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Abstract

Motor vehicle exhaust is the main source of Carbon Monoxide (CO). In urban
areas, where motor vehicles are easily found, CO is commonly identified as one
of the air polluter sources. CO is hazardous, and human being will suffer from
serious health problems if they are exposed to this polluting agent in a prolonged
period. This study aims to develop a model that will aid the effort to minimize the
negative effects of CO. The model is built in which it will be able to show the
cause-factors and the preventing-factors of CO generation. The Mixed
Geographically Temporal Weighted Regression (MGTWR) approach is used as
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the basis of the model. MTGWR is a spatial-temporal regression model, which
takes into account the geographical and temporal aspects of the pollution.
However, the MGTWR model cannot be used to predict the effect if it is used
outside the sample location of the research, unless we predict the associated
regression coefficients in the respected area beforehand. In this case, we use the
estimated predictor parameter based on the Kriging method to predict the
regression parameters outside the research location. As the result, the Kriging
Predictor-based MTGWR model can be used to estimate the pollution level
caused by CO outside the sample location of the research.

Keywords: Air Polluter, Carbon Monoxide, Spatio-Temporal, MGTWR,
Kriging-predictor

1. INTRODUCTION

Previous study shows that there is a parallel relationship between the number of
polluted air-generated disease sufferers and the intensity of industrialization and
urbanization in countries whose level of air pollution are severely high [1]. Carbon
Monoxide (CO) is one of the air polluters, which is generated from the imperfect
fuel combustion of motor vehicles and industrial machines. Motor vehicle exhaust
is the main generator of Carbon Monoxide and it is common to be found in big
cities. Based on data, about 60% of air pollution in major urban areas is
related with public transportation [2]. Within the context of human health, Carbon
Monoxide is toxic. It causes lower fetal weight, higher rate of infant death, and
leads to human brain damage. The air quality standard that is related with Carbon
Monoxide is 10.000 ug/Nm3 [3]

Demographically, the potential of the effect and causes of air pollution will be
different one to another in different regions. Also, it is inappropriate to analyze the
effect and causes of air pollution based on a global approach, as we will be unable
to examine the influence of local variations if we are to use global approach [4-5].
The common spatial regression method known is the Geographically Weighted
Regression (GWR). GWR is a weighted-regression technique that is based on the
simple regression approach. It is a common statistical technique used for
spatial heterogeneity. The term heterogeneity in this case is the measurement
relationship of different variables among various locations [6]. Spatial
heterogeneity occurs when an independent variable gives different responses to
different locations within the same research location [7]. The crux of GWR
approach is determining the regression model for each of the location nodes so
that the regression models obtained are unique, in which a model for a node will
be different to the others [8]. There is another model aside from GWR, which is
Mixed Geographically Temporal Weighted regression (MGTWR). MTGWR is a
combined modeling approach between global regression and local regression
(GWR) [9]. This paper takes into consideration the element of location, as well as
the time into the local variation based on MGTWR approach. The
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usefulness of global regression is that it can be used to predict in each location.
However, in the spatial regression models such as GWR, MGWR (Mixed
Geographically Weighted Regression), and MGTWR, the global regression cannot
be used for predicting outside the research sample location, unless we predict the
respected location’s regression coefficients beforehand [10]. In order to eliminate
this obstacle, we estimate the predictor parameter using the Kriging method to
predict the regression parameter outside the research location.

2. RESEARCH OBJECTIVE

This research aims to develop the air polluter model for the Carbon Monoxide
(CO) element based on the Mixed Geographically Temporal Weighted Regression
(MGTWR) approach, in which the developed model can be used to predict outside
the research location using the Kriging predictor estimation. This way, the
developed model can be used to predict the regression parameter outside the
research location.

3. METHODOLOGY

3.1 Mixed Geographically Temporal Weighted Regression (MGTWR)

MGTWR is the advancement of the MGWR model [11] with the incorporation
of the temporal element into the model. The temporal factor is aimed to predict
the observation time, and to complement the location (location coordinate) factor.
Mathematically, the temporal model can be stated as the following:

q
Yi = jélﬂixij +5j (“i'Vi’ti)Xij + & 1)

Where:i=1,23....n
piis global variable x;
pi is local variable X;
yi is Response of variables
Xi is predictors of variables
ui is longitude at the time-i
vi is latitude at the time-i
ti is the time length at the time-i

3.2.  Kriging Spatial Predictor Model
Kriging method is used to predict the regression parameter outside the research
location [12]. The assumption that is associated with the predictor is:

n n
p(b;sy) Elﬂ]b(S,), i§14 1 (2)
Where:

Ai = the weight b(s;) for the estimation of location s, with the value of
b(si) has different weighted-coefficients for the estimation in
different locations

Si = |ocation vector

So = Location of the data to be estimated

n = number of the sample data
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The Kriging spatial predictor matrix notation can be stated as the following [12]:

r(5p=sj) Ti(sp) Ajl | 7Gs=s)
= Jfori=1,2,...,nandt=1,2,...,p
i) 0 |[m | | fi(sp)

Based on the previous matrix, we can compute the weight matrix for the Universal
Kriging, which is:

3] [r6=sp (&) o6 -5)) )
m | |hGp 0 fy (o)

Notations :

y(si—Sj) = Semivariogram between sampled nodes

y (so —Si) = Semivariogram between sampled node and estimated node
fi(si), f(sj) = Location coordinate of the sampled data

A = Weighting value to be computed

m¢ = Value of lagrange parameter

(si,sj) = Location of the sampled data

So = Location of the data to be estimated

p = Number of order in the trend equation

Semivariogram is used to determine the distance where the observation data
values are not dependent one to another or have no correlation among them [12].
The equation in the Kriging model is used to model the trend of the low order
polynomial, which is the first or the second order [13]. If the obtained trend has
the first order at R3, then the equation is:

m(s) = m(X,y,z) = ap + aiX + azy + asz
where X,y,z are the sampled location coordinates. Thus, the equation (3) becomes
as the following:

n
jgl;tjy(si —sj)+m0 + My X; + M, Y +Maz; :7(So‘si) Jfori=1,2,...,n
With assumption:

n n

n n
Z /IijZX, Jél/ljyjzy, leiJZJ:Z, g /112

If we want to transform the equation above into the Kriging matrix in the
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following first order Kriging trend (KT):

7(31_51) 7(31—3n)1 X1 Y1 4 Al
y(sn=51) == ¥(y-sp) 1 Xn Yn Zp n
KKT: 1 - 1 0O 0 0 O /IKT:mO
X X 0 0 0 0 m,
yp o vy 0 0 0 O m,
i e zz 0 0 0 O ] |y |
_7(50_51)_
(g —5n)
Ker =| 1
X
y
z
where : Kkt Akt = Kkt

then the weighting matrices can be stated as the followings [13]:

1
Akt = KKkt

The case study in this research uses the Carbon Monoxide (CO) element as the
response variable Y, while the predictor variables are the air temperature (X1), the
wind velocity (X2), the air humidity (Xs), the traffic velocity (Xa), the area size of
the urban forest (Xs), the population density (Xs), and the business center aspect
(X7) [14]

4. RESULTS AND DISCUSSION

The first MGTWR model test is the model fitness, in which the hypothesis can
be stated as the followings:
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Ho : = = .2 i ..
0 'Bk(ui'vi’ti) 'Bk(ui’vi) k=0,1,-2, ,4,=dan
(MGTWR model is not different from the MGWR model)
Hi : At least
vAtleastone 4 (u .t )% A (u )
(MGTWR model is significantly different from the MGWR model)

The test results are summarized in Table 1:

Tabel 1 Fitness Test of MGTWR Model for the CO Response

Solgrrrcgrof Sum Square | Degree of Fredom | Mean Square F p-value
Improvement | 7,7679 15,9260 0,4877 4,2433 | 0,0000
MGTWR 46,1362 401,3706 0,1149
MGWR 53,9041 417,2966

Table 1 shows that the F test statistical value is 4,2433, and the the p-value of
0,0000. Using the significance value (a) of 5%, we must reject Ho, and conclude

that the MGTWR model is significantly different from the MGWR model.
Therefore, we can further conclude that the MGTWR model is more proper to
model the Air Polluter Standard Index (APSI) for Carbon Monoxide (CO). This
means that the time element is influential in the APSI modeling for CO so that not
only the location factor is considered, but the observation time is taken as the
influential factor to the APSI model for CO as well.

Next step is the global parameter test that is conducted to identify which global
predictor variables significantly influence the response. In this test, we perform
the partial global parameter test using the hypothesis below:

HO: ﬂk:O
Hi: B, =0

(global variable x, is not significant)
(global variable x, is significant)

Table 2 shows that by using the level of significance () 5%, we can

conclude that the global predictor variable that significantly influence the APSI
for CO are the area size of the urban forest (Xs) and the business center aspect
(X7), because these variables have the p-value that are less than 0.05.
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Table 2 Parsial Test of Global Variable of MGTWR Model
Global Parameter

Variable Beta T p-value
Xs -0,0445 -0,4171 0,0080*
Xe 0,0088 0,3556 0,3613
X7 -0,0456 2,0045 0,0228*

Note: *) significant at o, =5%

By using o = 5%, the location and the observation time of APSI for CO in
Surabaya city can be classified based on the significant variables for APSI values
for CO. The detailed significant variable list in each location and in each
observation time is presented in Table 3:

Table 3 MGTWR Model for CO at Five Observation Location Nodes

No | Observation Location Observation Time Significant Variables
Morning X3, Xa
1 SUF1 (Location 1) Noon X3, Xa
Evening X1, Xz, and X4
Morning X3, Xa
2 SUF 3 (Location 2) Noon X3z, Xa
Evening X1, X2, X3, X4
Morning X3, X4
3 SUF 4 (Location 3) Noon X4
Evening X1, X2, X3, X4
Morning X3, X4
4 SUF 5 (Location 4) Noon X3, Xa
Evening X1, X2, X3, X4
Morning X3, Xa
5 SUF 6 (Location 5) Noon X2
Evening X2, X3, and Xa

The MGTWR model obtained in each of the location and observation time
will be different one to another, depending on the parameter value of MGTWR
and on which predictor variables that significantly influence the response variable
of APSI (CO) with the R? value of 36.60%.
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To predict the MGTWR model at a certain location node, we use the

Kriging approach that is presented in the following Table 4:

Table 4 Kriging-based MGTWR Model with Local Parameter Lokal for CO
Element

No Sub-district Time Constant X1 X2 X3 Xa
Morning 45498 | -0.0541 | 0.0690 | -0.1437 | 0.0614
1 Location z Noon 44902 | 0.0164 | 0.0180| 0.0932 | 0.2797

Evening 45415| 0.1745| 0.0870 | 0.1284 | 0.2571

Morning 45523 | -0.0425| 0.0667 | -0.1441 | 0.0636

2 Location y Noon 44903 | 0.0145| 0.0192 | 0.0833 | 0.2773

Evening 45366 | 0.1706 | 0.0840 | 0.1233 | 0.2567

Morning 4.5457 | -0.0618 | 0.0665 | -0.1335 | 0.0693

3 Location x Noon 44897 | 0.0202 | 0.0206 | 0.0923 | 0.2775

Evening 45441 | 0.1686 | 0.0874 | 0.1262 | 0.2612

In Table 4, if we are to estimate for location X, the Kriging-MGTWR with
the CO response for evening is:

Ln (CO) =4.544 + 0.0874X, + 0.2612Xs + 0.0445Xs — 0.0456X7
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The classification map in Surabaya based on CO polluter can be seen in the
following:

CO level at evenina:

Good

Fair

Unhealthy
Very unhealthy
Dangerous

| BN

Figure 1. Classification of Sub-districts in Surabaya Based on the Air Polluter CO

There are eleven sub-districts that are classified as unhealthy (yellow-colored) and
twenty sub-districts that are classified as fair (blue-colored).

5. CONCLUSION

Aside from the global influence, the MGTWR model of the air pollution is
also influenced significantly by the location factor (geographical factor).
Therefore, in this study, the mixed model is suitable to model the air polluter. The
local influence of MTGWR for CO element for observation time morning and
noon show that the two significantly influencing predictor variables are the air
humidity (xs) and the traffic velocity (x4). This indicates that in the morning and
noon, the influence of motor-vehicle exhaust and air humidity are very dominant
in polluting the air with CO. For the night observation, almost all of the predictor
variables influence the air pollution level, with the global influence factors of it
are the area size of the urban forest (xs) and the business center (x7). To predict an
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MGTWR model outside the observation nodes, we can use the Kriging estimation
approach.
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