA ↑ SOD, CAT, GPX, and GSH	Abdel-Rahman et al. (2020)
Shi et al. (2019)	China	Rat	200 mg/kg/day	84	↓ ROS ↓ RNS	Shi et al. (2019)

Abbreviations: ↑, increase; ↓, decrease; ↔, no effect; C, control; CAT, catalase; GPX, glutathione peroxidase; G23, glutathione; GSR, glutathione reductase; GST, glutathione S-transferases; LPO, lipid peroxidation; MDA, malondialdehyde; NO, nitric oxide; NOS, nitric oxide synthases; RNS, reactive nitrogen species; ROS, reactive oxygen species; SOD, superoxide dismutase; T, treatment; TAC, total antioxidant capacity; TBARS, thiobarbituric acid reactive substances.

In a clinical trial conducted by Mujica et al. (2017), propolis supplementation (15 drops twice a day) was reported to decrease thiobarbituric acid reasive substances and increase plasma glutathione (GSH). However, other studies have not confirmed the significant effects of propolis on improving oxidative stress (Gao et al., 2018; Zhao et al., 2016). According to Ebeid et al. (2016), consuming propolis capsules (1200 mg/day) for 10 days before radiotherapy significantly decreased MDA and increased TAC during and 10 days after the treatment. Furthermore, Hesami et al. conducted a doubleblind, randomized-controlled trial on 62 patients with type II diabetes, reporting that propolis supplementation (500 mg/kg; thrice a day) improved the antioxidant defense mechanisms after 8 weeks by increasing the CAT activity (Hesami et al., 2019). The overexpression of mitochondrial catalase has been shown to diminish the incidence of arteriosclerosis in mice while exerting protective effects against cardiovascular dysfunction and injuries in human subjects (Lei et al., 2016; Tehrani & Moosavi-Movahedi, 2018). In this regard, Gao et al. reported that after 18 weeks of consuming Chinese propolis, a significant increase was observed in the serum GSH, flavonoids, and polyphenols of patients with type II diabetes (Gao et al., 2018). Recently Soleimani et al. also observed that the administration of propolis (450 mg/kg twice daily) significantly increased the levels of GSH and TAC and decreased total oxidant status (TOS) and MDA after 4 weeks of intervention (Soleimani et al., 2021).

According to the literature, the main antioxidant mechanisms of propolis polyphenols may be associated with their scavenging effects on ROS, while nitrogen species and chelating metal ions may also be involved in the production of free radicals, reduction of xanthine oxidase reaction, and synergistic effects with other antioxidants (Kurek-Górecka et al., 2013; Mujica et al., 2017). It is known that phenolic compounds, such as those found in propolis, act as antioxidants by interrupting the chain reaction of lipids (Torel et al., 1986), blocking chemiluminescence processes (Georgetti et al., 2003), and scavenging ROS (Bors et al., 1990). The antioxidant and reductive capacity of propolis against ROS could be attributed to two main mechanisms, namel the capacity of CAPE in activating NrF2 transcription factor (a regulatory)

protein associated with antioxidant protection and improvement in antioxidant enzymes) and the phenolic acid and flavonoid contents of propolis (CAPE, quercetin, apigenin, *p*-coumaric acid, cinnamic acid, and *p*-vanillin), which neutralize free radicals and oxidant compounds (Ichikawa et al., 2002; Lee et al., 2010). Moreover, propolis has been shown to significantly enhance vitamin C levels in the plasma, kidney, stomach, small intestine, and colon (Seven et al., 2010). Propolis could be absorbed through the bloodstream and act as a hydrophilic antioxidant in the absorption of vitamin C (Seven et al., 2010). Figure 1 represents the hypothetical mechanism of the effects of propolis on the reduction of inflammation and oxidative stress.

2.4 | Cardioprotective effects of propolis in RA

Rheumatoid arthritis is an inflammatory disease associated with the increased risk of cardiovascular mortality and morbidity (Aviña-Zubieta et al., 2008; Gonzalez-Gay et al., 2005). However, the exact mechanism of the elevated risk of cardiovascular diseases (CVDs) in RA patients should be further explored. The increased risk of CVD in RA patients may be due to dyslipidemia. Several observational studies have demonstrated that RA is associated with negative effects on lipid profile (Boers et al., 2003; Park et al., 1999, 2002). Dyslipidemia causes atherosclerosis and CVD (Nelson, 2013; Tietge, 2014), whereas reduced serum cholesterol leads to a significantly lower risk of CVD (González-Gay & González-Juanatey, 2014; Stamler et al., 2000). Furthermore, inflammation in RA patients plays a pivotal role in disease progression (González-Gay & González-Juanatey, 2014). Scientific evidence suggests that chronic inflammation in patients with RA is associated with a higher risk of CVD (Gonzalez-Gay et al., 2007; Gonzalez-Gay et al., 2005). Inflammation causes oxidative changes, which influence the structure of highdensity lipoprotein (HDL) and decrease apolipoprotein-A1 in RA patients (Charles-Schoeman et al., 2009). In addition, the levels of antioxidant enzyme associated with HDL (paraoxonase-1) have been reported to be lower in patients with RA compared to healthy controls (Charles-Schoeman et al., 2012).

3.2684 by Nat Prov Indonesia Wiley y Online I Library [07/03/2023] 8

The cardioprotective effects of propolis have been confirmed in several studies (Ahma 23 t.al., 2017; Alyane et al., 2008; Daleprane & Abdalla, 2013). The in vitro and in vivo studies in this regard have also clarified the molecular mechanisms of these effects, some of which is under the improvement in glucose and lipid profiles; reduced activity of scavenger receptors, inflammatory cytokines, and oxidative stress; improvement in endothelial function; and prevention of platelet aggregation (Daleprane & Abdalla, 2013). Moreover, numerous findings have indicated that polyphenols reduce CVD ries and inhibit the formation of atherosclerosis plaques (Gorinstein et al., 2011; Grassi et al., 2008; Norata et al., 2007). Therefore, propolis is considered as an abundant source of polyphenols with a potential role in preventing cardiovascular events.

Propolis has beneficial effects on the regulation of lipid and lipoprotein metabolism. Previous findings have indicated that propolis administration led to reducing liver cholesterol and triglyceride levels and hepatic triglyceride synthesis in rats (Daleprane et al., 201 Hu et al., 2005). Moreover, treatment with Brazilian propolis in low-density lipoprotein (LDL) receptor knockout mice decreased the levels of triacylglycerol (TAG), total cholesterol (TC), and non-HDL-C (Daleprane et al., 2012). The mice receiving propolis treatment also experienced a significant reduction in TAG and TC, as well as increased HDL-C, compared to the untreated mice. On the same note, Turkish propolis has been reported to prevent alcohol-induced acute liver injury and lipid deposition, exerting positive effects on the lipid profile. Notably, in the mice receiving propolis treatment and alcohol, HDL levels have been reported to be high, and LDL was observed to be lower compared to the mice receiving alcohol only (Kolankava et al., 2002).

In other studies, propolis has shown favorable effects on the HDL and LDL levels of rats (Hu et al., 2005). For instance, adminption of propolis in diabetic rats led to decreased levels of TC, LDL-C, very-low-density lipoprotein (VLDL), and TAG. These findings highlight the role of propolis in the regulation of lipid metabolism, as well as its contribution to the status of lipid abnormalities (Hu et al., 2005). Daleprane et al. hypothesized that propolis might prevent atherosclerosis. On the contrary, treatment of LDL receptor gene (LDLr^{-/-}) mice with the extracted polyphenols of propolis has been reported to decrease the area of atherosclerotic lesions (Daleprane et al., 2012) and prevent the development of atherosclerosis in the treated LDL r^{-/-} mice by improving the lipid profile and downregulating pro-inflammatory cytokines, chemokines, and angiogenic factors. In the mentioned study, propolis administration also decreased the mRNA expression of several genes (MCP-1, INFg, IL-6, CD36, and TGF- β), which play a key role in the atherosclerotic process (Daleprane et al., 2012).

Previous studies have demonstrated the beneficial effects of propolis on the lipid profile (Burdock, 1998; Castaldo & asso, 2002; Hu et al., 2005; Munstedt & Zymunt, 2001; Murata et al., 2004; Nader et al., 2010). For instance, Kolankaya et al. conducted an animal study and reported that the EEP at 200 mg/kg BW/day decreased LDL levels and increased HDL levels in rats (Kolankaya et al., 2002). Consistently, the results of another study

indicated that the extracted polyphenols of red propolis significantly lowered TAG and TC and increase DL-C in the LDL r^{-/-} knockout mice (Daleprane et al., 2012). In a clinical trial conducted by Mujica et al., propolis supplementation for 90 days significantly increased HDL levels and decreased the systolic and diastolic blood pressure. thereby reducing the risk of CVDs (Mujica et al., 2017). In contrast, Samadi et al. indicated that supplementation with propolis (900 mg/ day), in comparison with placebo, after 12 weeks had no significant effects on lipid profile (LDL, HDL, TC, TG, and VLDL) (Samadi et al., 2017). Also, Fukuda et al., in a randomized, controlled 8-week trial, investigated the effect of Brazilian green propolis (226.8 mg/ day). There were no significant effects of the propolis supplements on LDL, HDL, TC, and Total Lukuda et al., 2015). Recently, Salehi-Sahlabadi et al. (2020) in a systematic giview and meta-analysis of randomized-controlled trials, indicated that propolis consumption is associated with a decrease in TG levels as well as an increase in HDL levels.

The proposed hypocholesterolemic echanism of propolis is through the protein expression of the ATP-binding cassette (ABC) transporters A1 and G1 (ABCA1 and ABCG1) (Gorinstein et al., 2013) Various types of propolis could increase ABCA1 gene expression (Ichi et al., 2009; Koya-Miyata et al., 2009), which in turn increases HDL an hances the cholesterol efflux from the peripheral tissue (Chung et al., 2010; Daleprane et al., 2012; Nader et al., 2010). Therefore, propolis mayin prove the lipid profile by upregulating ABCA1 gene expression. In addition, the ethanol extract of Brazilian red propolis has been reported to increase the ABCA1 promoter activity in THP-1 macrophages (lio et al., 2012). Given that patients with RA have impaired ATP-binding cassette G1-mediated CEC due to the disease activity and its complications (Ronda et al., 2014), propolis supplementation may effectively decrease the disease symptoms, thereby decreasing the risk of CVDs. Simultaneously with the increase in the ABCA1 cassette, Brazilian red propolis could upregulate ApoA-1, which is involved in the cholesterol efflux by macrophages. The effects of propolis on ABCA1 could be attributed to the activation of PPAR γ and LXR α (lio et al., 2012). Table 4 presents a summary of the animal studies regarding the effects of propolis on the lipid profile.

In vitro and in vivo data have proposed that the positive properties of propolis, which have an effect on the lipid profile, could be involved in the atheroprotective effects of this compound. Furthermore, scientific reports suggest that the polyphenols extracted from propolis may be effective in the prevention of atherosclerosis (Salehi-Sahlabadi et al., 2020; Silva et al., 2011).

Nitric oxide is an endothelium-derived relaxing factor with vasodilatory and antiaggregative properties, which protects the blood vessels at low concentrations. However, the excessive NO produced by inflammatory cells may react with other nitrogen and oxygen species and stimulate oxidative stress (Ali et al., 2014). Several studies have reported increased NO levels in the serum of patients with RA (Ali et al., 2014; Ersoy et al., 2002; Mahmoud & Ismail, 2011). According to an animal study, propolis intake in diabetic mice resulted in the reduction of NO and NOS levels (Hu et al., 2005). Propolis reduces NO levels by decreasing NOS activity, thereby protecting the

TABLE 4 Summary of animal studies on effects of propolis on lipid profile

First author (year)	Country	Animal species	Propolis dosage	Duration (day)	Outcomes	Reference
Kolankaya et al.	Turkey	Rat	200 mg/kg/day	15	138 and TG	Kolankaya et al. (2002)
(2002)	Turkey	Nat	200 mg/kg/day	13	↑HDL-C	Kolalikaya et al. (2002)
Hu et al. (2005)	China	Rat	1 ml/100 g	56	↓TC, TG, LDL-C, and VLDL-C ↑HDL-C	Hu et al. (2005)
Abo-Salem et al. (2009)	Egypt	Rat	100, 200, and 300 mg/ kg/day	40	↓ Cholesterol, TG, LDL- C, and VLDL-C ↑ HDL-C	Abo-Salem et al. (2009)
Nader et al. (2010)	Egypt	Rabbit	75 mg/kg/day	28	↓ TC, TG, and LDL-C ↑ HDL-C	Nader et al. (2010)
Zhu et al. (2011)	China	Rat	10-mg propolis per 100 g/ 59	56	↓ TC	Zhu, Li, et al. (2011)
Bhadauria (2011)	India	Rat	200 mg/kg	14	↓ TG and TC	Bhadauria (2012)
Li et al. (2012)	China	Rat	50, 100, and 200 mg/kg/ day	70	↓TG 33 ↔ TC, HDL-C, and LDL-C	Li et al. (2012)
Fang et al. (2013)	China	Mice	160 mg/kg/day	98	↓ TC, TG, and non-HDL-C	Fang et al. (2013)
Newairy et al. (2013)	Egypt	Rat	50 mg/kg/day	28	Normal 2 d the TC, TG, and LDL-C † HDL-C	Newairy and Abdou (2013)
Alqayim (2015)	Iraq	Rabbit	50 mg/kg/day	60	↓ TC, TAG, and LDL-C ↑ HDL-C	Alqayim (2015)
Al Ghamdi et al. (2015)	Saudi Arabia	Mice	100 mg/kg/day	28	↓ LDL-C ↑ HDL-C	Al Ghamdi et al. (2015)
Elissa et al. (2015)	Egypt	Rat	0.6 g/kg/day	21	↓TC, LDL-C, and TG ↑HDL-C	Elissa et al. (2015)
Albokhadaim (2015)	Saudi Arabia	Rat	1% and 2% of cholesterol diet	14	↓ TG and TC	Albokhadaim (2015)
Kismet et al. (2017)	Turkey	Rat	200 mg/kg/day	14	↓ TC, non-HDL-C, and TG	Kemal Kismet et al. (2017)
Gong et al. (2017)	China	Mice	10 μmol/kg/day	28	↓ TC, TG, and LDL-C ↑ HDL-C	Gong et al. (2017)
Chen et al. (2018)	Taiwan	Rat	183.9 and 919.5 mg/kg/ day	56	↓ TC, LDL-C, and TG ↑ HDL-C	Chen et al. (2018)
Ibrahima et al. (2019)	Egypt	Rat	100 mg/kg/day	28	↓ TC, LDL-C, and TG ↑ HDL-C	Ibrahim et al. (2019)

Abbreviations: ↑, increase; ↓, decrease; ↔, no effect; C, control; HDL, high-density lipoprotein; LDL, low-density lipoprotein; T, treatment; TC, total cholesterol; TG, triglyceride.

endothelial cells of the blood vessels. Furthermore, the EEP could prevent NO production by reducing iNOS expression in Raw 264.7 macrophages and inhibiting the catalytic activity of iNOS. On the contrary, excessive NO production is involved in the cardiovascular inflammatory process, and propolis may affect the regulation of NO levels through its anti-inflammatory activities.

2.5 | Strengths and limitations

This review study aimed to assess the effects of propolis on inflamtion, oxidative stress, and cardiometabolic indices in RA patients. The main limitation of our study was the heterogeneity of the reported data in the reviewed studies, and quality assessment of the studies might have led to more accurate results for the generalization of the data. To the best of our knowledge, this is the first review study that has gathered an in-depth scientific demonstration of the possible effects of propolis on patients with RA.

3 | CONCLUSION

The present study suggested that propolis may have beneficial effects on oxidative stress biomarkers and inflammation process in RA patients due to its potent antistical trials must be conducted to

demonstrate the definitive effects of propolis on multiple aspects of RA disease.

ACKNOWLEDGMENTS

The authors thank Dr. NaeimRoshan for editing the manuscript.

6 CONFLICTS OF INTEREST

The authors also declare that they have no conflict of interest.

ETHICAL APPROVAL

No ethical approval was required, as this is a review article with no original research data.

35 INFORMED CONSENT

There were no study participants in this review article, and informed consent was not required.

53 DATA AVAILABILITY STATEMENT

All the data used in this study can be made available on reasonable request.

Elyas Nattagh-Eshtivani https://orcid.org/0000-0003-0012-716X

REFERENCES

- Abass, A. O., Kamel, N. N., Khalifa, W. H., Gouda, G., El-Manylawi, M., Mehaisen, G. M., & Mashaly, M. M. (2017). Propolis supplementation attenuates the negative effects of oxidative stress induced by paraquat injection on productive performance and immune function in turkey poults. *Poultry Science*, 96(12), 4419–4429. https:// doi.org/10.3382/ps/pex248
- Abdel-Rahman, R. F., Alqasoumi, S. I., Ogaly, H. A., Abd-Elsalam, R. M., El-Banna, H. A., & Soliman, G. A. (2020). Propolis ameliorates cerebral injury in focal cerebral ischemia/reperfusion (I/R) rat model via upregulation of TGF-β1. Saudi Pharmaceutical Journal, 28(1), 116–126. https://doi.org/10.1016/j.jsps.2019.11.013
- Abo-Salem, O. M., El-Edel, R. H., Harisa, G. E., El-Halawany, N., & Ghonaim, M. M. (2009). Experimental diabetic nephropathy can be prevented by propolis: effect on metabolic disturbances and renal oxidative parameters. *Pakistan Journal of Pharmaceutical Sciences*, 22(2), 205–210.
- Abou-Zeid, A., El-Damarawy, S., Mariey, Y., & El-Kasass, S. (2015). Effect of dietary propolis supplementation on performance and activity of antioxidant enzymes in broiler chickens. *Egyptian Journal of Nutrition and Feeds*, 18(2 Special), 391–400. https://doi. org/10.21608/einf.2015.104498
- Afsharpour, F., Hashemipour, S., Khadem-Haghighian, H., & Koushan, Y. J. J. (2017). Effects of Iranian propolis on glycemic status, inflammatory factors, and liver enzyme levels in type 2 diabetic patients: A randomized, double-blind, placebo-controlled, clinical trial. Scientific Reports, 9, 9-14.
- Afsharpour, F., Javadi, M., Hashemipour, S., Koushan, Y., & haghighian, H. K. (2019). Propolis supplementation improves glycemic and antioxidant status in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled study. Complementary Therapies in Medicine, 43, 283-288. https://doi.org/10.1016/j. ctim.2019.03.001
- Ahmed, R., Tanvir, E., Hossen, M., Afroz, R., Ahmmed, I., Rumpa, N.-E., Paul, S., Gan, S. H., Sulaiman, S. A., & Khalil, M. I. (2017). Antioxidant

- properties and cardioprotective mechanism of malaysian propolis in rats. Evidence-Based Complementary and Alternative Medicine, 2017, 1–11. https://doi.org/10.1155/2017/5370545
- Akyol, Ö., İşçi, N., Temel, İ., Özgöçmen, S., Uz, E., Murat, M., & Büyükberber, S. (2001). The relationships between plasma and erythrocyte antioxidant enzymes and lipid peroxidation in patients with rheumatoid arthritis. *Joint Bone Spine*, 68(4), 311–317. https://doi.org/10.1016/S1297-319X(01)00279-2
- Al Ghamdi, A. A., Badr, G., Hozzein, W. N., Allam, A., Al-Waili, N. S., Al-Wadan, M. A., & Garraud, O. (2015). Oral supplementation of diabetic mice with propolis restores the proliferation capacity and chemotaxis of B and T lymphocytes towards CCL21 and CXCL12 by modulating the lipid profile, the pro-inflammatory cytokine levels and oxidative stress. BMC Immunology, 16(1), 54. https://doi.org/10.1186/s12865-015-0117-9
- Albokhadaim, I. (2015). Influence of dietary supplementation of propolis on hematology, biochemistry and lipid profile of rats fed high cholesterol diet. *Journal of Advanced Veterinary and Animal Research*, 2(1), 56–63. https://doi.org/10.5455/javar.2015.b49
- Al-Hariri, M. T., Eldin, T. A. G., & Al-Harb, M. M. (2016). Protective effect and potential mechanisms of propolis on streptozotocin-induced diabetic rats. *Journal of Taibah University Medical Sciences*, 11(1), 7– 12. https://doi.org/10.1016/j.jtumed.2015.11.002
- Ali, A. M., Habeeb, R. A., El-Azizi, N. O., Khattab, D. A., Abo-Shady, R. A., & Elkabarity, R. H. (2014). Higher nitric oxide levels are associated with disease activity in Egyptian rheumatoid arthritis patients. Revista Brasileira de Reumatologia (English Edition), 54(6), 446–451. https://doi.org/10.1016/j.rbre.2014.07.002
- Alm-Eldeen, A., Basyony, M., Elfiky, N., & Ghalwash, M. (2017). Effect of the Egyptian propolis on the hepatic antioxidant defense and pro-apoptotic p53 and anti-apoptotic bcl2 expressions in aflatoxin B1 treated male mice. Biomedicine & Pharmacotherapy, 87, 247–255. https://doi.org/10.1016/j.biopha.2016.12.084
- Alqayim, M. A. J. (2015). Propolis cardio protective role from the impact of aluminum chloride in female rabbits. Basrah Journal of Veterinary Research, 14, 136–149.
- Alyane, M., Kebsa, L. B. W., Boussenane, H., Rouibah, H., & Lahouel, M. (2008). Cardioprotective effects and mechanism of action of polyphenols extracted from propolis against doxorubicin toxicity. Pakistan Journal of Pharmaceutical Sciences. 21(3), 201–209.
- Ansorge, S., Reinhold, D., & Lendeckel, U. (2003). Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-β1 production of human immune cells. Zeitschrift für Naturforschung C, 58 (7–8), 580–589. https://doi.org/10.1515/znc-2003-7-823
- Araujo, M. A., Libério, S. A., Guerra, R. N., Ribeiro, M. N. S., & Nascimento, F. R. F. (2012). Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: A brief review. Revista Brasileira De Farmacognosia, 22(1), 208–219
- Attia, A. A., Elmazoudy, R. H., & El-Shenawy, N. S. (2012). Antioxidant role of propolis extract against oxidative damage of testicular tissue induced by insecticide chlorpyrifos in rats. *Pesticide Biochemistry and Physiology*, 103(2), 87–93. https://doi.org/10.1016/j.pestbp.2012.04.002
- Aviña-Zubieta, J. A., Choi, H. K., Sadatsafavi, M., Etminan, M., Esdaile, J. M., & Lacaille, D. (2008). Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Care & Research, 59(12), 1690–1697. https://doi.org/10.1002/art.24092
- Aydın, E., Hepokur, C., Mısır, S., & Yeler, H. (2018). Effects of propolis on oxidative stress in rabbits undergoing implant. Surgery, 21(2), 136– 144. https://doi.org/10.7126/cumudj.356554
- Bae, S. C., Kim, S. J., & Sung, M. K. (2003). Inadequate antioxidant nutrient intake and altered plasma antioxidant status of rheumatoid arthritis patients. *Journal of the American College of Nutrition*, 22(4), 311–315. https://doi.org/10.1080/07315724.2003.10719309

- Baeuerle, P. A. (1991). The inducible transcription activator NF-κB: Regulation by distinct protein subunits. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1072(1), 63-80. https://doi. org/10.1016/0304-419X(91)90007-8
- Balkarli, A., & Cobankara, V. (2016). Pulmonary nodulosis associated with leflunomide therapy in rheumatoid arthritis: Report of four cases and review of the literature. Journal of Clinical and Experimental Investigations, 7(1), 98-102,
- Bankova, V. (2005). Chemical diversity of propolis and the problem of standardization. Journal of Ethnopharmacology, 100(1-2), 114-117. https://doi.org/10.1016/j.jep.2005.05.004
- Banskota, A. H., Tezuka, Y., & Kadota, S. (2001). Recent progress in pharmacological research of propolis. Phytotherapy Research, 15(7), 561-571. https://doi.org/10.1002/ptr.1029
- Barlak, Y., Değer, O., Çolak, M., Karataylı, S. C., Bozdayı, A. M., & Yücesan, F. (2011). Effect of Turkish propolis extracts on proteome of prostate cancer cell line. Proteome Science, 9(1), 1-11. https://doi. org/10.1186/1477-5956-9-74
- Bauerova, K., & Bezek, S. (2000). Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. General Physiology and Biophysics, 18, 15-20.
- Baykalir, B. G., Seven, P. T., Gur, S., & Seven, I. J. A. R. (2018). The effects of propolis on sperm quality, reproductive organs and testicular antioxidant status of male rats treated with cyclosporine-A. Animal Reproduction, 13(2), 105-111.
- Bazmandegan, G., Boroushaki, M. T., Shamsizadeh, A., Ayoobi, F., Hakimizadeh, E., & Allahtavakoli, M. (2017). Brown propolis attenuates cerebral ischemia-induced oxidative damage via affecting antioxidant enzyme system in mice. Biomedicine & Pharmacotherapy, 85, 503-510, https://doi.org/10.1016/j.biopha.2016.11.057
- Bhadauria, M. (2012). Propolis prevents hepatorenal injury induced by chronic exposure to carbon tetrachloride. Evidence-Based Complementary and Alternative Medicine, 2012, 1-12. https://doi. org/10.1155/2012/235358
- Boers, M., Nurmohamed, M., Doelman, C., Lard, L., Verhoeven, A., Voskuyl, A., & van der Linden, S. (2003). Influence of glucocorticoids and disease activity on total and high density lipoprotein cholesterol in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 62(9), 842-845. https://doi.org/10.1136/ard.62.9.842
- Bors, W., Heller, W., Michel, C., & Saran, M. (1990), [36] Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods in Enzymology, 186, 343–355.
- Boufadi, M. Y., Soubhye, J., & Van Antwerpen, P. (2021). Antiinflammatory, antioxidant effects, and bioaccessibility of Tigzirt propolis. Journal of Food Biochemistry, 45, e13663. https://doi. org/10.1111/ifbc.13663
- Bueno-Silva, B., Rosalen, P. L., Alencar, S. M., & Mayer, M. P. (2017). Antiinflammatory mechanisms of neovestitol from Brazilian red propolis in LPS-activated macrophages. Journal of Functional Foods, 36, 440-447. https://doi.org/10.1016/j.jff.2017.07.029
- Burdock, G. (1998). Review of the biological properties and toxicity of bee propolis (propolis). Food and Chemical Toxicology, 36(4), 347-363. https://doi.org/10.1016/S0278-6915(97)00145-2
- Cardoso, S. M., Ribeiro, M., Ferreira, I. L., & Rego, A. C. (2011). Northeast Portuguese propolis protects against staurosporine and hydrogen peroxide-induced neurotoxicity in primary cortical neurons. Food and Chemical Toxicology, 49(11), 2862-2868. https://doi. org/10.1016/j.fct.2011.08.010
- Castaldo, S., & Capasso, F. (2002). Propolis, an old remedy used in modern medicine. Fitoterapia, 73, S1-S6. https://doi.org/10.1016/ S0367-326X(02)00185-5
- Charles-Schoeman, C., Lee, Y. Y., Grijalva, V., Amiadi, S., FitzGerald, J., Ranganath, V. K., Taylor, M., McMahon, M., Paulus, H. E., & Reddy, S. T. (2012). Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis. Annals of the

- Rheumatic Diseases, 71(7), 1157-1162. https://doi.org/10.1136/ annrheumdis-2011-200493
- Charles-Schoeman, C., Watanabe, J., Lee, Y. Y., Furst, D. E., Amjadi, S., Elashoff, D., Park, G., McMahon, M., Paulus, H. E., Fogelman, A. M., & Reddy, S. T. (2009). Abnormal function of high-density lipoprotein is associated with poor disease control and an altered protein cargo in rheumatoid arthritis. Arthritis & Rheumatism, 60(10), 2870-2879, https://doi.org/10.1002/art.24802
- Chen, L.-H., Chien, Y.-W., Chang, M.-L., Hou, C.-C., Chan, C.-H., Tang, H.-W., & Huang, H.-Y.-J.-N. (2018). Taiwanese green propolis ethanol extract delays the progression of type 2 diabetes mellitus in rats treated with streptozotocin/high-fat diet. Nutrients, 10(4), 503. https://doi.org/10.3390/nu10040503
- Cheung, K.-W., Sze, D.-M.-Y., Chan, W. K., Deng, R.-X., Tu, W., & Chan, G. C.-F. (2011). Brazilian green propolis and its constituent, artepillin C inhibits allogeneic activated human CD4 T cells expansion and activation. Journal of Ethnopharmacology, 138(2), 463-471.
- Chopra, S., Pillai, K., Husain, S., & Girl, D. K. (1995), Propolis protects against doxorubicin-induced myocardiopathy in rats. Experimental and Molecular Pathology, 62(3), 190-198. https://doi.org/10.1006/ exmp.1995.1021
- Chung, S., Timmins, J. M., Duong, M. N., Degirolamo, C., Rong, S., Sawyer, J. K., Singaraja, R. R., Hayden, M. R., Maeda, N., Rudel, L. L., Shelness, G. S., & Parks, J. S. (2010), Targeted deletion of hepatocyte ABCA1 leads to very low density lipoprotein triglyceride overproduction and low density lipoprotein hypercatabolism. Journal of Biological Chemistry, 285(16), 12197-12209. https://doi. org/10.1074/ibc.M109.096933
- Corrêa, F. R. S., Schanuel, F. S., Moura-Nunes, N., Monte-Alto-Costa, A., & Daleprane, J. B. (2017), Brazilian red propolis improves cutaneous wound healing suppressing inflammation-associated transcription factor NFkB. Biomedicine & Pharmacotherapy, 86, 162-171. https://doi.org/10.1016/j.biopha.2016.12.018
- Daleprane, J. B., & Abdalla, D. S. Emerging roles of propolis: Antioxidant, cardioprotective, and antiangiogenic actions. Evidence-Based Complementary and Alternative Medicine, 2013, 1-8. https://doi. org/10.1155/2013/175135
- Daleprane, J. B., da Silva Freitas, V., Pacheco, A., Rudnicki, M., Faine, L. A., Dörr, F. A., Ikegaki, M., Salazar, L. A., Ong, T. P., & Abdalla, D. S. P. (2012). Anti-atherogenic and anti-angiogenic activities of polyphenols from propolis. The Journal of Nutritional Biochemistry, 23(6), 557-566. https://doi.org/10.1016/j.jnutbio.2011.02.012
- Darvishi, N., Yousefinejad, V., Akbari, M. E., Abdi, M., Moradi, N., Darvishi, S., Mehrabi, Y., Ghaderi, E., Jamshidi-Naaeini, Y., Ghaderi, B., & Davoodi, S. H. (2020). Antioxidant and anti-inflammatory effects of oral propolis in patients with breast cancer treated with chemotherapy: A Randomized controlled trial. Journal of Herbal Medicine, 23, 100385. https://doi.org/10.1016/j.hermed.2020.100385
- Das, D. C., Jahan, I., Uddin, M. G., Hossain, M. M., Chowdhury, M. A. Z., Fardous, Z., Rahman, M. M., Kabir, A. K. M. H., Deb, S. R., Siddique, M. A. B., & Das, A. (2020). Serum CRP, MDA, vitamin C, and trace elements in Bangladeshi patients with rheumatoid arthritis. Biological Trace Element Research, 199(1), 76-84. https://doi.org/10.1007/ s12011-020-02142-7
- De Almeida, E., & Menezes, H. (2002). Anti-inflammatory activity of propolis extracts: A review. Journal of Venomous Animals and Toxins. 191-212. https://doi.org/10.1590/S0104-7930200200 0200002
- Ebeid, S. A., Abd El Moneim, N. A., El-Benhawy, S. A., Hussain, N. G., & Hussain, M. I. (2016). Assessment of the radioprotective effect of propolis in breast cancer patients undergoing radiotherapy. New perspective for an old honey bee product. Journal of Radiation Research and Applied Sciences, 9(4), 431-440.
- El Rabey, H. A., Al-Seeni, M. N., & Bakhashwain, A. S. (2017). The antidiabetic activity of Nigella sativa and propolis on streptozotocin-induced

2022,

- diabetes and diabetic nephropathy in male rats. Evidence-Based Complementary and Alternative Medicine, 2017, 5439645. https:// doi.org/10.1155/2017/5439645
- El-Awady, M. S., El-Agamy, D. S., Suddek, G. M., & Nader, M. A. (2014). Propolis protects against high glucose-induced vascular endothelial dysfunction in isolated rat aorta. Journal of Physiology and Biochemistry, 70(1), 247-254. https://doi.org/10.1007/s1310 5-013-0299-7
- Elissa, L. A., Elsherbiny, N. M., & Magmomah, A. O. (2015). Propolis restored adiponectin level in type 2 diabetes through PPARy activation. Egyptian Journal of Basic and Applied Sciences, 2(4), 318-326. https://doi.org/10.1016/j.ejbas.2015.06.003
- El-Sayed, E.-S., Abo-Salem, O., Aly, H., & Mansour, A. (2009). Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats. Pakistan Journal of Pharmaceutical Sciences, 22, 168-174.
- Ernst, E. (2010). Herbal medicine in the treatment of rheumatic diseases. Rheumatic Diseases Clinics of North America, 37(1), 95-102. https:// doi.org/10.1016/j.rdc.2010.11.004
- Ersoy, Y., Özerol, E., Baysal, Ö., Temel, I., MacWalter, R., Meral, Ü., & Altay, Z. (2002). Serum nitrate and nitrite levels in patients with rheumatoid arthritis, ankylosing spondylitis, and osteoarthritis. Annals of the Rheumatic Diseases, 61(1), 76-78. https://doi. org/10.1136/ard.61.1.76
- Fang, Y., Sang, H., Yuan, N., Sun, H., Yao, S., Wang, J., & Qin, S. (2013). Ethanolic extract of propolis inhibits atherosclerosis in ApoEknockout mice. Lipids in Health and Disease, 12(1), 1-6. https://doi. org/10.1186/1476-511X-12-123
- Farooqui, T. (2012). Beneficial effects of propolis on human health and neurological diseases. Frontiers in Bioscience, E4(2), 779-793. https://doi.org/10.2741/e418
- Filippin, L. I., Vercelino, R., Marroni, N., & Xavier, R. M. (2008). Redox signalling and the inflammatory response in rheumatoid arthritis. Clinical & Experimental Immunology, 152(3), 415-422. https://doi. org/10.1111/j.1365-2249.2008.03634.x
- Fox, D. A. (2005). Etiology and pathogenesis of rheumatoid arthritis.
- Fuat Gulhan, M., Duran, A., Selamoglu Talas, Z., Kakoolaki, S., & Mansouri, S. M. (2012). Effects of propolis on microbiologic and biochemical parameters of rainbow trout (Oncorhynchus mykiss) after exposure to the pesticide, Iranian Journal of Fisheries Sciences, 11(3), 490-503.
- Fukuda, T., Fukui, M., Tanaka, M., Senmaru, T., Iwase, H., Yamazaki, M., Aoi, W., Inui, T., Nakamura, N., & Marunaka, Y. (2015). Effect of Brazilian green propolis in patients with type 2 diabetes: A doubleblind randomized placebo-controlled study. Biomedical Reports. 3(3), 355-360. https://doi.org/10.3892/br.2015.436
- Furst, D. E., Schiff, M. H., Fleischmann, R. M., Strand, V., Birbara, C. A., Compagnone, D., ... Chartash, E. K. (2003). Adalimumab, a fully human anti tumor necrosis factor-alpha monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: Results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). Journal of Rheumatology, 30(12), 2563-2571.
- Gao, W., Pu, L., Wei, J., Yao, Z., Wang, Y., Shi, T., Zhao, L., Jiao, C., & Guo, C. (2018). Serum antioxidant parameters are significantly increased in patients with type 2 diabetes mellitus after consumption of Chinese propolis: A randomized controlled trial based on fasting serum glucose level. Diabetes Therapy, 9(1), 101-111. https://doi. org/10.1007/s13300-017-0341-9
- Garoui, E. M., Troudi, A., Fetoui, H., Soudani, N., Boudawara, T., & Zeghal, N. (2012). Propolis attenuates cobalt induced-nephrotoxicity in adult rats and their progeny. Experimental and Toxicologic Pathology, 64(7-8), 837-846. https://doi.org/10.1016/j.etp.2011.03.004
- Gautam, R., & Jachak, S. M. (2009), Recent developments in antiinflammatory natural products. Medicinal Research Reviews, 29(5), 767-820. https://doi.org/10.1002/med.20156
- Georgetti, S. R., Casagrande, R., Di Mambro, V. M., Azzolini, A. E., & Fonseca, M. J. (2003). Evaluation of the antioxidant activity of

- different flavonoids by the chemiluminescence method. American Association of Pharmaceutical Scientists, 5(2), 111-115, https://doi. org/10.1208/ps050220
- Gholaminejad, F., Javadi, M., Karami, A. A., Alizadeh, F., Kavianpour, M., & Khadem Haghighian, H. (2019). Propolis supplementation effects on semen parameters, oxidative stress, inflammatory biomarkers and reproductive hormones in infertile men with asthenozo ospermia. A randomized clinical trial. International Journal of Medical Laboratory, 6(1), 21-32. https://doi.org/10.18502/ijml. v6i1.504
- Gokhan, E. (2007). Evaluation of propolis effects on some biochemical parameters in rats treated with sodium xuoride. Pesticide Biochemistry and Physiology, 88, 273–283.
- Gong, P., Chang, X., Chen, X., Bai, X., Wen, H., Pi, S., Chen, F. (2017). Metabolomics study of cadmium-induced diabetic nephropathy and protective effect of caffeic acid phenethyl ester using UPLC-Q-TOF-MS combined with pattern recognition. Environmental Toxicology and Pharmacology, 54, 80–92. https://doi.org/10.1016/j. etap.2017.06.021
- González-Gay, M. A., & González-Juanatey, C. (2014). Inflammation and lipid profile in rheumatoid arthritis: bridging an apparent paradox. BMJ Publishing Group Ltd.
- Gonzalez-Gay, M. A., Gonzalez-Juanatey, C., Lopez-Diaz, M. J., Piñeiro, A., Garcia-Porrua, C., Miranda-Fillov, J. A., Ollier, W. E. R., Martin, J., & Llorca, J. (2007). HLA-DRB1 and persistent chronic inflammation contribute to cardiovascular events and cardiovascular mortality in patients with rheumatoid arthritis. Arthritis & Rheumatism, 57(1), 125-132. https://doi.org/10.1002/art.22482
- Gonzalez-Gay, M. A., Gonzalez-Juanatey, C., & Martin, J. (2005). Rheumatoid arthritis: A disease associated with accelerated atherogenesis. Seminars in Arthritis and Rheumatism, 35(1), 8-17. https:// doi.org/10.1016/j.semarthrit.2005.03.004
- Gorinstein, S., Leontowicz, H., Leontowicz, M., Jesion, I., Namiesnik, J., Drzewiecki, J., Park, Y.-S., Ham, K.-S., Giordani, E., & Trakhtenberg, S. (2011). Influence of two cultivars of persimmon on atherosclerosis indices in rats fed cholesterol-containing diets: Investigation in vitro and in vivo. Nutrition, 27(7-8), 838-846. https://doi. org/10.1016/j.nut.2010.08.015
- Grassi, D., Aggio, A., Onori, L., Croce, G., Tiberti, S., Ferri, C., Ferri, L., & Desideri, G. (2008). Tea, flavonoids, and nitric oxide-mediated vascular reactivity. The Journal of Nutrition, 138(8), 1554S-1560S. https://doi.org/10.1093/jn/138.8.1554S
- Halliwell, B., Hoult, J. R., & Blake, D. R. (1988). Oxidants, inflammation, and anti-inflammatory drugs. The FASEB Journal, 2(13), 2867-2873. https://doi.org/10.1096/fasebj.2.13.2844616
- Helli, B., Mowla, K., Mohammadshahi, M., & Jalali, M. (2016), Effect of sesamin supplementation on cardiovascular risk factors in women with rheumatoid arthritis. Journal of the American College of Nutrition, 35(4), 300-307. https://doi.org/10.1080/07315 724.2015.1005198
- Hemieda, F. A., El-Kholy, W. M., Wafaa, E., El-Sawah, M., & Shady, G. J. (2015). Influence of propolis on oxidative stress, inflammation and apoptosis in streptozotocin induced diabetic rats. International Journal of Advanced Research, 3(7), 831–845.
- Hesami, S., Hashemipour, S., Shiri-Shahsavar, M. R., Koushan, Y., & Haghighian, H. K. (2019). Administration of Iranian Propolis attenuates oxidative stress and blood glucose in type II diabetic patients: A randomized, double-blind, placebo-controlled, clinical trial. Caspian Journal of Internal Medicine, 10(1), 48.
- Hu, F., Hepburn, H., Li, Y., Chen, M., Radloff, S., & Daya, S. (2005). Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models, Journal of Ethnopharmacology, 100(3), 276-283. https://doi.org/10.1016/j.jep.2005.02.044
- Ibrahim, K. A., Khwanes, S. A., El-Desouky, M. A., & Elhakim, H. K. A. (2019). Propolis relieves the cardiotoxicity of chlorpyrifos in diabetic rats via alleviations of paraoxonase-1 and xanthine oxidase

- genes expression. Pesticide Biochemistry and Physiology, 159, 127–135. https://doi.org/10.1016/j.pestbp.2019.06.006
- Ichi, I., Hori, H., Takashima, Y., Adachi, N., Kataoka, R., Okihara, K., Hashimoto, K., & Kojo, S. (2009). The beneficial effect of propolis on fat accumulation and lipid metabolism in rats fed a high-fat diet. *Journal of Food Science*, 74(5), H127–H131. https://doi.org/10.1111/j.1750-3841.2009.01147.x
- Ichikawa, H., Satoh, K., Tobe, T., Yasuda, I., Ushio, F., Matsumoto, K., Endo, K., & Ookubo, C. (2002). Free radical scavenging activity of propolis. *Redox Report*, 7(5), 347–350. https://doi.org/10.1179/13510 0002125000965
- lio, A., Ohguchi, K., Maruyama, H., Tazawa, S., Araki, Y., Ichihara, K., Nozawa, Y., & Ito, M. (2012). Ethanolic extracts of Brazilian red propolis increase ABCA1 expression and promote cholesterol efflux from THP-1 macrophages. *Phytomedicine*, 19(5), 383–388. https://doi.org/10.1016/j.phymed.2011.10.007
- Ilhan, A., Koltuksuz, U., Ozen, S., Uz, E., Ciralik, H., & Akyol, O. (1999). The effects of caffeic acid phenethyl ester (CAPE) on spinal cord ischemia/reperfusion injury in rabbits. European Journal of Cardio-Thoracic Surgery, 16(4), 458-463. https://doi.org/10.1016/s1010 -7940(99)00246-8
- Iwakura, Y., & Ishigame, H. (2006). The IL-23/IL-17 axis in inflammation. Journal of Clinical Investigation, 116(5), 1218–1222. https://doi. org/10.1172/JCI28508
- Jalali, M., Ranjbar, T., Mosallanezhad, Z., Mahmoodi, M., Moosavian, S. P., Ferns, G., ... Sohrabi, Z. J. (2020). Effect of propolis supplementation on serum CRP and TNF-α levels in adults: A systematic review and meta-analysis of clinical trials. Complementary Therapies in Medicine, 50, 102380.
- Jasprica, I., Mornar, A., Debeljak, Ž., Smolčić-Bubalo, A., Medić-Šarić, M., Mayer, L., Romić, Ž., Bućan, K., Balog, T., Sobočanec, S., & Šverko, V. (2007). In vivo study of propolis supplementation effects on antioxidative status and red blood cells. *Journal of Ethnopharmacology*, 110(3), 548–554. https://doi.org/10.1016/j.jep.2006.10.023
- Kalpakcioglu, B., & Şenel, K. (2008). The interrelation of glutathione reductase, catalase, glutathione peroxidase, superoxide dismutase, and glucose-6-phosphate in the pathogenesis of rheumatoid arthritis. Clinical Rheumatology, 27(2), 141–145. https://doi.org/10.1007/s10067-007-0746-3
- Kamanlı, A., Nazıroğlu, M., Aydılek, N., & Hacıevlıyagil, C. (2004). Plasma lipid peroxidation and antioxidant levels in patients with rheumatoid arthritis. Cell Biochemistry and Function, 22(1), 53–57. https:// doi.org/10.1002/cbf.1055
- Kanbur, M., Eraslan, G., Silici, S. J. E., & Safety, E. (2009). Antioxidant effect of propolis against exposure to propetamphos in rats. *Ecotoxicology and Environmental Safety*, 72(3), 909–915. https://doi. org/10.1016/j.ecoeny.2007.12.018
- Kao, T.-K., Ou, Y.-C., Raung, S.-L., Lai, C.-Y., Liao, S.-L., & Chen, C.-J. (2010). Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. *Life Sciences*, 86(9-10), 315– 321. https://doi.org/10.1016/j.lfs.2009.12.014
- Kaur, A., Nain, P., & Nain, J. (2012). Herbal plants used in treatment of rheumatoid arthritis: A review. International Journal of Pharmacy and Pharmaceutical Sciences, 4(Suppl 4), 44–57.
- Khalil, F. A., & El-Sheikh, N. (2010). The effects of dietary Egyptian propolis and bee pollen supplementation against toxicity if sodium fluoride in rats. *Journal of American Science*, 11(6), 310–316.
- Khayyal, M. T., el-Ghazaly, M. A., El-Khatib, A. S., Hatem, A. M., de Vries, P. J., el-Shafei, S., & Khattab, M. M. (2003). A clinical pharmacological study of the potential beneficial effects of a propolis food product as an adjuvant in asthmatic patients. Fundamental & Clinical Pharmacology, 17, 93–102.
- Kismet, K., Ozcan, C., Kuru, S., Gencay Celemli, O., Celepli, P., Senes, M., Guclu, T., Sorkun, K., Hucumenoglu, S., & Besler, T. (2017). Does propolis have any effect on non-alcoholic fatty liver

- disease? Biomedicine & Pharmacotherapy, 90, 863–871. https://doi. org/10.1016/j.biopha.2017.04.062
- Kismet, K., Sabuncuoglu, M. Z., Kilicoglu, S. S., Kilicoglu, B., Devrim, E., Erel, S., Sunay, A. E., Erdemli, E., Durak, I., & Akkus, M. A. (2008). Effect of propolis on oxidative stress and histomorphology of liver tissue in experimental obstructive jaundice. European Surgical Research, 41(2), 231–237. https://doi.org/10.1159/000136479
- Kiziltunc, A., Coğalgil, S., & Cerrahoğlu, L. (1998). Carnitine and antioxidants levels in patients with rheumatoid arthritis. Scandinavian Journal of Rheumatology, 27(6), 441–445. https://doi. org/10.1080/030097498442271
- Koenders, M. I., Lubberts, E., Oppers-Walgreen, B., van den Bersselaar, L., Helsen, M. M., Kolls, J. K., Joosten, L. A. B., & van den Berg, W. B. (2005). Induction of cartilage damage by overexpression of T cell interleukin-17A in experimental arthritis in mice deficient in interleukin-1. Arthritis & Rheumatism, 52(3), 975–983. https://doi. org/10.1002/art.20885
- Kolankaya, D., Selmanoğlu, G., Sorkun, K., & Salih, B. (2002). Protective effects of Turkish propolis on alcohol-induced serum lipid changes and liver injury in male rats. Food Chemistry, 78(2), 213–217. https:// doi.org/10.1016/S0308-8146(01)00400-9
- Koya-Miyata, S., Arai, N., Mizote, A., Taniguchi, Y., Ushio, S., Iwaki, K., & Fukuda, S. (2009). Propolis prevents diet-induced hyperlipidemia and mitigates weight gain in diet-induced obesity in mice. Biological and Pharmaceutical Bulletin, 32(12), 2022–2028. https://doi.org/10.1248/bpb.32.2022
- Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R., & Popov, S. (1999). Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. *Journal of Ethnopharmacology*, 64(3), 235–240. https://doi.org/10.1016/S0378-8741(98)00131-7
- Kurek-Górecka, A., Rzepecka-Stojko, A., Górecki, M., Stojko, J., Sosada, M., & Swierczek-Zieba, G. (2013). Structure and antioxidant activity of polyphenols derived from propolis. *Molecules (Basel, Switzerland)*, 19(1), 78–101. https://doi.org/10.3390/molecules19010078
- Laveti, D., Kumar, M., Hemalatha, R., Sistla, R., Gm Naidu, V., Talla, V., ... Targets, A.-D. (2013). Anti-inflammatory treatments for chronic diseases: A review. *Inflammation & Allergy: Drug Targets*, 12(5), 349-361.
- Lee, H. N., Shin, S. A., Choo, G. S., Kim, H. J., Park, Y. S., Kim, B. S., Kim, S. K., Cho, S. D., Nam, J. S., Choi, C. S., Che, J. H., Park, B. K., & Jung, J. Y. (2018). Anti-inflammatory effect of quercetin and galangin in LPS-stimulated RAW264.7 macrophages and DNCB-induced atopic dermatitis animal models. *International Journal of Molecular Medicine*, 41(2), 888–898. https://doi.org/10.3892/jjmm.2017.3296
- Lee, Y., Shin, D.-H., Kim, J.-H., Hong, S., Choi, D., Kim, Y.-J., Kwak, M.-K., & Jung, Y. (2010). Caffeic acid phenethyl ester-mediated Nrf2 activation and IκB kinase inhibition are involved in NFκB inhibitory effect: Structural analysis for NFκB inhibition. European Journal of Pharmacology, 643(1), 21–28. https://doi.org/10.1016/j.eiphar.2010.06.016
- Lei, X. G., Zhu, J.-H., Cheng, W.-H., Bao, Y., Ho, Y.-S., Reddi, A. R., Holmgren, A., & Arnér, E. S. J. (2016). Paradoxical roles of antioxidant enzymes: Basic mechanisms and health implications. *Physiological Reviews*, 96(1), 307–364. https://doi.org/10.1152/ physrev.00010.2014
- Li, Y., Chen, M., Xuan, H., & Hu, F. (2012). Effects of encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus rats. Evidence-Based Complementary and Alternative Medicine, 2012, 1–8. https://doi. org/10.1155/2012/981896
- Lima, L. D. C., Andrade, S. P., Campos, P. P., Barcelos, L. S., Soriani, F. M., AL Moura, S., & Ferreira, M. A. N. D. (2014). Brazilian green propolis modulates inflammation, angiogenesis and fibrogenesis in

- Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(1), 1-9. https:// doi.org/10.1038/sigtrans.2017.23
- Lubberts, E., & van den Berg, W. B. (2013). Cytokines in the pathogenesis of rheumatoid arthritis and collagen-induced arthritis. Madame Curie bioscience database (pp. 194-202). Landes Bioscience.
- Machado, J. L., Assunção, A. K. M., da Silva, M. C. P., Reis, A. S., Costa, G. C., Arruda, D. S., Rocha, B. A., Vaz, M. M. O. L. L., Paes, A. M. A., Guerra, R. N. M., Berretta, A. A., & Nascimento, F. R. F. (2012). Brazilian green propolis: Anti-inflammatory property by an immunomodulatory activity. Evidence-Based Complementary and Alternative Medicine, 2012, 1741-4288. https://doi.org/10.1155/2012/157652
- Mahmoud, A. A., & Ismail, M. A. (2011). Serum protein carbonyl content, total thiol and nitric oxide in patients with rheumatoid arthritis. Journal of American Science, 7, 683-686.
- Mirzoeva, O., & Calder, P. J. P. (1996). The effect of propolis and its components on eicosanoid production during the inflammatory response. Prostaglandins, Leukotrienes and Essential Fatty Acids, 55(6). 441-449. https://doi.org/10.1016/S0952-3278(96)90129-5
- Missima, F., Pagliarone, A. C., Orsatti, C. L., Araújo, J. P. Jr. & Sforcin, J. M. (2010). The Effect of propolis on Th1/Th2 cytokine expression and production by melanoma-bearing mice submitted to stress. Phytotherapy Research, 24(10), 1501-1507. https://doi. org/10.1002/ptr.3142
- Mousa, T. H., Al-Obaidi, Z. M. J., & Alkhafaji, S. L. (2021). Molecular docking studies and evaluation of the anti-inflammatory activity of ibuprofen-tranexamic acid codrug. Latin American Journal of Pharmacv. 40, 128-134.
- Mujica, V., Orrego, R., Pérez, J., Romero, P., Ovalle, P., Zúñiga-Hernández, J., Arredondo, M., & Leiva, E. (2017). The role of propolis in oxidative stress and lipid metabolism: A randomized controlled trial. Evidence-Based Complementary and Alternative Medicine, 2017, 4272940. https://doi.org/10.1155/2017/4272940
- Munstedt, K., & Zymunt, M. (2001). Propolis-current and future medical uses. American Bee Journal, 141(7), 507-510.
- Murata, K., Yatsunami, K., Fukuda, E., Onodera, S., Mizukami, O., Hoshino, G., & Kamei, T. (2004). Antihyperglycemic effects of propolis mixed with mulberry leaf extract on patients with type 2 diabetes. Alternative Therapies in Health and Medicine, 10(3), 78-79.
- Myasoedova, E., & Gabriel, S. E. (2010). Cardiovascular disease in rheumatoid arthritis: A step forward. Current Opinion in Rheumatology, 22(3), 342-347, https://doi.org/10.1097/BOR.0b013e3283379b91
- Nader, M. A., El-Agamy, D. S., & Suddek, G. M. (2010). Protective effects of propolis and thymoguinone on development of atherosclerosis in cholesterol-fed rabbits. Archives of Pharmacal Research, 33(4), 637-643. https://doi.org/10.1007/s12272-010-0420-1
- Nattagh-Eshtivani, E., Jokar, M., Tabesh, H., Nematy, M., Safarian, M., Pahlavani, N., Maddahi, M., & Khosravi, M. (2021). The effect of propolis supplementation on inflammatory factors and oxidative status in women with rheumatoid arthritis: Design and research protocol of a double-blind, randomized controlled. Contemporary Clinical Trials Communications, 23, 100807. https:// doi.org/10.1016/j.conctc.2021.100807
- Nelson, R. H. (2013). Hyperlipidemia as a risk factor for cardiovascular disease. Primary Care: Clinics in Office Practice, 40(1), 195-211. https://doi.org/10.1016/j.pop.2012.11.003
- Newairy, A., & Abdou, H. M. (2013). Effect of propolis consumption on hepatotoxicity and brain damage in male rats exposed to chlorpyrifos. African Journal of Biotechnology, 12(33), 5232-5243.
- Nirala, S. K., & Bhadauria, M. (2008), Propolis reverses acetaminophen induced acute hepatorenal alterations: A biochemical and histopathological approach. Archives of Pharmacal Research, 31(4), 451-461. https://doi.org/10.1007/s12272-001-1178-5

- Nna, V. U., Bakar, A. B. A., Lazin, M. R. M. L. M., & Mohamed, M. (2018). Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocininduced diabetic rats. Food and Chemical Toxicology, 120, 305-320. https://doi.org/10.1016/j.fct.2018.07.028
- Norata, G. D., Marchesi, P., Passamonti, S., Pirillo, A., Violi, F., & Catapano, A. L. (2007). Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice. Atherosclerosis, 191(2), 265-271. https://doi. org/10.1016/j.atherosclerosis.2006.05.047
- O'Dell, J. R. (2004). Therapeutic strategies for rheumatoid arthritis. New England Journal of Medicine, 350(25), 2591-2602. https://doi. org/10.1056/NEJMra040226
- Oršolić, N., Sirovina, D., Končić, M. Z., Lacković, G., Gregorović, G. J. B. C., & Medicine, A. (2012). Effect of Croatian propolis on diabetic nephropathy and liver toxicity in mice. BMC Complementary and Alternative Medicine, 12(1), 117. https://doi. org/10.1186/1472-6882-12-117
- Oztürk, H. S., Cimen, M. Y., Cimen, O. B., Kaçmaz, M., & Durak, I. (1999). Oxidant/antioxidant status of plasma samples from patients with rheumatoid arthritis. Rheumatology International, 19(1-2), 35-37. https://doi.org/10.1007/s002960050097
- Ozyurt, H., Irmak, M. K., Akyol, O., & Söğüt, S. (2001). Caffeic acid phenethyl ester changes the indices of oxidative stress in serum of rats with renal ischaemia-reperfusion injury. Cell Biochemistry & Function, 19, 259-263.
- Pahlavani, N., Malekahmadi, M., Firouzi, S., Rostami, D., Sedaghat, A., Moghaddam, A. B., ... Safarian, M. (2020). Molecular and cellular mechanisms of the effects of Propolis in inflammation, oxidative stress and glycemic control in chronic diseases. Nutrition & Metabolism, 17(1), 1-12.
- Pahlavani, N., Sedaghat, A., Bagheri Moghaddam, A., Mazloumi Kiapey, S. S., Gholizadeh Navashenag, J., Jarahi, L., Reazvani, R., Norouzy, A., Nematy, M., Safarian, M., & Ghayour-Mobarhan, M. (2019). Effects of propolis and melatonin on oxidative stress, inflammation, and clinical status in patients with primary sepsis: Study protocol and review on previous studies. Clinical Nutrition ESPEN, 33, 125-131. https://doi.org/10.1016/j.clnesp.2019.06.007
- Park, Y.-B., Choi, H. K., Kim, M.-Y., Lee, W.-K., Song, J., Kim, D.-K., & Lee, S.-K. (2002). Effects of antirheumatic therapy on serum lipid levels in patients with rheumatoid arthritis: A prospective study. The American Journal of Medicine, 113(3), 188-193. https://doi. org/10.1016/S0002-9343(02)01186-5
- Park, Y. B., Lee, S. K., Lee, W. K., Suh, C. H., Lee, C. W., Lee, C. H., ... Lee, J. (1999). Lipid profiles in untreated patients with rheumatoid arthritis, Journal of Rheumatology, 26(8), 1701-1704.
- Pascoal, A., Feás, X., Dias, T., Dias, L. G., & Estevinho, L. M. (2014). The role of honey and propolis in the treatment of infected wounds. In K. Kon (Ed.), Microbiology for surgical infections (pp. 221–234). Elsevier.
- Paulino, N., Abreu, S. R. L., Uto, Y., Koyama, D., Nagasawa, H., Hori, H., Dirsch, V. M., Vollmar, A. M., Scremin, A., & Bretz, W. A. (2008). Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian Propolis, 587(1-3), 296-301. https://doi.org/10.1016/j. ejphar.2008.02.067
- Ramos, A., & Miranda, J. (2007). Propolis: A review of its antiinflammatory and healing actions. Journal of Venomous Animals and Toxins Including Tropical Diseases, 13(4), 697-710. https://doi. org/10.1590/S1678-91992007000400002
- Remirez, D., González, R., Rodriguez, S., Ancheta, O., Bracho, J. C., Rosado, A., Rojas, E., & Ramos, M. E. (1997). Protective effects of Propolis extract on allyl alcohol-induced liver injury in mice. Phytomedicine. 4(4), 309-314. https://doi.org/10.1016/S0944-7113(97)80038-4
- Rivera-Yañez, N., Rodriguez-Canales, M., Nieto-Yañez, O., Jimenez-Estrada, M., Ibarra-Barajas, M., Canales-Martinez, M., Medicine,

org/10.1155/2018/4360356

- A. (2018). Hypoglycaemic and antioxidant effects of propolis of chihuahua in a model of experimental diabetes. Evidence-Based Complementary and Alternative Medicine, 2018, 1–10. https://doi.
- Rodriguez, S., Ancheta, O., Ramos, M., Remirez, D., Rojas, E., & Gonzalez, R. (1997). Effects of Cuban red propolis on galactosamine-induced hepatitis in rats. *Pharmacological Research*, 35(1), 1–4. https://doi. org/10.1006/phrs.1996.9998
- Ronda, N., Favari, E., Borghi, M. O., Ingegnoli, F., Gerosa, M., Chighizola, C., Zimetti, F., Adorni, M. P., Bernini, F., & Meroni, P. L. (2014). Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. *Annals of the Rheumatic Diseases*, 73(3), 609–615. https://doi.org/10.1136/annrheumdis-2012-202914
- Roy, J., Galano, J. M., Durand, T., Le Guennec, J. Y., & Chung-Yung Lee, J. (2017). Physiological role of reactive oxygen species as promoters of natural defenses. *The FASEB Journal*, 31(9), 3729–3745. https://doi.org/10.1096/fi.201700170R
- Russo, A., Longo, R., & Vanella, A. (2002). Antioxidant activity of propolis: Role of caffeic acid phenethyl ester and galangin. Fitoterapia, 73, S21–S29. https://doi.org/10.1016/S0367-326X(02)00187-9
- Sahin, A., Turkmen, S., Guzel, N., Mentese, A., Turedi, S., Karahan, S. C., Yulug, E., Demir, S., Aynaci, O., Deger, O., & Gunduz, A. (2018). A comparison of the effects of grayanotoxin-containing honey (Mad Honey), normal honey, and propolis on fracture healing. Medical Principles and Practice, 27(2), 99–106. https://doi.org/10.1159/000487552
- Salehi-Sahlabadi, A., Chhabra, M., Rahmani, J., Momeni, A., Karam, G., Nattagh-Eshtivani, E., Nouri, M., Clark, C., Salehi, P., & Hekmatdoost, A. (2020). The effect of propolis on anthropometric indices and lipid profile: A systematic review and meta-analysis of randomized controlled trials. *Journal of Diabetes & Metabolic Disorders*, 19(2), 1835–1843. https://doi.org/10.1007/s40200-020-00604-2
- Samadi, N., Mozaffari-Khosravi, H., Rahmanian, M., & Askarishahi, M. (2017). Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: A randomized, double-blind clinical trial. *Journal of Integrative Medicine*, 15(2), 124–134. https://doi.org/10.1016/S2095-4964(17)60315-7
- Sameni, H. R., Ramhormozi, P., Bandegi, A. R., Taherian, A. A., Mirmohammadkhani, M., & Safari, M. (2016). Effects of ethanol extract of propolis on histopathological changes and anti-oxidant defense of kidney in a rat model for type 1 diabetes mellitus. *Journal* of Diabetes Investigation, 7(4), 506–513. https://doi.org/10.1111/ idi.12459
- Santos, V. R. (2012). Propolis: Alternative medicine for the treatment of oral microbial diseases Vol. 7, (pp. 133–169).
- Sarban, S., Kocyigit, A., Yazar, M., & Isikan, U. E. (2005). Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clinical Biochemistry, 38(11), 981–986. https://doi. org/10.1016/j.clinbiochem.2005.08.003
- Sarker, K. K., Sethi, J., & Mohanty, U. (2020). Comparative clinical effects of spinal manipulation, core stability exercise, and supervised exercise on pain intensity, segmental instability, and health-related quality of life among patients with chronic nonspecific low back pain: A randomized control trial. *Journal of Natural Science, Biology and Medicine*, 11(1), 27. https://doi.org/10.4103/jnsbm.JNSBM_101_19
- Sato, M., Miyazaki, T., Nagaya, T., Murata, Y., Ida, N., Maeda, K., & Seo, H. (1996). Antioxidants inhibit tumor necrosis factor-alpha mediated stimulation of interleukin-8, monocyte chemoattractant protein-1, and collagenase expression in cultured human synovial cells. The Journal of Rheumatology, 23(3), 432–438.
- Scazzocchio, F., D'auria, F., Alessandrini, D., & Pantanella, F. (2006). Multifactorial aspects of antimicrobial activity of

- propolis. Microbiological Research, 161(4), 327–333. https://doi. org/10.1016/j.micres.2005.12.003
- Scheller, S., Wilczok, T., Imielski, S., Krol, W., Gabrys, J., & Shani, J. (1990). Free radical scavenging by ethanol extract of propolis. International Journal of Radiation Biology, 57(3), 461–465. https://doi.org/10.1080/09553009014552601
- Scott, D. L., Wolfe, F., & Huizinga, T. W. J. (2010). Rheumatoid arthritis. Lancet, 376, 1094–1108.
- Selamoglu-Talas, Z., Ozdemir, I., Ciftci, O., & Cakir, O. (2013). Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats. Journal of Pharmaceutical Care, 1, 45–50.
- Seven, I., Aksu, T., & Seven, P. T. (2010). The effects of propolis on biochemical parameters and activity of antioxidant enzymes in broilers exposed to lead-induced oxidative stress. Asian-Australasian Journal of Animal Sciences, 23(11), 1482–1489. https://doi.org/10.5713/ajas.2010.10009
- Sforcin, J. M. (2007). Propolis and the immune system: A review. Journal of Ethnopharmacology, 113(1), 1–14. https://doi.org/10.1016/j. jep.2007.05.012
- Sforcin, J. M., & Bankova, V. (2011). Propolis: Is there a potential for the development of new drugs? *Journal of Ethnopharmacology*, 133(2), 253–260. https://doi.org/10.1016/j.jep.2010.10.032
- Shi, Y.-Z., Liu, Y.-C., Zheng, Y.-F., Chen, Y.-F., Si, J.-J., Chen, M.-L., Shou, Q.-Y., Zheng, H.-Q., & Hu, F.-L. (2019). Ethanol extract of Chinese propolis attenuates early diabetic retinopathy by protecting the bloodretinal barrier in streptozotocin-induced diabetic rats. *Journal of Food Science*, 84(2), 358–369. https://doi.org/10.1111/1750-3841.14435
- Shinohara, R., Ohta, Y., Hayashi, T., & Ikeno, T. J. P. R. (2002). Evaluation of antilipid peroxidative action of propolis ethanol extract. *Phytotherapy Research*, 16(4), 340–347. https://doi.org/10.1002/ ptr.894
- Shukla, S., Bhadauria, M., & Jadon, A. (2004). Effect of propolis extract on acute carbon tetrachloride induced hepatotoxicity Vol. 42, (pp. 993– 997). https://pubmed.ncbi.nlm.nih.gov/15511003/
- Silva, V., Genta, G., Möller, M. N., Masner, M., Thomson, L., Romero, N., Radi, R., Fernandes, D. C., Laurindo, F. R. M., Heinzen, H., Fierro, W., & Denicola, A. (2011). Antioxidant activity of Uruguayan propolis. In vitro and cellular assays. *Journal of Agriculture and Food Chemistry*, 59(12), 6430–6437. https://doi.org/10.1021/jf201032y
- Sobočanec, S., Šverko, V., Balog, T., Šarić, A., Rusak, G., Likić, S., Kušić, B., Katalinić, V., Radić, S., & Marotti, T. (2006). Oxidant/antioxidant properties of Croatian native propolis. *Journal of Agricultural and Food Chemistry*, 54(21), 8018–8026. https://doi.org/10.1021/jf061 2023
- Soleimani, D., Miryan, M., Hadi, V., Gholizadeh Navashenaq, J., Moludi, J., Sayedi, S. M., Bagherniya, M., Askari, G., Nachvak, S. M., Sadeghi, E., Rashidi, A. A., & Hadi, S. (2021). Effect of propolis supplementation on athletic performance, body composition, inflammation, and oxidative stress following intense exercise: A triple-blind randomized clinical trial. Food Science & Nutrition, 9(7), 3631–3640. https://doi.org/10.1002/fsn3.2319
- Soromou, L. W., Chu, X., Jiang, L., Wei, M., Huo, M., Chen, N. A., Guan, S., Yang, X., Chen, C., Feng, H., & Deng, X. (2012). In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. *International Immunopharmacology*, 14(1), 66-74. https://doi.org/10.1016/j. intimp.2012.06.009
- Stamler, J., Daviglus, M. L., Garside, D. B., Dyer, A. R., Greenland, P., & Neaton, J. D. (2000). Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA, 284(3), 311–318. https://doi.org/10.1001/jama.284.3.311
- Steinman, L. (2007). A brief history of Th 17, the first major revision in the Th 1/Th 2 hypothesis of T Cell-mediated tissue damage. *Nature Methods*, 13(2), 139–145.

- Su, K.-Y., Hsieh, C.-Y., Chen, Y.-W., Chuang, C.-T., Chen, C.-T., & Chen, Y.-L.-S. (2014). Taiwanese green propolis and propolin G protect the liver from the pathogenesis of fibrosis via eliminating TGF-β-induced Smad2/3 phosphorylation. *Journal of Agricultural and Food Chemistry*, 62(14), 3192–3201. https://doi.org/10.1021/jf500096c
- Sur Arslan, A., & Tatlı Seven, P. (2017). The effects of propolis on serum malondialdehyde, fatty acids and some blood parameters in Japanese quail (Coturnix coturnix japonica) under high stocking density. Journal of Applied Animal Research, 45(1), 417–422. https:// doi.org/10.1080/09712119.2016.1206901
- Surh, Y.-J., Chun, K.-S., Cha, H.-H., Han, S. S., Keum, Y.-S., Park, K.-K., & Lee, S. S. (2001). Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Downregulation of COX-2 and iNOS through suppression of NF-κB activation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 480-481, 243–268. https://doi.org/10.1016/S0027-5107(01)00183-X
- Szliszka, E., Kucharska, A. Z., Sokół-Łętowska, A., Mertas, A., Czuba, Z. P., & Król, W. (2013). Chemical composition and antiinflammatory effect of ethanolic extract of Brazilian green propolis on activated J774A.1 macrophages. Evidence-Based Complementary and Alternative Medicine, 2013, 1–13. https://doi. org/10.1155/2013/976415
- Tanaka, M., Okamoto, Y., Fukui, T., & Masuzawa, T. (2012). Suppression of interleukin 17 production by Brazilian propolis in mice with collagen-induced arthritis. *Inflammopharmacology*, 20(1), 19–26. https://doi.org/10.1007/s10787-011-0088-2
- Tan-no, K., Nakajima, T., Shoji, T., Nakagawasai, O., Niijima, F., Ishikawa, M., Endo, Y., Sato, T., Satoh, S., & Tadano, T. (2006). Anti-inflammatory effect of propolis through inhibition of nitric oxide production on carrageenin-induced mouse paw edema. *Biological and Pharmaceutical Bulletin*, 29(1), 96–99. https://doi.org/10.1248/bpb.29.96
- Tao, Y., Xie, S., Xu, F., Liu, A., Wang, Y., Chen, D., Pan, Y., Huang, L., Peng, D., Wang, X. U., & Yuan, Z. (2018). Ochratoxin A: Toxicity, oxidative stress and metabolism. Food and Chemical Toxicology, 112, 320–331. https://doi.org/10.1016/j.fct.2018.01.002
- Taysi, S., Polat, F., Gul, M., Sari, R., & Bakan, E. (2002). Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. *Rheumatology International*, 21(5), 200–204. https://doi.org/10.1007/s00296-001-0163-x
- Tehrani, H. S., & Moosavi-Movahedi, A. A. (2018). Catalase and its mysteries. Progress in Biophysics and Molecular Biology, 140, 5–12. https://doi.org/10.1016/j.pbiomolbio.2018.03.001
- Tietge, U. J. (2014). Hyperlipidemia and cardiovascular disease: Inflammation, dyslipidemia, and atherosclerosis. Current Opinion in Lipidology, 25(1), 94–95. https://doi.org/10.1097/MOL.00000 00000000051
- Tobón, G. J., Youinou, P., & Saraux, A. (2010). The environment, geoepidemiology, and autoimmune disease: Rheumatoid arthritis. Autoimmunity Reviews, 9(5), A288–A292. https://doi.org/10.1016/j. autrev.2009.11.019
- Tolba, M. F., Azab, S. S., Khalifa, A. E., Abdel-Rahman, S. Z., & Abdel-Naim, A. B. (2013). Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: A review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. *IUBMB Life*, 65(8), 699–709. https://doi.org/10.1002/jub.1189
- Torel, J., Cillard, J., & Cillard, P. (1986). Antioxidant activity of flavonoids and reactivity with peroxy radical. *Phytochemistry*, 25(2), 383–385. https://doi.org/10.1016/S0031-9422(00)85485-0
- Uzel, A., Sorkun, K., Önçağ, Ö., Çoğulu, D., Gençay, Ö., & Sali'h, B. (2005). Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. *Microbiological Research*, 160(2), 189–195. https://doi.org/10.1016/j.micres.2005.01.002

- Vaghef-Mehrabany, E., Homayouni-Rad, A., Alipour, B., Sharif, S.-K., Vaghef-Mehrabany, L., & Alipour-Ajiry, S. (2016). Effects of probiotic supplementation on oxidative stress indices in women with rheumatoid arthritis: A randomized double-blind clinical trial. Journal of the American College of Nutrition, 35(4), 291–299. https:// doi.org/10.1080/07315724.2014.959208
- Van Den Berg, W. B., & Miossec, P. J. N. R. R. (2009). IL-17 as a future therapeutic target for rheumatoid arthritis. *Nature Reviews Rheumatology*, 5(10), 549–553. https://doi.org/10.1038/nrrheum.2009.179
- Wang, K., Jin, X., Li, Q., Sawaya, A., Le Leu, R., Conlon, M., ... Hu, F. (2018). Propolis from different geographic origins suppress intestinal inflammation in a model of dss-induced colitis is associated with decreased *Bacteroides* spp. in the gut. *Molecular Nutrition & Food Research*, 62(17), e1800080. https://doi.org/10.1002/mnfr.20180 0080
- Wang, X., Fang, G., Yang, Y., & Pang, Y. (2019). The newly discovered natural compounds against rheumatoid arthritis-an overview. Phytochemistry Letters, 34, 50–58. https://doi.org/10.1016/j. phytol.2019.09.011
- Weinblatt, M. E., Kremer, J. M., Bankhurst, A. D., Bulpitt, K. J., Fleischmann, R. M., Fox, R. I., ... Burge, D. J. (1999). A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. New England Journal of Medicine, 340(4), 253–259.
- Wolska, K., Gorska, A., Antosik, K., & Lugowska, K. (2019). Immunomodulatory effects of propolis and its components on basic immune cell functions. *Indian Journal of Pharmaceutical Sciences*, 81(4), 575–588. https://doi.org/10.36468/pharmaceutical-sciences.548
- Woo, K. J., Jeong, Y.-J., Inoue, H., Park, J.-W., & Kwon, T. K. (2005). Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. FEBS Letters, 579(3), 705–711. https://doi. org/10.1016/j.febslet.2004.12.048
- Xie, Q., Kashiwabara, Y., & Nathan, C. (1994). Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. *Journal of Biological Chemistry*, 269(7), 4705–4708. https://doi.org/10.1016/S0021-9258(17)37600-7
- Yaykasli, K. (2013). Rheumatoid arthritis and adipokines. European Journal of Basic Medical Sciences, 3(2), 38–43. https://doi.org/10.21601/ eibms/9200
- Ying-Hua, L., Wei, Z., & Fu-Liang, H. (2012). Progress on anti-inflammatory effects and mechanism of propolis. Natural Product Research and Development, 24(6), 856–859.
- Yonar, M. E., Yonar, S. M., & Silici, S. (2011). Protective effect of propolis against oxidative stress and immunosuppression induced by oxytetracycline in rainbow trout (Oncorhynchus mykiss, W.). Fish and Shellfish Immunology, 31(2), 318–325.
- Yousef, M. I., Salama, A. F. J. F., & Toxicology, C. (2009). Propolis protection from reproductive toxicity caused by aluminium chloride in male rats. Food and Chemical Toxicology, 47(6), 1168–1175. https://doi.org/10.1016/j.fct.2009.02.006
- Zakerkish, M., Jenabi, M., Zaeemzadeh, N., Hemmati, A. A., & Neisi, N. (2019). The effect of Iranian propolis on glucose metabolism, lipid profile, insulin resistance, renal function and inflammatory biomarkers in patients with type 2 diabetes mellitus: A randomized double-blind clinical trial. Scientific Reports, 9(1), 7289. https://doi.org/10.1038/s41598-019-43838-8
- Zhang, X., Wang, G., Gurley, E. C., & Zhou, H. (2014). Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. *PLoS One*, 9(9), e107072. https://doi.org/10.1371/journal.pone.0107072
- Zhao, J.-Q., Wen, Y.-F., Bhadauria, M., Nirala, S. K., Sharma, A., Shrivastava, S., ... Mathur, R. (2009). Protective effects of propolis on

- inorganic mercury induced oxidative stress in mice Vol. 47, (pp. 264–269). https://pubmed.ncbi.nlm.nih.gov/19382722/
- Zhao, L., Pu, L., Wei, J., Li, J., Wu, J., Xin, Z., Gao, W., & Guo, C. (2016). Brazilian green propolis improves antioxidant function in patients with type 2 diabetes mellitus. *International Journal of Environmental Research and Public Health*, 13(5), 498. https://doi.org/10.3390/ ijerph13050498
- Zhu, A., Wu, Z., Zhong, X., Ni, J., Li, Y., Meng, J., Du, C., Zhao, X., Nakanishi, H., & Wu, S. (2018). Brazilian green propolis prevents cognitive decline into mild cognitive impairment in elderly people living at high altitude. *Journal of Alzheimer's Disease*, 63(2), 551–560. https://doi.org/10.3233/JAD-170630
- Zhu, W., Chen, M., Shou, Q., Li, Y., Hu, F.-J.-E.-B.-C., & Medicine, A. (2011). Biological activities of Chinese propolis and Brazilian propolis on streptozotocin-induced type 1 diabetes mellitus in rats. Evidence-Based Complementary and Alternative Medicine, 2011, 1–8. https://doi.org/10.1093/ecam/neq025
- Zhu, W., Li, Y.-H., Chen, M.-L., & Hu, F.-L. (2011). Protective effects of Chinese and Brazilian propolis treatment against hepatorenal lesion in diabetic rats. *Human & Experimental Toxicology*, 30(9), 1246– 1255. https://doi.org/10.1177/0960327110387456

How to cite this article: Nattagh-Eshtivani, E., Pahlavani, N., Ranjbar, G., Gholizadeh Navashenaq, J., Salehi-Sahlabadi, A., Mahmudiono, T., Nader Shalaby, M., Jokar, M., Nematy, M., Barghchi, H., Havakhah, S., Maddahi, M., Rashidmayvan, M., & Khosravi, M. (2022). Does propolis have any effect on rheumatoid arthritis? A review study. *Food Science & Nutrition*, 10, 1003–1020. https://doi.org/10.1002/fsn3.2684

Does propolis have any effect on rheumatoid arthritis? A review study

GI	NΙΔ	IITV	DE	PORT

17% SIMILARITY INDEX

9%
INTERNET SOURCES

12%
PUBLICATIONS

8%

STUDENT PAPERS

PRIMARY SOURCES

Andisheh Norouzian Ostad, Hanieh Barghchi, Ali Jangjoo, Golnaz Ranjbar et al. "Macro- and Micro-nutrient Intake Adequacy in Gastric Bypass Patients after 24 Months: a Crosssectional Study", Clinical Nutrition Research, 2021

1 %

Publication

Submitted to University of Glamorgan
Student Paper

1 %

res.mdpi.com

%

Omar Belmehdi, Naoual El Menyiy,
Abdelhakim Bouyahya, Aicha El Baaboua et al.
"Recent Advances in the Chemical
Composition and Biological Activities of
Propolis", Food Reviews International, 2022

1 %

Submitted to CSU, Long Beach Student Paper

1 %

6	Submitted to Pittsburg State University Student Paper	<1%
7	Submitted to Europäische Fachhochschule Rhein/Erft Student Paper	<1%
8	Submitted to Sogang University Student Paper	<1%
9	Submitted to Queen's University of Belfast Student Paper	<1%
10	Lei Chen, Abigail Dupre, Xia Qiu, Oscar Pellon- Cardenas et al. "TGFB1 Induces Fetal Reprogramming and Enhances Intestinal Regeneration", Cold Spring Harbor Laboratory, 2023	<1%
11	downloads.hindawi.com Internet Source	<1%
12	oamjms.eu Internet Source	<1%
13	cmjournal.biomedcentral.com Internet Source	<1%
14	Submitted to University of Greenwich Student Paper	<1%
15	researchonline.ljmu.ac.uk Internet Source	<1%

16	Sarraa Dhiaa, Imad A. Thanoon, Nabeel N. Fadhil. "VITAMIN E VERSUS PROPOLIS AS AN ADD-ON THERAPY TOSITAGLIPTIN/METFORMIN ON OXIDANT/ANTIOXIDANT STATUS AND LIPID PROFILE IN TYPE 2 DIABETIC PATIENTS", Military Medical Science Letters, 2022 Publication	<1%
17	Submitted to Universidad de Oviedo Student Paper	<1%
18	www.ayurvedjournal.com Internet Source	<1%
19	Jonatan Barrera-Chimal, Nathalie Henley, Michael Grant, Schrodinger Cenatus et al. "Tungsten toxicity on kidney tubular epithelial cells induces renal inflammation and M1- macrophage polarization", Research Square Platform LLC, 2023 Publication	<1%
20	Loutfy H. Madkour. "Chapter 12 Antioxidant Therapeutic Defenses Toward Redox Biology and Oxidative Stress", Springer Science and Business Media LLC, 2020 Publication	<1%
21	Submitted to Far Eastern University Student Paper	<1%

Nelly Rivera-Yañez, C. Rebeca Rivera-Yañez, <1% 22 Glustein Pozo-Molina, Claudia F. Méndez-Catalá et al. "Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits", Nutrients, 2020 Publication f6publishing.blob.core.windows.net <1% 23 Internet Source Submitted to RMIT University 24 Student Paper Submitted to Universiti Sains Malaysia <1% 25 Student Paper collewriters.com <1% 26 Internet Source 9dok.org <1% Internet Source Naseh Pahlavani, Alireza Sedaghat, Gordon A 28 Ferns, Mahdie Mir et al. "The Effects of Melatonin and Propolis on Markers of Inflammation, Oxidative Stress, Clinical Outcomes, and Survival Rate in Patients with Primary Sepsis Hospitalized in Intensive Care Unit: A Randomized Clinical Trial", Research Square, 2020 Publication

29	Samah A. El-Newary, Manal G. Mahmoud, Mohsen Asker, Eman R Youness, Abeer Ibrahim. "Acidic Exo-polysaccharide produced from marine Bacillus sp. NRC5 to treat and protect chemical-induced mammary carcinomas in rats", Research Square Platform LLC, 2022 Publication	<1%
30	Submitted to University of Mosul Student Paper	<1%
31	masam.cuautitlan.unam.mx Internet Source	<1%
32	psasir.upm.edu.my Internet Source	<1%
33	Isabelle Romero Novelli. "Nutritional factors and metabolic biomarkers: impact in risk and survival of women with breast cancer", Universidade de Sao Paulo, Agencia USP de Gestao da Informacao Academica (AGUIA), 2022 Publication	<1%
34	Tafirenyika Gwenzi, Anna Zhu, Petra Schrotz- King, Ben Schöttker, Michael Hoffmeister, Hermann Brenner. "Effects of vitamin D supplementation on inflammatory response in patients with cancer and precancerous lesions: systematic review and meta-analysis	<1%

of randomized trials.", Research Square Platform LLC, 2023

Publication

35	www.ioaindia.org Internet Source	<1%
36	Georgeta Balica, Oliviu Vostinaru, Cristina Stefanescu, Cristina Mogosan, Irina Iaru, Anamaria Cristina, Carmen Elena Pop. "Potential Role of Propolis in the Prevention and Treatment of Metabolic Diseases", Plants, 2021 Publication	<1%
37	Submitted to International Islamic University Malaysia Student Paper	<1%
38	Submitted to CSU Northridge Student Paper	<1%
39	Submitted to Indian Institute of Management Student Paper	<1%
40	Submitted to Maryville University Student Paper	<1%
41	Submitted to The Hong Kong Polytechnic University Student Paper	<1%
42	trebuchet.public.springernature.app Internet Source	<1%

43	Submitted to An-Najah National University Student Paper	<1%
44	Submitted to Ana's Test Account Student Paper	<1%
45	Submitted to University of Al-Qadisiyah Student Paper	<1%
46	Submitted to University of Gloucestershire Student Paper	<1%
47	Submitted to University of Queensland Student Paper	<1%
48	Areeg M. Abd - Elrazek, Heba A. El - dash, Noha I. Said. "The role of propolis against paclitaxel - induced oligospermia, sperm abnormality, oxidative stress and DNA damage in testes of male rats", Andrologia, 2019 Publication	<1%
49	Cecilia Gabriela Meléndez-Salcido, Joel Ramírez-Emiliano, Juana Rosalba García- Ramírez, Victoriano Pérez-Vázquez. "The role of curcumin in the modulation of the differential effects of fructose and high-fat diet on kidney injury, inflammation, fibrosis, and lipid metabolism", Research Square Platform LLC, 2023 Publication	<1%

50	Malley, Linda A., Nancy E. Everds, G. Tracy Makovec, and Gerald L. Kennedy. "REPRODUCTIVE AND REPEATED DOSE TOXICITY OF CYCLODODECATRIENE (CDDT) IN RATS FOLLOWING ORAL (GAVAGE) TREATMENT", Drug and Chemical Toxicology, 2002. Publication	<1%
51	Submitted to University of Aberdeen Student Paper	<1%
52	Submitted to University of Leeds Student Paper	<1%
53	digibug.ugr.es Internet Source	<1%
54	Seyithan Taysi, Firas Shawqi Algburi, Muhammed Enes Taysi, Cuneyt Caglayan. " Caffeic acid phenethyl ester: A review on its pharmacological importance, and its association with free radicals, - 19, and radiotherapy ", Phytotherapy Research, 2022 Publication	<1%
55	ouci.dntb.gov.ua Internet Source	<1%
56	Hache, Guillaume, François Coudore, Alain M. Gardier, and Bruno P. Guiard. "Monoaminergic Antidepressants in the Relief	<1%

of Pain: Potential Therapeutic Utility of Triple Reuptake Inhibitors (TRIs)", Pharmaceuticals, 2011.

Publication

- Mohammad Nazrul Islam, Khandkar <1% 57 Shaharina Hossain, Partha Protim Sarker, Jannatul Ferdous et al. "Revisiting pharmacological potentials of seed: A promising option for - 19 prevention and cure ", Phytotherapy Research, 2020 Publication academic.oup.com 58 Internet Source docksci.com 59 Internet Source monographs.rsglobal.pl 60 Internet Source <1_% Felix Zulhendri, Munir Ravalia, Krishna Kripal, 61 Kavita Chandrasekaran, James Fearnley, Conrad O. Perera. "Propolis in Metabolic Syndrome and Its Associated Chronic Diseases: A Narrative Review", Antioxidants, 2021 Publication
 - Livia Alvarenga, Ludmila FMF Cardozo, Natália A. Borges, Tuany R. Chermut et al. "To bee or not to bee? The bee extract propolis as a

<1%

bioactive compound in the burden of lifestyle disease", Nutrition, 2020

Publication

63	Parimah Ebadi, Mehdi Fazeli. "Evaluation of the potential in vitro effects of propolis and honey on wound healing in human dermal fibroblast cells", South African Journal of Botany, 2021 Publication	<1%
64	dspace.utalca.cl Internet Source	<1%
65	qspace.library.queensu.ca Internet Source	<1%
66	recil.ensinolusofona.pt Internet Source	<1%
67	Andresa Aparecida Berretta, Marcelo Augusto Duarte Silveira, José Manuel Cóndor Capcha, David De Jong. "Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease", Biomedicine & Pharmacotherapy, 2020	<1%

Frank C. Arnett, Steven M. Edworthy, Daniel A. Bloch, Dennis J. Mcshane et al. "The american rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis", Arthritis & Rheumatism, 1988

Publication

68

69	Marcela Salazar-García, Juan Carlos Corona. "The Use of Natural Compounds as a Strategy to Counteract Oxidative Stress in Animal Models of Diabetes Mellitus", International Journal of Molecular Sciences, 2021 Publication

<1%

Erejuwa, Omotayo O., Siti A. Sulaiman, and Mohd S. Ab Wahab. "Honey: A Novel Antioxidant", Molecules, 2012.

<1%

Publication

Rajib Hossain, Cristina Quispe, Rasel Ahmed Khan, Abu Saim Mohammad Saikat et al. "Propolis: An update on its chemistry and pharmacological applications", Chinese Medicine, 2022

<1%

Publication

Reihane Qahremani, Soghra Rabizadeh,
Hossein Mirmiranpoor, Amirhossein Yadegar
et al. "LCAT activity, ox-LDL, and lipid profile in
patients with endometrial carcinoma and
diabetes mellitus: The interactive effect of
concurrent disease", Research Square
Platform LLC, 2022

<1%

Publication

Exclude quotes On Exclude matches Off

Does propolis have any effect on rheumatoid arthritis? A review study

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	
PAGE 9	
PAGE 10	
PAGE 11	
PAGE 12	
PAGE 13	
PAGE 14	
PAGE 15	
PAGE 16	
PAGE 17	
PAGE 18	