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Abstract 

 Motor vehicle exhaust is the main source of Carbon Monoxide (CO). In urban 

areas, where motor vehicles are easily found, CO is commonly identified as one 

of the air polluter sources. CO is hazardous, and human being will suffer from 

serious health problems if they are exposed to this polluting agent in a prolonged 

period. This study aims to develop a model that will aid the effort to minimize the 

negative effects of CO. The model is built in which it will be able to show the 

cause-factors and the preventing-factors of CO generation. The Mixed 

Geographically Temporal Weighted Regression (MGTWR) approach is used as  
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the basis of the model. MTGWR is a spatial-temporal regression model, which 

takes into account the geographical and temporal aspects of the pollution. 

However, the MGTWR model cannot be used to predict the effect if it is used 

outside the sample location of the research, unless we predict the associated 

regression coefficients in the respected area beforehand. In this case, we use the 

estimated predictor parameter based on the Kriging method to predict the 

regression parameters outside the research location. As the result, the Kriging 

Predictor-based MTGWR model can be used to estimate the pollution level 

caused by CO outside the sample location of the research.     
 

Keywords: Air Polluter, Carbon Monoxide, Spatio-Temporal, MGTWR, 

Kriging-predictor 

 

 
1. INTRODUCTION 

Previous study shows that there is a parallel relationship between the number of 

polluted air-generated disease sufferers and the intensity of industrialization and 

urbanization in countries whose level of air pollution are severely high [1]. Carbon 

Monoxide (CO) is one of the air polluters, which is generated from the imperfect 

fuel combustion of motor vehicles and industrial machines. Motor vehicle exhaust 

is the main generator of Carbon Monoxide and it is common to be found in big 

cities. Based on data, about 60% of air pollution in major urban    areas is 

related with public transportation [2]. Within the context of human health, Carbon 

Monoxide is toxic. It causes lower fetal weight, higher rate of infant death, and 

leads to human brain damage. The air quality standard that is related with Carbon 

Monoxide is 10.000 ug/Nm3 [3] 

Demographically, the potential of the effect and causes of air pollution will be 

different one to another in different regions. Also, it is inappropriate to analyze the 

effect and causes of air pollution based on a global approach, as we will be unable 

to examine the influence of local variations if we are to use global approach [4-5]. 

The common spatial regression method known is the Geographically Weighted 

Regression (GWR). GWR is a weighted-regression technique that is based on the 

simple regression approach. It is a common statistical technique used for 

spatial heterogeneity. The term heterogeneity in this case is the measurement 

relationship of different variables among various locations [6]. Spatial 

heterogeneity occurs when an independent variable gives different responses to 

different locations within the same research location [7]. The crux of GWR 

approach is determining the regression model for each of the location nodes so 

that the regression models obtained are unique, in which a model for a node will 

be different to the others [8]. There is another model aside from GWR, which is 

Mixed Geographically Temporal Weighted regression (MGTWR). MTGWR is a 

combined modeling approach between global regression and local regression 

(GWR) [9]. This paper takes into consideration the element of location, as well as 

the time into the local variation based on MGTWR approach. The  



Development of air polluter model                                        5865 
 

 

usefulness of global regression is that it can be used to predict in each location. 

However, in the spatial regression models such as GWR, MGWR (Mixed 

Geographically Weighted Regression), and MGTWR, the global regression cannot 

be used for predicting outside the research sample location, unless we predict the 

respected location’s regression coefficients beforehand [10]. In order to eliminate 

this obstacle, we estimate the predictor parameter using the Kriging method to 

predict the regression parameter outside the research location.  

 

2. RESEARCH OBJECTIVE 
This research aims to develop the air polluter model for the Carbon Monoxide 

(CO) element based on the Mixed Geographically Temporal Weighted Regression 
(MGTWR) approach, in which the developed model can be used to predict outside 
the research location using the Kriging predictor estimation. This way, the 
developed model can be used to predict the regression parameter outside the 
research location.  

3. METHODOLOGY 

3.1 Mixed Geographically Temporal Weighted Regression (MGTWR)  

MGTWR is the advancement of the MGWR model [11] with the incorporation 
of the temporal element into the model. The temporal factor is aimed to predict 
the observation time, and to complement the location (location coordinate) factor. 
Mathematically, the temporal model can be stated as the following: 

 
               (1)  
                                   

Where: i = 1,2,3….n 
 βi is global variable ix

 
 βj is local variable jx  

 yi is Response of variables 
 xi is predictors of variables 
 ui is longitude at the time-i  
 vi is latitude at the time-i 
 ti is the time length at the time-i 
 

3.2.  Kriging Spatial Predictor Model  

Kriging method is used to predict the regression parameter outside the research 

location [12]. The assumption that is associated with the predictor is: 

( ; ) = b(s ),
i0 1

n
p b s ii




 1
1

n

ii
 


             (2) 

Where: 

λi = the weight b(si) for the estimation of location s, with the value of 

b(si) has different weighted-coefficients for the estimation in 

different locations     

si = location vector 

s0 = Location of the data to be estimated 

  n  = number of the sample data 

 , ,
1

q
y x u v t xi i ij j i i i ij i

j
    


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The Kriging spatial predictor matrix notation can be stated as the following [12]: 

( )  ( ) ( ) t

( )          0 ( )   
0

s s f s s si j i i jj

f s f smt j tt

  


    
    
        

, for i= 1, 2, …, n and t = 1, 2, …, p 

Based on the previous matrix, we can compute the weight matrix for the Universal 

Kriging, which is: 

 
1

( )  ( ) ( ) t

( )          0 ( )   
0

s s f s s si j i i jj

f s f sm t j tt

 


 

    
    
        

        (3) 

 

Notations : 

γ(si – sj) = Semivariogram between sampled nodes 

γ (s0 – si) = Semivariogram between sampled node and estimated node 

ft(si), ft(sj) = Location coordinate of the sampled data 

λj  = Weighting value to be computed 

mt  = Value of lagrange parameter 

(si, sj) = Location of the sampled data 

s0  = Location of the data to be estimated 

p  = Number of order in the trend equation 
 

Semivariogram is used to determine the distance where the observation data 

values are not dependent one to another or have no correlation among them [12]. 

The equation in the Kriging model is used to model the trend of the low order 

polynomial, which is the first or the second order [13]. If the obtained trend has 

the first order at R3, then the equation is: 

 m(s) = m(x,y,z) = a0 + a1x + a2y + a3z 

where x,y,z are the sampled location coordinates. Thus, the equation (3) becomes 

as the following: 

( ) ( )
0 1 2 3 01

n
s s m m x m y m z s sj i j i i i i

j
        


, for i = 1,2,…,n 

 

With assumption: 
 

1

n
x xj j

j
 


,   

1

n
y yj j

j
 


,     

1

n
z zj j

j
 


,     1

1

n

j
j

 


 

If we want to transform the equation above into the Kriging matrix in the  
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following first order Kriging trend (KT):  

 

( )  ( ) 1     x     y     z  
1 1 1 1 1 1

                                                 

( )  ( ) 1     x     y     z  n n n1 1

        1               1       0     0      0     0
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 
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 

 

 

 

where : KKT λKT = kKT 

then the weighting matrices can be stated as the followings [13]: 

1
K k

KT KT KT



   

The case study in this research uses the Carbon Monoxide (CO) element as the 
response variable Y, while the predictor variables are the air temperature (X1), the 
wind velocity (X2), the air humidity (X3), the traffic velocity (X4), the area size of 
the urban forest (X5), the population density (X6), and the business center aspect 
(X7) [14] 

 

4. RESULTS AND DISCUSSION 

The first MGTWR model test is the model fitness, in which the hypothesis can 

be stated as the followings: 
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H0 :    , , ,u v t u v
k i i i k i i

    0 , 1 , 2 , , 4 ,  d a n  1 , 2 , , 5k i   

       (MGTWR model is not different from the MGWR model) 

H1 : At least one    , , ,u v t u v
k i i i k i i

   

       (MGTWR  model is significantly different from the MGWR model) 

 

 

The test results are summarized in Table 1: 
 

Tabel 1 Fitness Test of MGTWR Model for the CO Response 

 

Source of 

Error 
Sum Square Degree of Fredom Mean Square F p-value 

Improvement  7,7679  15,9260 0,4877 4,2433 0,0000 

MGTWR 46,1362 401,3706 0,1149   

MGWR 53,9041 417,2966       
 

 

Table 1 shows that the F test statistical value is 4,2433, and the the p-value of 

0,0000. Using the significance value    of 5%, we must reject H0, and conclude 

that the MGTWR model is significantly different from the MGWR model. 

Therefore, we can further conclude that the MGTWR model is more proper to 

model the Air Polluter Standard Index (APSI) for Carbon Monoxide (CO). This 

means that the time element is influential in the APSI modeling for CO so that not 

only the location factor is considered, but the observation time is taken as the 

influential factor to the APSI model for CO as well. 

Next step is the global parameter test that is conducted to identify which global 

predictor variables significantly influence the response. In this test, we perform  

the partial global parameter test using the hypothesis below: 

 

H0 : 0k         (global variable
kx is not significant) 

H1 : 0k         (global variable
kx is significant) 

 

Table 2 shows that by using the level of significance    5%, we can 

conclude that the global predictor variable that significantly influence the APSI 

for CO are the area size of the urban forest (X5) and the business center aspect 

(X7), because these variables have the p-value that are less than 0.05.  
 

 

 



Development of air polluter model                                        5869 
 

 

 

Table 2  Parsial Test of Global Variable of MGTWR Model  

Global Parameter 

Variable Beta T p-value 

X5 -0,0445 -0,4171 0,0080* 

X6 0,0088 0,3556 0,3613 

X7 -0,0456 2,0045 0,0228* 

   Note: *) significant at 5%   

 

By using α = 5%, the location and the observation time of APSI for CO in 

Surabaya city can be classified based on the significant variables for APSI values 

for CO. The detailed significant variable list in each location and in each 

observation time is presented in Table 3: 

 

Table 3 MGTWR Model for CO at Five Observation Location Nodes 

No Observation Location Observation Time Significant Variables 

1

1 
SUF 1  (Location 1) 

Morning X3, X4 

Noon X3, X4 

Evening X1, X2, and X4 

2

2 
SUF 3 (Location 2) 

Morning X3, X4 

Noon X3, X4 

Evening X1, X2, X3, X4 

2

3 
SUF 4 (Location 3) 

Morning X3, X4 

Noon X4 

Evening X1, X2, X3, X4 

4

4 
SUF 5 (Location 4) 

Morning X3, X4 

Noon X3, X4 

Evening X1, X2, X3, X4 

5

5 
SUF 6 (Location 5) 

Morning X3, X4 

Noon X2 

Evening X2, X3, and X4 

 

The MGTWR model obtained in each of the location and observation time 

will be different one to another, depending on the parameter value of MGTWR 

and on which predictor variables that significantly influence the response variable 

of APSI (CO) with the R2 value of 36.60%. 
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To predict the MGTWR model at a certain location node, we use the 

Kriging approach that is presented in the following Table 4: 

 

 

Table 4 Kriging-based MGTWR Model with Local Parameter Lokal for CO 

Element 

 

 

No Sub-district Time Constant X1 X2 X3 X4 

1 Location z 

Morning 4.5498 -0.0541 0.0690 -0.1437 0.0614 

Noon 4.4902 0.0164 0.0180 0.0932 0.2797 

Evening 4.5415 0.1745 0.0870 0.1284 0.2571 

2 Location y  

Morning 4.5523 -0.0425 0.0667 -0.1441 0.0636 

Noon 4.4903 0.0145 0.0192 0.0833 0.2773 

Evening 4.5366 0.1706 0.0840 0.1233 0.2567 

3 Location x 

Morning 4.5457 -0.0618 0.0665 -0.1335 0.0693 

Noon 4.4897 0.0202 0.0206 0.0923 0.2775 

Evening 4.5441 0.1686 0.0874 0.1262 0.2612 

 

 

 

In Table 4, if we are to estimate for location x, the Kriging-MGTWR with 

the CO response for evening is: 

 

Ln (CO) = 4.544 + 0.0874X2  +  0.2612X4  +  0.0445X5  –  0.0456X7 
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The classification map in Surabaya based on CO polluter can be seen in the 

following: 

 

 

Figure 1. Classification of Sub-districts in Surabaya Based on the Air Polluter CO 

There are eleven sub-districts that are classified as unhealthy (yellow-colored) and 

twenty sub-districts that are classified as fair (blue-colored). 

5. CONCLUSION 

Aside from the global influence, the MGTWR model of the air pollution is 

also influenced significantly by the location factor (geographical factor). 

Therefore, in this study, the mixed model is suitable to model the air polluter. The 

local influence of MTGWR for CO element for observation time morning and 

noon show that the two significantly influencing predictor variables are the air 

humidity (x3) and the traffic velocity (x4). This indicates that in the morning and 

noon, the influence of motor-vehicle exhaust and air humidity are very dominant 

in polluting the air with CO. For the night observation, almost all of the predictor 

variables influence the air pollution level, with the global influence factors of it 

are the area size of the urban forest (x5) and the business center (x7). To predict an  
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MGTWR model outside the observation nodes, we can use the Kriging estimation 

approach. 
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